Name: \qquad ID No.: \qquad CLASS: \qquad

Problem 1: (10 points) Let $S=\{\sin t, \cos t, 1, t\}$ and $V=\operatorname{span}(S)$ with the inner product $\langle f, g\rangle=\int_{0}^{\pi} f(t) g(t) d t$. Apply the Gram-Schmidt process to the given subset S of V to obtain an orthogonal basis for V. Then normalize the vectors in this basis to obtain an orthonormal basis β for V.

See page 581 in the textbook.

Problem 2:(4 points) Let $S=\{(1,0, i),(1,2,1)\}$ in \mathbb{C}^{3}. Compute S^{\perp}.
See page 581 in the textbook.

Problem 3:(6 points) Let β be a basis for a subspace W of an inner product space V, and let $z \in V$. Prove that $z \in W^{\perp}$ if and only if $\langle z, v\rangle=0$ for every $v \in \beta$.

Proof. \Rightarrow Since β is a basis for W. If $v \in \beta$, then $v \in W$. So for $z \in W^{\perp}$, we have $<z, v>=0$, for all $v \in \beta$.
\Leftarrow Let $\beta=\left\{v_{1}, \cdots, v_{n}\right\}$ be a basis for W. For any $u \in W, u$ can be written as $u=\sum_{i=1}^{n} a_{i} v_{i}$, where a_{1}, \cdots, a_{n} are scalars. Hence, by assumption, we have

$$
<z, u>=<z, \sum_{i=1}^{n} a_{i} v_{i}>=\sum_{i=1}^{n} \overline{a_{i}}<z, v_{i}>=0
$$

This implies that $z \in W^{\perp}$.

