
Linear Algebra Solutions

5.2.8:

Proof. Since dimEλ2 ≥ 1, we can choose a nonzero vector v ∈ Eλ2 . Let β = {v1, v2, · · · , vn−1}
be a basis for Eλ1 . Then, by Theorem 5.8, {v, v1, v2, · · · , vn−1} forms a basis for F n con-

sisting of eigenvectors of A. Hence, Theorem 5.1 implies that A is diagonalizable. �

5.2.9:

Proof of (a). Since the characteristic polynomial of T is independent of the choice of the

ordered basis β and the matrix [T ]β − tI is an upper triangular matrix, the characteristic

polynomial

f(t) = det ([T ]β − tI) =
n∏
i=1

(
([T ]β)ii − t

)
splits. �

Statement of (b). Suppose that A ∈Mn×n(F ) is similar to an upper triangular matrix B.

Prove that the characteristic polynomial for A splits. �

Proof of (b). Since A is similar to B, the characteristic polynomial for A is the same as

the characteristic polynomial for B. Also since B is an upper triangular matrix, the

characteristic polynomial

f(t) = det (A− tI) = det (B − tI) =
n∏
i=1

(Bii − t)

splits. �

5.2.10:

Proof. By 5.2.9(a), the characteristic polynomial

f(t) = det ([T ]β − tI) =
n∏
i=1

(
([T ]β)ii − t

)
implies that the diagonal entries of [T ]β are eigenvalues of T . Then the result follows from

the assumption. �

5.2.11:

Proof. Similar matrices have the same characteristic polynomial and, hence, the same

eigenvalues. We also know that similar matrices have the same trace and the same de-

terminant. Then 5.2.10 and assumptions imply that tr(A) =
∑k

i=1miλi and det(A) =

(λ1)
m1(λ2)

m2 · · · (λk)mk . �
1



5.2.12:

Proof of (a). Let Eλ be the eigenspace of the invertible operator T corresponding to the

eigenvalue λ and Eλ−1 be the eigenspace of the invertible operator T corresponding to the

eigenvalue λ−1. Let v ∈ Eλ, then

T (v) = λv ⇒ v = T−1(λv) = λT−1(v)⇒ T−1(v) = λ−1v.

This implies that v ∈ Eλ−1 . Similarly, let v ∈ Eλ−1 , then v ∈ Eλ. Therefore Eλ =

Eλ−1 . �

Proof of (b). By (a) and Theorem 5.1, if the invertible operator T is diagonalizable, then

the basis consisting of eigenvectors of T will also be the basis consisting of eigenvectors

of T−1. Therefore, Theorem 5.1 implies that T−1 is diagonalizable. �

5.2.13:

Proof of (a). The matrix A =

(
1 0

1 0

)
has eigenvalues 0 and 1. For the eigenvalue 0,

E0 = span

{(
0

1

)}
is the eigenspace for A and E ′0 = span

{(
1

−1

)}
is the eigenspace for

At. �

Proof of (b). Since

dim(Eλ) = nullity(A− λI) = nullity((A− λI)t) = nullity(At − λI) = dim(E ′λ).

�

Proof of (c). If A is diagonalizable, then its characteristic polynomial splits and for each

eigenvalue λ the multiplicity of λ is the same as dim(Eλ). Since A and At have the same

characteristic polynomial and hence share the same eigenvalues with the same multiplici-

ties, then the characteristic polynomial of At splits and, by (b), for each eigenvalue λ the

multiplicity of λ is the same as dim(E ′λ). Therefore A
t is diagonalizable. �

5.2.18:

Proof of (a). Let β be the ordered basis for V such that [T ]β and [U ]β are diagonal

matrices. Since [T ]β and [U ]β are diagonal matrices, [T ]β[U ]β = [U ]β[T ]β. Therefore T

and U commute. �

Proof of (b). Let Q be the invertible matrix such that Q−1AQ and Q−1BQ are diagonal

matrices. Then we have(
Q−1AQ

) (
Q−1BQ

)
=
(
Q−1BQ

) (
Q−1AQ

)
⇒ Q−1ABQ = Q−1BAQ⇒ AB = BA.

�



5.2.19:

Proof. By 5.1.15(a), T and Tm have the same eigenvectors. Hence T and Tm are simul-

taneously diagonalizable. �


