NAME: \qquad ID No.: \qquad Class: \qquad
Problem 1: Let V be an inner product space, and let T be a linear operator on V. Prove the following resluts
(1) (5 points) $R\left(T^{*}\right)^{\perp}=N(T)$.

Proof. If $x \in R\left(T^{*}\right)^{\perp}$, then $0=<x, T^{*}(y)>=<T(x), y>$ for any $y \in V$. This implies that $T(x)=0$, i.e. $x \in N(T)$. Hence $R\left(T^{*}\right)^{\perp} \subseteq N(T)$.

If $x \in N(T)$, then $0=<0, y>=<T(x), y>=<x, T^{*}(y)>$ for any $y \in V$. This implies that $x \in R\left(T^{*}\right)^{\perp}$. Hence $N(T) \subseteq R\left(T^{*}\right)^{\perp}$.
Therefore, we conclude that $R\left(T^{*}\right)^{\perp}=N(T)$.
(2) (1 point) If V is finite-dimensional, then $R\left(T^{*}\right)=N(T)^{\perp}$. (Hint: Use the fact that if W is a subspace of a finite-dimensional inner product space V, then $W=$ $\left(W^{\perp}\right)^{\perp}$.)
Proof. By hint, $N(T)^{\perp}=\left(R\left(T^{*}\right)^{\perp}\right)^{\perp}=R\left(T^{*}\right)$.
(3) (4 points) If V is finite-dimensional, then $N\left(T^{*} T\right)=N(T)$. Deduce that $\operatorname{rank}\left(T^{*} T\right)=$ $\operatorname{rank}(T)$.
Proof. If $x \in N\left(T^{*} T\right)$, then $T^{*} T(x)=0$ and $0=<T^{*} T(x), x>=<T(x), T(x)>$. This implies that $T(x)=0$, i.e. $x \in N(T)$. Hence $N\left(T^{*} T\right) \subseteq N(T)$. Conversely, if $x \in N(T)$, then $T^{*} T(x)=T^{*}(0)=0$. This implies that $x \in N\left(T^{*} T\right)$. Hence $N(T) \subseteq N\left(T^{*} T\right)$. We conclude that $N(T)=N\left(T^{*} T\right)$. Finally, by dimension theorem, we have $\operatorname{dim} V=\operatorname{dim} N(T)+\operatorname{dim} \operatorname{rank}(T)=\operatorname{dim} N\left(T^{*} T\right)+\operatorname{dim} \operatorname{rank}\left(T^{*} T\right)$. Therefore, $\operatorname{rank}\left(T^{*} T\right)=\operatorname{rank}(T)$.
(4) (3 points) If V is finite-dimensional, then $\operatorname{rank}(T)=\operatorname{rank}\left(T^{*}\right)$.

Proof. By theorem, we have $\operatorname{dim} V=\operatorname{dim} N(T)+\operatorname{dim} N(T)^{\perp}$. By dimension theorem, we know that $\operatorname{dim} V=\operatorname{dim} N(T)+\operatorname{dim} R(T)$. Hence $\operatorname{dim} N(T)^{\perp}=\operatorname{dim} R(T)$. Also, we know that, by $(\mathrm{b}), \operatorname{dim} N(T)^{\perp}=\operatorname{dim} R\left(T^{*}\right)$. Therefore, $\operatorname{dim} R(T)=$ $\operatorname{dim} R\left(T^{*}\right)$, i.e. $\operatorname{rank}(T)=\operatorname{rank}\left(T^{*}\right)$.
Problem 2: Give an example of a linear operator T on \mathbb{R}^{2} and an ordered basis β for \mathbb{R}^{2} such that T is normal, but $[T]_{\beta}$ is not normal.
(1) (3 points) Write down your example.

Solution. For example, let $T(a, b)=(a, 2 b)$ and $\beta=\{(1,1),(0,1)\}$.
(2) (3 points) Show that the T in your example is normal.

Solution. Check that T is self-adjoint. Hence T is normal.
(3) (3 points) Show that the $[T]_{\beta}$ in your example is not normal.

