LINEAR ALGEBRA

Solutions

$$Tv = \lambda v \Leftrightarrow [Tv]_{\beta} = [\lambda v]_{\beta} \Leftrightarrow [T]_{\beta} [v]_{\beta} = \lambda [v]_{\beta}.$$

5.1.7 (a). Since
$$[T]_{\beta} = Q^{-1}[T]_{\gamma}Q$$
, where $Q = [I]_{\beta}^{\gamma}$. We have
 $\det([T]_{\beta}) = \det(Q^{-1}[T]_{\gamma}Q) = \det(Q^{-1})\det([T]_{\gamma})\det(Q) = \det([T]_{\gamma}).$

5.1.8 (a). T is invertible $\Leftrightarrow \det(T) \neq 0 \Leftrightarrow N(T) = \{0\}$. $\stackrel{Thm5.4}{\longleftrightarrow} 0$ is not an eigenvalue of T.

5.1.8 (b). Suppose that the nonzero scalar λ is an eigenvalue of $T \Leftrightarrow Tv = \lambda v \Leftrightarrow v = T^{-1}Tv = T^{-1}(\lambda v) = \lambda T^{-1}v. \Leftrightarrow \lambda^{-1}v = T^{-1}v.$

Hint for 5.1.8 (c). Simply replace linear operator T by matrix M.

Hint for 5.1.9. The determinant of an upper triangular matrix M are the product of the diagonal entries of M.

5.1.11 (a). Assume that the square matrix A is similar to the scalar matrix λI . Hence $A = Q^{-1}(\lambda I)Q = \lambda I$.

5.1.11 (b). Let M be an $n \times n$ diagonalizable matrix having only one eigenvalue λ . By theorem 5.1, there exists an ordered basis $\beta = \{v_1, v_2, \cdots, v_n\}$ for F^n consisting of eigenvectors of T. Then $Mv_i = \lambda v_i$ for all $i = 1, 2, \cdots, n$. Hence $Mv = \lambda v$ for all $v \in \text{span}(\beta) = F^n$. So M must be λI .

5.1.11(c). It is easy to see that 1 is the only eigenvalue for $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Since $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is not a scalar matrix, by (b) it is not diagonalizable.

5.1.12(a). Use the fact that $\det(Q^{-1}AQ - \lambda I) = \det(Q^{-1}(A - \lambda I)Q) = \det(Q^{-1})\det(A - \lambda I)\det(Q) = \det(A - \lambda I)$.

Hint for 5.1.12(b). Use (a) and the fact that matrix representations of a linear operator are similar to each other with respect to different choices of bases for the vector space. \Box

5.1.14. Use the fact that

$$\det(A - \lambda I) = \det((A - \lambda)^t) = \det(A^t - \lambda I).$$

5.1.15(a). Since
$$T^m x = T^{m-1}Tx = T^{m-1}(\lambda x) = \lambda T^{m-1}x = \dots = \lambda^m x$$
.

5.1.15(b). Simply replace the linear operator T by the matrix M in the statement and the proof. $\hfill \Box$

5.1.16(a). Let A be a square matrix, then, by exercise 2.3.13, $tr(Q^{-1}AQ) = tr(QQ^{-1}A) = tr(A)$. for some invertible matrix Q of the same size as A.

5.1.16(b). We may define the trace of a linear operator on a finite-dimensional vector space to be the trace of its matrix representation. It is well-defined, since the matrix representations of a linear operator on a finite-dimensional vector space are similar to each other with respect to different ordered bases chosen for the vector space.

5.1.18(a). Since

$$\det(A + cB) = \det(B(B^{-1}A + cI)) = \det(B)\det(B^{-1}A + cI).$$

Hence $\det(B) \neq 0$ implies that $\det(A+cB) = 0 \Leftrightarrow \det(B^{-1}A+cI) = 0$. Since $\det(B^{-1}A+cI)$ is a polynomial of c with complex coefficients, we can always find some scalar $c \in \mathbb{C}$ so that $\det(B^{-1}A+cI) = 0$. Hence there exist a scalar $c \in \mathbb{C}$ such that A+cB is not invertible.

5.1.18(b). Take
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$. Then $\det(A) = \det(A + cB) = 1$. Hence both A and $A + cB$ are invertible for all $c \in \mathbb{C}$.

5.1.20. By assumption and definition $f(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0 = \det(A - tI)$. Hence $f(0) = a_0 = \det(A)$.