NAME: \qquad Id No.: \qquad Class: \qquad
Problem 1: Let V be an inner product space, and let T be a linear operator on V. Prove the following resluts
(1) (5 points) $R\left(T^{*}\right)^{\perp}=N(T)$.

Proof. If $x \in R\left(T^{*}\right)^{\perp}$, then $0=<x, T^{*}(y)>=<T(x), y>$ for any $y \in V$. This implies that $T(x)=0$, i.e. $x \in N(T)$. Hence $R\left(T^{*}\right)^{\perp} \subseteq N(T)$.

If $x \in N(T)$, then $0=<0, y>=<T(x), y>=<x, T^{*}(y)>$ for any $y \in V$. This implies that $x \in R\left(T^{*}\right)^{\perp}$. Hence $N(T) \subseteq R\left(T^{*}\right)^{\perp}$.
Therefore, we conclude that $R\left(T^{*}\right)^{\perp}=N(T)$.
(2) (1 point) If V is finite-dimensional, then $R\left(T^{*}\right)=N(T)^{\perp}$. (Hint: Use the fact that if W is a subspace of a finite-dimensional inner product space V, then $W=\left(W^{\perp}\right)^{\perp}$.)
Proof. By hint, $N(T)^{\perp}=\left(R\left(T^{*}\right)^{\perp}\right)^{\perp}=R\left(T^{*}\right)$.
(3) (4 points) If V is finite-dimensional, then $\operatorname{rank}(T)=\operatorname{rank}\left(T^{*}\right)$. (Hint: Use the Dimension theorem and (2).)
Proof. By theorem, we have $\operatorname{dim} V=\operatorname{dim} N(T)+\operatorname{dim} N(T)^{\perp}$. By dimension theorem, we know that $\operatorname{dim} V=\operatorname{dim} N(T)+\operatorname{dim} R(T)$. Hence $\operatorname{dim} N(T)^{\perp}=\operatorname{dim} R(T)$. Also, we know that, by $(\mathrm{b}), \operatorname{dim} N(T)^{\perp}=\operatorname{dim} R\left(T^{*}\right)$. Therefore, $\operatorname{dim} R(T)=\operatorname{dim} R\left(T^{*}\right)$, i.e. $\operatorname{rank}(T)=\operatorname{rank}\left(T^{*}\right)$.
Problem 2:(5 points) For the inner product space $V=\mathbb{C}^{2}$ and the linear operator $T\left(z_{1}, z_{2}\right)=\left(2 z_{1}+i z_{2},(1-i) z_{1}\right)$ on V, evaluate T^{*} at the given vector $x=(3-$ $i, 1+2 i)$ in V.

Solution. $T^{*}(x)=(5+i,-1-3 i)$.
Problem 3:(5 points) Find the minimal solution to the following system of linear equations.

$$
\begin{array}{r}
x+y+z-w=1 \\
2 x-y+w=1
\end{array}
$$

Solution. This is Exercise 6.3.22.(d). For solution, see page 582 in the textbook.

