5.1.6. Let λ be an eigenvalue of T corresponding to the eigenvector v. Then

$$
T v=\lambda v \Leftrightarrow[T v]_{\beta}=[\lambda v]_{\beta} \Leftrightarrow[T]_{\beta}[v]_{\beta}=\lambda[v]_{\beta} .
$$

5.1.7 (a). Since $[T]_{\beta}=Q^{-1}[T]_{\gamma} Q$, where $Q=[I]_{\beta}^{\gamma}$. We have

$$
\operatorname{det}\left([T]_{\beta}\right)=\operatorname{det}\left(Q^{-1}[T]_{\gamma} Q\right)=\operatorname{det}\left(Q^{-1}\right) \operatorname{det}\left([T]_{\gamma}\right) \operatorname{det}(Q)=\operatorname{det}\left([T]_{\gamma}\right)
$$

5.1.8 (a). T is invertible $\Leftrightarrow \operatorname{det}(T) \neq 0 \Leftrightarrow N(T)=\{0\}$. $\stackrel{\text { Thm5.4 }}{\Longleftrightarrow} 0$ is not an eigenvalue of T.
5.1.8 (b). Suppose that the nonzero scalar λ is an eigenvalue of $T . \Leftrightarrow T v=\lambda v \Leftrightarrow v=$ $T^{-1} T v=T^{-1}(\lambda v)=\lambda T^{-1} v . \Leftrightarrow \lambda^{-1} v=T^{-1} v$.

Hint for 5.1 .8 (c). Simply replace linear operator T by matrix M.
Hint for 5.1.9. The determinant of an upper triangular matrix M are the product of the diagonal entries of M.
5.1.11 (a). Assume that the square matrix A is similar to the scalar matrix λI. Hence $A=Q^{-1}(\lambda I) Q=\lambda I$.
5.1.11 (b). Let M be an $n \times n$ diagonalizable matrix having only one eigenvalue λ. By theorem 5.1, there exists an ordered basis $\beta=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ for F^{n} consisting of eigenvectors of T. Then $M v_{i}=\lambda v_{i}$ for all $i=1,2, \cdots, n$. Hence $M v=\lambda v$ for all $v \in \operatorname{span}(\beta)=F^{n}$. So M must be λI.
5.1.11(c). It is easy to see that 1 is the only eigenvalue for $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Since $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is not a scalar matrix, by (b) it is not diagonalizable.
5.1.12(a). Use the fact that $\operatorname{det}\left(Q^{-1} A Q-\lambda I\right)=\operatorname{det}\left(Q^{-1}(A-\lambda I) Q\right)=\operatorname{det}\left(Q^{-1}\right) \operatorname{det}(A-$ $\lambda I) \operatorname{det}(Q)=\operatorname{det}(A-\lambda I)$.

Hint for 5.1.12(b). Use (a) and the fact that matrix representations of a linear operator are similar to each other with respect to different choices of bases for the vector space.
5.1.14. Use the fact that

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left((A-\lambda)^{t}\right)=\operatorname{det}\left(A^{t}-\lambda I\right)
$$

5.1.15(a). Since $T^{m} x=T^{m-1} T x=T^{m-1}(\lambda x)=\lambda T^{m-1} x=\cdots=\lambda^{m} x$.
5.1.15(b). Simply replace the linear operator T by the matrix M in the statement and the proof.
5.1.16(a). Let A be a square matrix, then, by exercise 2.3.13, $\operatorname{tr}\left(Q^{-1} A Q\right)=\operatorname{tr}\left(Q Q^{-1} A\right)=$ $\operatorname{tr}(A)$. for some invertible matrix Q of the same size as A.
5.1.16(b). We may define the trace of a linear operator on a finite-dimensional vector space to be the trace of its matrix representation. It is well-defined, since the matrix representations of a linear operator on a finite-dimensional vector space are similar to each other with respect to different ordered bases chosen for the vector space.
5.1.18(a). Since

$$
\operatorname{det}(A+c B)=\operatorname{det}\left(B\left(B^{-1} A+c I\right)\right)=\operatorname{det}(B) \operatorname{det}\left(B^{-1} A+c I\right) .
$$

Hence $\operatorname{det}(B) \neq 0$ implies that $\operatorname{det}(A+c B)=0 \Leftrightarrow \operatorname{det}\left(B^{-1} A+c I\right)=0$. Since $\operatorname{det}\left(B^{-1} A+\right.$ $c I)$ is a polynomial of c with complex coefficients, we can always find some scalar $c \in \mathbb{C}$ so that $\operatorname{det}\left(B^{-1} A+c I\right)=0$. Hence there exist a scalar $c \in \mathbb{C}$ such that $A+c B$ is not invertible.
5.1.18(b). Take $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)$. Then $\operatorname{det}(A)=\operatorname{det}(A+c B)=1$. Hence both A and $A+c B$ are invertible for all $c \in \mathbb{C}$.
5.1.20. By assumption and definition $f(t)=(-1)^{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}=\operatorname{det}(A-$ $t I)$. Hence $f(0)=a_{0}=\operatorname{det}(A)$.

