LINEAR ALGEBRA II

FINAL EXAM

NAME: _____ ID NO.: _____ CLASS: _____
Problem 1: Let
$$A = \begin{pmatrix} 2 & 0 & 1 & -3 \\ 0 & 2 & 4 & 8 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$
.
(1) (3 points) Find the minimal polynomial of A .

Solution.
$$(t-2)^2(t-3)$$

(2) (3 points) Find a Jordan canonical form J of A.

Solution.
$$J = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

(3) (5 points) Find a matrix Q such that $Q^{-1}AQ = J$.

Solution.
$$Q = \begin{pmatrix} 1 & 0 & 1 & -3 \\ 4 & 0 & 0 & 8 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 or $Q = \begin{pmatrix} 1 & 0 & 0 & -3 \\ 4 & 0 & 1 & 8 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

Problem 2: Let $A = \begin{pmatrix} -3 & -5 & -3 \\ 3 & 3 & 1 \end{pmatrix}$.

(1) (3 points) Find the minimal polynomial of A.

Solution.
$$(t-1)(t+2)$$

(2) (3 points) Explain why A is diagonalizable or not diagonalizable.

Solution. $\lambda_1 = 1, \lambda_2 = -2$. Diagonalizable. G.M. of $\lambda_1 = A.M.$ of $\lambda_1 = 1$ and G.M. of $\lambda_2 = 2$ =A.M. of $\lambda_2 = 2$. (3) (3 points) Find a Jordan canonical form J of A.

Solution.
$$J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$
.

(4) (5 points) Find a matrix Q such that $Q^{-1}AQ = J$.

Solution.
$$Q = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & -1 & -1 \end{pmatrix}$$
.

Problem 3: (5 points) Let $A \in M_{n \times n}(\mathbb{R})$ satisfy $A^3 = A$. Show that A is diagonalizable.

Proof. Let $g(t) = t^3 - t = t(t+1)(t-1)$. Then g(A) = O, and hence the minimal polynomial p(t) of A divides g(t). This also implies that A has only possible eigenvalues 0, -1 or 1. Since g(t) has no repeated factors, neither does p(t). Thus A is diagonalizable by Theorem 7.16.

Problem 4: Let A be a square matrix with minimal polynomial

$$p(t) = t^n + a_{n-1}t^{n-1} + \dots + a_1t + a_0.$$

(1) (3 points) A is invertible if and only if $a_0 \neq 0$.

Proof. Let f(t) be the characteristic polynomial of A. Then A is invertible $\Leftrightarrow \det(A) \neq 0 \Leftrightarrow f(0) \neq 0 \Leftrightarrow p(0) = a_0 \neq 0$.

(2) (4 points) Prove that if A is invertible, then

$$A^{-1} = (-1/a_0) \left(A^{n-1} + a_{n-1}A^{n-2} + \dots + a_1 I_n \right).$$

Proof. By the definition of minimal polynomial, we have

$$A^{n} + a_{n-1}A^{n-1} + \dots + a_{1}A + a_{0}I_{n} = 0.$$

Hence

$$A\left\{(-1/a_0)[A^{n-1} + a_{n-1}A^{n-2} + \dots + a_1I_n]\right\}$$

= $(-1/a_0)[A^n + a_{n-1}A^{n-1} + \dots + a_1A]$
= $(-1/a_0)(-a_0I_n) = I_n.$

Similarly, we can show that

$$\{(-1/a_0)[A^{n-1} + a_{n-1}A^{n-2} + \dots + a_1I_n]\}A$$

= $(-1/a_0)[A^n + a_{n-1}A^{n-1} + \dots + a_1A]$
= $(-a_0I_n)(-1/a_0) = I_n.$

Therefore,

$$A^{-1} = (-1/a_0)[A^{n-1} + a_{n-1}A^{n-2} + \dots + a_1I_n].$$

Problem 5: (5 points) Let $V = P(\mathbb{R})$ with the inner product $\langle f(x), g(x) \rangle = \int_0^2 f(t)g(t)dt$, and consider the subspace $P_2(\mathbb{R})$ with the standard ordered basis $\beta = \{1, x, x^2\}$. Use the Gram-Schmidt process to replace β by an orthogonal basis $\{v_1, v_2, v_3\}$ for $P_2(\mathbb{R})$,

Solution.
$$\{1, x - 1, x^2 - 2x + \frac{2}{3}\}$$
.

Problem 6: Let $T \in L(V)$, $V = \mathbb{C}^2$ and $F = \mathbb{C}$ such that

$$T(a_1, a_2) = (2ia_1 + 3a_2, 4a_1 - ia_2).$$
(1) (4 points) Let $\beta = \left\{ \begin{pmatrix} 2\\1 \end{pmatrix}, \begin{pmatrix} 1\\0 \end{pmatrix} \right\}$ be an ordered basis for \mathbb{C}^2 . Compute $[T^*]_{\beta}$.

Solution. $\langle (a_1, a_2), T^*(2, 1) \rangle = \langle T(a_1, a_2), (2, 1) \rangle = \cdots = \langle (a_1, a_2), (-4i + 4, 6+i) \rangle$. $4, 6+i) \rangle \Rightarrow T^*(2, 1) = (-4i + 4, 6+i)$. Similarly, $T^*(1, 0) = (-2i, 3)$. It is easy to show that $[T^*]_{\beta} = \begin{pmatrix} 6+i & 3\\ -8-6i & -6-2i \end{pmatrix}$.

(2) (4 points) Determine whether T is normal, self-adjoint, or neither.Solution. Neither.