NAME:_____ ID NO.:_____ CLASS: _

Problem 1: Let V be an inner product space, and let T be a linear operator on V. Prove the following resluts

(1) (5 points) $R(T^*)^{\perp} = N(T)$.

Proof. If $x \in R(T^*)^{\perp}$, then $0 = \langle x, T^*(y) \rangle = \langle T(x), y \rangle$ for any $y \in V$. This implies that T(x) = 0, i.e. $x \in N(T)$. Hence $R(T^*)^{\perp} \subseteq N(T)$.

If $x \in N(T)$, then $0 = < 0, y > = < T(x), y > = < x, T^*(y) >$ for any $y \in V$. This implies that $x \in R(T^*)^{\perp}$. Hence $N(T) \subseteq R(T^*)^{\perp}$. Therefore, we conclude that $R(T^*)^{\perp} = N(T)$.

(2) (1 point) If V is finite-dimensional, then $R(T^*) = N(T)^{\perp}$. (Hint: Use the fact that if W is a subspace of a finite-dimensional inner product space V, then $W = (W^{\perp})^{\perp}$.)

Proof. By hint,
$$N(T)^{\perp} = \left(R(T^*)^{\perp}\right)^{\perp} = R(T^*).$$

(3) (4 points) If V is finite-dimensional, then $\operatorname{rank}(T) = \operatorname{rank}(T^*)$. (Hint: Use the Dimension theorem and (2).)

Proof. By theorem, we have dim $V = \dim N(T) + \dim N(T)^{\perp}$. By dimension theorem, we know that dim $V = \dim N(T) + \dim R(T)$. Hence dim $N(T)^{\perp} = \dim R(T)$. Also, we know that, by (b), dim $N(T)^{\perp} = \dim R(T^*)$. Therefore, dim $R(T) = \dim R(T^*)$, i.e. rank $(T) = \operatorname{rank}(T^*)$.

Problem 2:(5 points) For the inner product space $V = \mathbb{C}^2$ and the linear operator $T(z_1, z_2) = (2z_1 + iz_2, (1 - i)z_1)$ on V, evaluate T^* at the given vector x = (3 - i, 1 + 2i) in V.

Solution.
$$T^*(x) = (5+i, -1-3i)$$
.

Problem 3:(5 points) Find the minimal solution to the following system of linear equations.

$$\begin{aligned} x + y + z - w &= 1\\ 2x - y &+ w &= 1 \end{aligned}$$

Solution. This is Exercise 6.3.22.(d). For solution, see page 582 in the textbook. \Box