NAME: \qquad ID No.: \qquad Class: \qquad
Problem 1: Let $A=\left(\begin{array}{cccc}2 & 0 & 1 & -3 \\ 0 & 2 & 4 & 8 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3\end{array}\right)$.
(1) (3 points) Find the minimal polynomial of A.

Solution. $(t-2)^{2}(t-3)$
(2) (3 points) Find a Jordan canonical form J of A.

Solution. $J=\left(\begin{array}{llll}2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3\end{array}\right)$.
(3) (5 points) Find a matrix Q such that $Q^{-1} A Q=J$.

Solution. $Q=\left(\begin{array}{cccc}1 & 0 & 1 & -3 \\ 4 & 0 & 0 & 8 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ or $Q=\left(\begin{array}{cccc}1 & 0 & 0 & -3 \\ 4 & 0 & 1 & 8 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.
Problem 2: Let $A=\left(\begin{array}{ccc}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right)$.
(1) (3 points) Find the minimal polynomial of A.

Solution. $(t-1)(t+2)$
(2) (3 points) Explain why A is diagonalizable or not diagonalizable.

Solution. $\lambda_{1}=1, \lambda_{2}=-2$.
Diagonalizable. G.M. of $\lambda_{1}=$ A.M. of $\lambda_{1}=1$ and G.M. of $\lambda_{2}=2=$ A.M. of $\lambda_{2}=2$.
(3) (3 points) Find a Jordan canonical form J of A.

Solution. $J=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2\end{array}\right)$.
(4) (5 points) Find a matrix Q such that $Q^{-1} A Q=J$.

Solution. $Q=\left(\begin{array}{ccc}-1 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & -1 & -1\end{array}\right)$.
Problem 3: (5 points) Let $A \in M_{n \times n}(\mathbb{R})$ satisfy $A^{3}=A$. Show that A is diagonalizable.
Proof. Let $g(t)=t^{3}-t=t(t+1)(t-1)$. Then $g(A)=O$, and hence the minimal polynomial $p(t)$ of A divides $g(t)$. This also implies that A has only possible eigenvalues $0,-1$ or 1 . Since $g(t)$ has no repeated factors, neither does $p(t)$. Thus A is diagonalizable by Theorem 7.16.

Problem 4: Let A be a square matrix with minimal polynomial

$$
p(t)=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0} .
$$

(1) (3 points) A is invertible if and only if $a_{0} \neq 0$.

Proof. Let $f(t)$ be the characteristic polynomial of A.
Then A is invertible $\Leftrightarrow \operatorname{det}(A) \neq 0 \Leftrightarrow f(0) \neq 0 \Leftrightarrow p(0)=a_{0} \neq 0$.
(2) (4 points) Prove that if A is invertible, then

$$
A^{-1}=\left(-1 / a_{0}\right)\left(A^{n-1}+a_{n-1} A^{n-2}+\cdots+a_{1} I_{n}\right) .
$$

Proof. By the definition of minimal polynomial, we have

$$
A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A+a_{0} I_{n}=0
$$

Hence

$$
\begin{array}{r}
A\left\{\left(-1 / a_{0}\right)\left[A^{n-1}+a_{n-1} A^{n-2}+\cdots+a_{1} I_{n}\right]\right\} \\
=\left(-1 / a_{0}\right)\left[A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A\right] \\
=\left(-1 / a_{0}\right)\left(-a_{0} I_{n}\right)=I_{n} .
\end{array}
$$

Similarly, we can show that

$$
\begin{array}{r}
\left\{\left(-1 / a_{0}\right)\left[A^{n-1}+a_{n-1} A^{n-2}+\cdots+a_{1} I_{n}\right]\right\} A \\
=\left(-1 / a_{0}\right)\left[A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A\right] \\
=\left(-a_{0} I_{n}\right)\left(-1 / a_{0}\right)=I_{n}
\end{array}
$$

Therefore,

$$
A^{-1}=\left(-1 / a_{0}\right)\left[A^{n-1}+a_{n-1} A^{n-2}+\cdots+a_{1} I_{n}\right] .
$$

Problem 5: (5 points) Let $V=P(\mathbb{R})$ with the inner product $<f(x), g(x)>=\int_{0}^{2} f(t) g(t) d t$, and consider the subspace $P_{2}(\mathbb{R})$ with the standard ordered basis $\beta=\left\{1, x, x^{2}\right\}$. Use the Gram-Schmidt process to replace β by an orthogonal basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ for $P_{2}(\mathbb{R})$,

Solution. $\left\{1, x-1, x^{2}-2 x+\frac{2}{3}\right\}$.
Problem 6: Let $T \in L(V), V=\mathbb{C}^{2}$ and $F=\mathbb{C}$ such that

$$
T\left(a_{1}, a_{2}\right)=\left(2 i a_{1}+3 a_{2}, 4 a_{1}-i a_{2}\right)
$$

(1) (4 points) Let $\beta=\left\{\binom{2}{1},\binom{1}{0}\right\}$ be an ordered basis for \mathbb{C}^{2}. Compute $\left[T^{*}\right]_{\beta}$.

Solution. $<\left(a_{1}, a_{2}\right), T^{*}(2,1)>=<T\left(a_{1}, a_{2}\right),(2,1)>=\cdots=<\left(a_{1}, a_{2}\right),(-4 i+$ $4,6+i)>. \Rightarrow T^{*}(2,1)=(-4 i+4,6+i)$. Similarly, $T^{*}(1,0)=(-2 i, 3)$. It is easy to show that $\left[T^{*}\right]_{\beta}=\left(\begin{array}{cc}6+i & 3 \\ -8-6 i & -6-2 i\end{array}\right)$.
(2) (4 points) Determine whether T is normal, self-adjoint, or neither.

Solution. Neither.

