NAME: $\qquad$ ID No.: $\qquad$ CLASS: $\qquad$

Problem 1: Let $V$ denote the set of all solutions to the system of linear equations

$$
\begin{array}{r}
x_{1}-x_{2}+2 x_{4}-3 x_{5}+x_{6}=0 \\
2 x_{1}-x_{2}-x_{3}+3 x_{4}-4 x_{5}+4 x_{6}=0
\end{array}
$$

(1) (8 points) Find the dimension of and a basis for $V$.

Solution. $\operatorname{dim} V=4$ and
$\beta=\{(1,1,1,0,0,0),(-1,1,0,1,0,0),(1,-2,0,0,1,0),(-3,-2,0,0,0,1)\}$
is a basis for $V$.
(2) (2 points) Show that $S=\{(1,0,1,1,1,0),(0,2,1,1,0,0)\}$ is a linearly independent subset of $V$.

Solution. Let $a(1,0,1,1,1,0)+b(0,2,1,1,0,0)=(0,0,0,0,0,0)$, then $a=b=0$. Hence $S$ is a linearly independent subset of $V$.
(3) (8 points) Extend $S$ to a basis for $V$.

Solution. $\{(1,0,1,1,1,0),(0,2,1,1,0,0),(1,1,1,0,0,0),(-3,-2,0,0,0,1)\}$ is a basis for $V$.

