NAME: \qquad ID No.: \qquad Class: \qquad
Problem 1: Let $A=\left(\begin{array}{ll}4 & 3 \\ 5 & 6\end{array}\right) \in M_{2 \times 2}(\mathbb{R})$,
(1) (4 points) Determine all the eigenvalues and the corresponding eigenvectors of A. solution. Eigenvalue : $\lambda_{1}=1$, Eigenvector : $v_{1}=t\binom{1}{-1}, t \neq 0, t \in \mathbb{R}$.
Eigenvalue : $\lambda_{2}=9$, Eigenvector : $v_{2}=t\binom{3}{5}, t \neq 0, t \in \mathbb{R}$.
(2) (2 points) Determine an invertible matrix Q and a diagonal matrix D such that $Q^{-1} A Q=D$.
Solution. $Q=\left(\begin{array}{cc}1 & 3 \\ -1 & 5\end{array}\right)$.
(3) (4 points) Use (1) and (2) to compute e^{A}.

Proof. $\left(\begin{array}{cc}\frac{5 e+3 e^{9}}{8} & \frac{-3 e+3 e^{9}}{8} \\ \frac{-5 e+5 e^{9}}{8} & \frac{3 e+5 e^{9}}{8}\end{array}\right)$.

Problem 2:

(1) (2 points) Let $T \in \mathcal{L}(V)$ and $\operatorname{dim}(V)<\infty$. Let W be the T-cyclic subspace of V generated by a vector $v \in V \backslash\{0\}$, and $\operatorname{dim}(W)=3$. Suppose that $-4 I(v)+$ $3 T(v)-2 T^{2}(v)+T^{3}(v)$ is a zero vector of V. Find the characteristic polynomial $P_{T_{W}}(t)$ of T_{W}.

Solution. $-t^{3}+2 t^{2}-3 t+4$.
(2) (4 points) Let T be the linear operator on $M_{2 \times 2}(\mathbb{R})$ such that $T(A)=A^{t}$. Find the characteristic polynomial $P_{T}(t)$ of T.
Solution. $(t-1)^{3}(t+1)$.
Problem 3: Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be the linear operator defined by $T(f(x))=$ $f(x)+(1+x) f^{\prime}(x)$, where $P_{2}(\mathbb{R})$ is the set of all polynomials with real coefficients with degree at most 2 and $f^{\prime}(x)$ is the derivative of $f(x)$.
(1) (3 points) Find all the eigenvalues of the operator T.
solution. 1, 2, 3 .
(2) (2 points) Find all the eigenvalues of the operator $T^{5}+2 T^{3}+5 T$.

Solution. $1^{5}+2 \cdot 1^{3}+5 \cdot 1,2^{5}+2 \cdot 2^{3}+5 \cdot 2,3^{5}+2 \cdot 3^{3}+5 \cdot 3$.
(3) (3 points) Find a basis β for $P_{2}(\mathbb{R})$ such that $[T]_{\beta}$ is a diagonal matrix.

Solution. $\beta=\left\{1,1+x, 1+2 x+x^{2}\right\}$.
Problem 4: (5 points) Let $T: P_{3}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ be the linear operator defined by $T(f(x))=f^{\prime}(x)+f^{\prime \prime}(x)$. Test T for diagonalizability.

Solution. Not diagonalizable.
Problem 5: (4 points) Let T be a linear operator on an inner product space V, and suppose that $\|T(x)\|=\|x\|$ for all x. Prove that T is one-to-one.

Proof. Let $x \in V$ be an arbitrary vector. Then $T(x)=0 \Rightarrow\|T(x)\|=\|x\|=0 \Rightarrow x=0$. Hence T is one-to-one.

Problem 6: (4 points) Let $V=C([0,1])$, and define

$$
<f, g>=\int_{0}^{3 / 4} f(t) g(t) d t
$$

Is this an inner product on V.
Solution. Let $f(x)=0$, if $x \leq 3 / 4$ and $f(x)=x-3 / 4$ if $x>3 / 4$. Then $<f, f>=0$, but $f \neq 0$. Hence it is not an inner product on V.

Problem 7: (5 points) Prove that similar matrices have the same characteristic polynomial.

Proof. Assume that the $n \times n$ matrix A is similar to the $n \times n$ matrix B, then there exists an invertible $n \times n$ matrix Q such that $B=Q^{-1} A Q$. Now

$$
\begin{aligned}
\operatorname{det}(B-\lambda I) & =\operatorname{det}\left(Q^{-1} A Q-\lambda I\right) \\
& =\operatorname{det}\left(Q^{-1}(A-\lambda I) Q\right) \\
& =\operatorname{det}\left(Q^{-1}\right) \operatorname{det}(A-\lambda I) \operatorname{det}(Q) \\
& =\operatorname{det}(A-\lambda I)
\end{aligned}
$$

Hence the similar matrices A and B have the same characteristic polynomial.
Problem 8: Show that if a matrix A is diagonalizable, then
(1) (4 points) the determinant of $A, \operatorname{det}(A)$, is the product of its eigenvalues (counting with multiplicities).

Proof. Since A is diagonalizable, A is similar to a diagonal matrix whose diagonal entries are eigenvalues. Since similar matrices have the same determinant. The determinant of $A, \operatorname{det}(A)$, is equal to the product of its eigenvalues (counting with multiplicities).
(2) (4 points) the trace of $A, \operatorname{tr}(A)$, is the sum of its eigenvalues (counting with multiplicities).

Proof. Since A is diagonalizable, A is similar to a diagonal matrix whose diagonal entries are eigenvalues. Since similar matrices have the same trace. The trace of $A, \operatorname{tr}(A)$, is equal to the sum of its eigenvalues (counting with multiplicities).

