
Linear Algebra II Midterm 2

Name: Id No.: Class:

Problem 1: Let V be an inner product space, and let T be a linear operator on V . Prove

the following resluts

(1) (5 points) R(T ∗)⊥ = N(T ).

Proof. If x ∈ R(T ∗)⊥, then 0 =< x, T ∗(y) >=< T (x), y > for any y ∈ V . This

implies that T (x) = 0, i.e. x ∈ N(T ). Hence R(T ∗)⊥ ⊆ N(T ).

If x ∈ N(T ), then 0 =< 0, y >=< T (x), y >=< x, T ∗(y) > for any y ∈ V . This

implies that x ∈ R(T ∗)⊥. Hence N(T ) ⊆ R(T ∗)⊥.

Therefore, we conclude that R(T ∗)⊥ = N(T ). �

(2) (1 point) If V is finite-dimensional, then R(T ∗) = N(T )⊥. (Hint: Use the fact

that if W is a subspace of a finite-dimensional inner product space V , then W =

(W⊥)⊥.)

Proof. By hint, N(T )⊥ =
(
R(T ∗)⊥

)⊥
= R(T ∗). �

(3) (4 points) If V is finite-dimensional, thenN(T ∗T ) = N(T ). Deduce that rank(T ∗T ) =

rank(T ).

Proof. If x ∈ N(T ∗T ), then T ∗T (x) = 0 and 0 =< T ∗T (x), x >=< T (x), T (x) >.

This implies that T (x) = 0, i.e. x ∈ N(T ). Hence N(T ∗T ) ⊆ N(T ). Conversely,

if x ∈ N(T ), then T ∗T (x) = T ∗(0) = 0. This implies that x ∈ N(T ∗T ). Hence

N(T ) ⊆ N(T ∗T ). We conclude that N(T ) = N(T ∗T ). Finally, by dimension the-

orem, we have dimV = dimN(T )+dim rank(T ) = dimN(T ∗T )+dim rank(T ∗T ).

Therefore, rank(T ∗T ) = rank(T ). �

(4) (3 points) If V is finite-dimensional, then rank(T ) = rank(T ∗).

Proof. By theorem, we have dimV = dimN(T )+dimN(T )⊥. By dimension theo-

rem, we know that dimV = dimN(T )+dimR(T ). Hence dimN(T )⊥ = dimR(T ).

Also, we know that, by (b), dimN(T )⊥ = dimR(T ∗). Therefore, dimR(T ) =

dimR(T ∗), i.e. rank(T ) = rank(T ∗). �

Problem 2: Give an example of a linear operator T on R2 and an ordered basis β for

R2 such that T is normal, but [T ]β is not normal.

(1) (3 points) Write down your example.

Solution. For example, let T (a, b) = (a, 2b) and β = {(1, 1), (0, 1)} . �
1



(2) (3 points) Show that the T in your example is normal.

Solution. Check that T is self-adjoint. Hence T is normal. �

(3) (3 points) Show that the [T ]β in your example is not normal.

Solution. [T ]β =

(
1 0

1 2

)
. �

Problem 3: Let T ∈ L(V ), V = C2 and F = C such that

T (a1, a2) = (3ia1 + 4a2, 2a1 − a2).

Let β =

{(
1

2

)
,

(
0

1

)}
be an ordered basis for C2.

(1) (3 points) Compute ([T ]β)∗ .

solution.

(
−3i+ 8 6i− 16

4 −9

)
. �

(2) (4 points) Compute [T ∗]β.

Solution. < (a1, a2), T
∗(1, 2) >=< T (a1, a2), (1, 2) >= · · · =< (a1, a2), (−3i +

4, 2) >. ⇒ T ∗(1, 2) = (−3i+ 4, 2). Similarly, T ∗(0, 1) = (2,−1). It is easy to show

that [T ∗]β =

(
−3i+ 4 2

6i− 6 −5

)
. �

Problem 4: (4 points) Prove that a 3×3 matrix that is both unitary and upper triangular

must be a diagonal matrix.

Proof. It can be proved by straightforward computation. We skip the details. �

Problem 5:(5 points) Let A be an n×n real symmetric or complex normal matrix. Prove

that

tr(A∗A) =
n∑
i=1

|λi|2,

where the λi’s are the (not necessarily distinct) eigenvalues of A.

Proof. By Theorem 6.19 and Theorem 6.20, A is similar to a diagonal matrix whose

diagonal entries consist of eigenvalues, i.e. there exists an invertible matrix Q such

that Q−1AQ = D = diag(λ1, λ2, · · · , λn). Hence tr(A∗A) = tr((QDQ−1)∗(QDQ−1)) =

tr(QD∗DQ∗) = tr(D∗D) =
∑n

i=1 |λi|2. �

Problem 6: Let V = P (R) with the inner product < f(x), g(x) >=
∫ 1

−1 f(t)g(t)dt, and

consider the subspace P2(R) with the standard ordered basis β = {1, x, x2}.



(1) (5 points) Use the Gram-Schmidt process to replace β by an orthogonal basis

{v1, v2, v3} for P2(R),

Solution. {1, x, x2 − 1/3} . �

(2) (3 points) Use the orthogonal basis in (1) to obtain an orthonormal basis for P2(R).

Solution.
{

1/
√

2,
√

3/2x,
√

5/8(3x2 − 1)
}
. �

Problem 7:(4 points) Let V be a finite dimensional inner product space, and X and Y

be two subspaces of V . If dimX < dimY , show that there exists a nonzero vector y in

Y such that y is orthogonal to all vectors in X.

Proof. If y is Y such that y is orthogonal to all vectors in X, then y ∈ X⊥ ∩ Y . So

it is enough to show that dim(X⊥ ∩ Y ) > 0. We know that X⊥ + Y is a subspace

of V , so dim(X⊥ + Y ) ≤ dimV . We also know that dimV = dimX + dimX⊥ and

dim(X⊥ + Y ) = dimX⊥ + dimY − dim(X⊥ ∩ Y ). Hence, by assumption and the above

equalities, we have

dim(X⊥ ∩ Y ) = dimX⊥ + dimY − dim(X⊥ + Y )

= (dimV − dimX) + dimY − dim(X⊥ + Y )

≥ dimY − dimX > 0.

�


