NAME: \qquad Id No.: \qquad Class: \qquad
Problem 1:(10 points) Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right) \in M_{2 \times 2}(\mathbb{R})$,
(1) Determine all the eigenvalues of A.
(2) For each eigenvalue λ of A, find the set of eigenvectors corresponding to λ.
(3) Find a basis for \mathbb{R}^{2} consisting of eigenvectors of A.
(4) Determine an invertible matrix Q and a diagonal matrix D such that $Q^{-1} A Q=D$.

Solution. The eigenvalues are 4 and -1 , a basis of eigenvectors is
$\left\{\binom{2}{3},\binom{1}{-1}\right\}, Q=\left(\begin{array}{cc}2 & 1 \\ 3 & -1\end{array}\right)$, and $D=\left(\begin{array}{cc}4 & 0 \\ 0 & -1\end{array}\right)$.
Problem 2:(10 points)
(1) Prove that similar matrices have the same characteristic polynomial.

Proof. Assume that the $n \times n$ matrix A is similar to the $n \times n$ matrix B, then there exists an invertible $n \times n$ matrix Q such that $B=Q^{-1} A Q$. Now

$$
\begin{aligned}
\operatorname{det}(B-\lambda I) & =\operatorname{det}\left(Q^{-1} A Q-\lambda I\right) \\
& =\operatorname{det}\left(Q^{-1}(A-\lambda I) Q\right) \\
& =\operatorname{det}\left(Q^{-1}\right) \operatorname{det}(A-\lambda I) \operatorname{det}(Q) \\
& =\operatorname{det}(A-\lambda I)
\end{aligned}
$$

Hence the similar matrices A and B have the same characteristic polynomial.
(2) Show that the definition of the characteristic polynomial of a liner operator on a finite-dimensional vector space V is independent of the choice of basis for V.

Proof. Let T be a liner operator on a finite-dimensional vector space V and let α and β be two ordered bases for V. Then there exists an invertible matrix Q such that

$$
[T]_{\alpha}=Q^{-1}[T]_{\beta} Q,
$$

where $[T]_{\alpha}$ and $[T]_{\beta}$ are matrix representations of T with respect to the ordered bases α and β, respectively. By (1), then $[T]_{\alpha}$ and $[T]_{\beta}$ have the same characteristic polynomial. Hence the definition of the characteristic polynomial of a liner operator on a finite-dimensional vector space V is independent of the choice of basis for V.