Solution. $[T]_{\beta}=\left(\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right)$.
Problem 3: Let $T \in L(V), V=\mathbb{C}^{2}$ and $F=\mathbb{C}$ such that

$$
T\left(a_{1}, a_{2}\right)=\left(3 i a_{1}+4 a_{2}, 2 a_{1}-a_{2}\right) .
$$

Let $\beta=\left\{\binom{1}{2},\binom{0}{1}\right\}$ be an ordered basis for \mathbb{C}^{2}.
(1) (3 points) Compute $\left([T]_{\beta}\right)^{*}$.
solution. $\left(\begin{array}{cc}-3 i+8 & 6 i-16 \\ 4 & -9\end{array}\right)$.
(2) (4 points) Compute $\left[T^{*}\right]_{\beta}$.

Solution. $<\left(a_{1}, a_{2}\right), T^{*}(1,2)>=<T\left(a_{1}, a_{2}\right),(1,2)>=\cdots=<\left(a_{1}, a_{2}\right),(-3 i+$ $4,2)>. \Rightarrow T^{*}(1,2)=(-3 i+4,2)$. Similarly, $T^{*}(0,1)=(2,-1)$. It is easy to show that $\left[T^{*}\right]_{\beta}=\left(\begin{array}{cc}-3 i+4 & 2 \\ 6 i-6 & -5\end{array}\right)$.

Problem 4: (4 points) Prove that a 3×3 matrix that is both unitary and upper triangular must be a diagonal matrix.

Proof. It can be proved by straightforward computation. We skip the details.
Problem 5:(5 points) Let A be an $n \times n$ real symmetric or complex normal matrix. Prove that

$$
\operatorname{tr}\left(A^{*} A\right)=\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}
$$

where the λ_{i} 's are the (not necessarily distinct) eigenvalues of A.
Proof. By Theorem 6.19 and Theorem 6.20, A is similar to a diagonal matrix whose diagonal entries consist of eigenvalues, i.e. there exists an invertible matrix Q such that $Q^{-1} A Q=D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$. Hence $\operatorname{tr}\left(A^{*} A\right)=\operatorname{tr}\left(\left(Q D Q^{-1}\right)^{*}\left(Q D Q^{-1}\right)\right)=$ $\operatorname{tr}\left(Q D^{*} D Q^{*}\right)=\operatorname{tr}\left(D^{*} D\right)=\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}$.
Problem 6: Let $V=P(\mathbb{R})$ with the inner product $<f(x), g(x)>=\int_{-1}^{1} f(t) g(t) d t$, and consider the subspace $P_{2}(\mathbb{R})$ with the standard ordered basis $\beta=\left\{1, x, x^{2}\right\}$.
(1) (5 points) Use the Gram-Schmidt process to replace β by an orthogonal basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ for $P_{2}(\mathbb{R})$,

Solution. $\left\{1, x, x^{2}-1 / 3\right\}$.
(2) (3 points) Use the orthogonal basis in (1) to obtain an orthonormal basis for $P_{2}(\mathbb{R})$. Solution. $\left\{1 / \sqrt{2}, \sqrt{3 / 2} x, \sqrt{5 / 8}\left(3 x^{2}-1\right)\right\}$.
Problem 7: (4 points) Let V be a finite dimensional inner product space, and X and Y be two subspaces of V. If $\operatorname{dim} X<\operatorname{dim} Y$, show that there exists a nonzero vector y in Y such that y is orthogonal to all vectors in X.
Proof. If y is Y such that y is orthogonal to all vectors in X, then $y \in X^{\perp} \cap Y$. So it is enough to show that $\operatorname{dim}\left(X^{\perp} \cap Y\right)>0$. We know that $X^{\perp}+Y$ is a subspace of V, so $\operatorname{dim}\left(X^{\perp}+Y\right) \leq \operatorname{dim} V$. We also know that $\operatorname{dim} V=\operatorname{dim} X+\operatorname{dim} X^{\perp}$ and $\operatorname{dim}\left(X^{\perp}+Y\right)=\operatorname{dim} X^{\perp}+\operatorname{dim} Y-\operatorname{dim}\left(X^{\perp} \cap Y\right)$. Hence, by assumption and the above equalities, we have

$$
\begin{aligned}
\operatorname{dim}\left(X^{\perp} \cap Y\right) & =\operatorname{dim} X^{\perp}+\operatorname{dim} Y-\operatorname{dim}\left(X^{\perp}+Y\right) \\
& =(\operatorname{dim} V-\operatorname{dim} X)+\operatorname{dim} Y-\operatorname{dim}\left(X^{\perp}+Y\right) \\
& \geq \operatorname{dim} Y-\operatorname{dim} X>0
\end{aligned}
$$

