NAME: \qquad Id No.: \qquad Class: \qquad
Problem 1:(10 points) Let $V=P_{2}(\mathbb{R})$ and T is defined by $T\left(a x^{2}+b x+c\right)=$ $c x^{2}+b x+a$.
(1) Test T for diagonalizability.
(2) If T is diagonalizable, find a basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

Solution. Diagonalizable. Let γ be the standard ordered basis for $P_{2}(\mathbb{R})$, then
$[T]_{\gamma}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right), Q=\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 0\end{array}\right)$,
and $[T]_{\beta}=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \beta=\left\{1-x^{2}, 1+x^{2}, x\right\}$.
Problem 2:(10 points)
(1) Suppose that $A \in M_{n \times n}(F)$ has two distinct eigenvalues, λ_{1} and λ_{2}, and that $\operatorname{dim}\left(E_{\lambda_{1}}\right)=n-1$. Prove that A is diagonalizable.

Proof. Since $\operatorname{dim} E_{\lambda_{2}} \geq 1$, we can choose a nonzero vector $v \in E_{\lambda_{2}}$. Let $\beta=\left\{v_{1}, v_{2}, \cdots, v_{n-1}\right\}$ be a basis for $E_{\lambda_{1}}$. Then, by Theorem 5.8, $\left\{v, v_{1}, v_{2}, \cdots, v_{n-1}\right\}$ forms a basis for F^{n} consisting of eigenvectors of A. Hence, Theorem 5.1 implies that A is diagonalizable.
(2) Let $A \in M_{n \times n}(F)$. Then A and A^{t} share the same eigenvalues with the same multiplicities. Show by way of example that for a given common eigenvalue of A and A^{t}, these two eigenspaces need not be the same.
Proof. The matrix $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$ has eigenvalues 0 and 1. For the eigenvalue $0, E_{0}=\operatorname{span}\left\{\binom{0}{1}\right\}$ is the eigenspace for A and $E_{0}^{\prime}=\operatorname{span}\left\{\binom{1}{-1}\right\}$ is the eigenspace for A^{t}.

