NAME: \qquad ID No.: \qquad Class: \qquad
Problem 1: Give an example of a linear operator T on \mathbb{R}^{2} and an ordered basis β for \mathbb{R}^{2} such that $[T]_{\beta}$ is normal, but T is not normal.
(1) (4 points) Write down your example.

Example: Let $\beta=\{(1,1),(0,1)\}$ be an ordered basis for \mathbb{R}^{2}. Let $T: \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{2} be defined by $T(a, b)=(0, a-b)$.
(2) (3 points) Show that $[T]_{\beta}$ is normal in your example.

Solution. $[T]_{\beta}=\left(\begin{array}{cc}0 & 0 \\ 0 & -1\end{array}\right)$. Since $[T]_{\beta}$ ia a diagonal matrix, hence $[T]_{\beta}$ is normal.
(3) (3 points) Show that T is not normal in your example.

Solution. $T^{*}(c, d)=(d,-d)$.
$T T^{*}(a, b)=(0,2 b) \neq(a-b,-a+b)=T^{*} T(a, b)$.
Problem 2: (5 points) Let T and U be self-adjoint operators on an inner product space V. Prove that $T U$ is self-adjoint if and only if $T U=U T$.

Proof. \Rightarrow Suppose that $T U$ is self-adjoint. Since T and U are self-adjoint, $T U=$ $(T U)^{*}=U^{*} T^{*}=U T$.
\Leftarrow Suppose that $T U=U T$. Since T and U are self-adjoint, $T U=T^{*} U^{*}=$ $(U T)^{*}=(T U)^{*}=U^{*} T^{*}=U T$.
Problem 3: (5 points) Suppose that $V=\mathbb{C}^{2}$ and T is defined by $T(a, b)=$ $(2 a+i b, a+2 b)$. Determine whether T is normal, self-adjoint, or neither.

Solution. T is normal, but not self-adjoint.

