NAME:_____ ID NO.:____

CLASS:

Problem 1:(10 points) Let $S = \{\sin t, \cos t, 1, t\}$ and $V = \operatorname{span}(S)$ with the inner product $\langle f, g \rangle = \int_0^{\pi} f(t)g(t)dt$. Apply the Gram-Schmidt process to the given subset S of V to obtain an orthogonal basis for V. Then normalize the vectors in this basis to obtain an orthonormal basis β for V.

See page 581 in the textbook.

Problem 2:(4 points) Let $S = \{(1, 0, i), (1, 2, 1)\}$ in \mathbb{C}^3 . Compute S^{\perp} .

See page 581 in the textbook.

Problem 3:(6 points) Let β be a basis for a subspace W of an inner product space V, and let $z \in V$. Prove that $z \in W^{\perp}$ if and only if $\langle z, v \rangle = 0$ for every $v \in \beta$.

Proof. \Rightarrow Since β is a basis for W. If $v \in \beta$, then $v \in W$. So for $z \in W^{\perp}$, we have $\langle z, v \rangle = 0$, for all $v \in \beta$.

 \leftarrow Let $\beta = \{v_1, \dots, v_n\}$ be a basis for W. For any $u \in W$, u can be written as $u = \sum_{i=1}^n a_i v_i$, where a_1, \dots, a_n are scalars. Hence, by assumption, we have

$$\langle z, u \rangle = \langle z, \sum_{i=1}^{n} a_i v_i \rangle = \sum_{i=1}^{n} \overline{a_i} \langle z, v_i \rangle = 0.$$

This implies that $z \in W^{\perp}$.