NAME:_____ ID NO.:_____ CLASS: _____

Problem 1: Give an example of a linear operator T on \mathbb{R}^2 and an ordered basis β for \mathbb{R}^2 such that $[T]_\beta$ is normal, but T is not normal.

(1) (4 points) Write down your example.

Example: Let $\beta = \{(1,1), (0,1)\}$ be an ordered basis for \mathbb{R}^2 . Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by T(a,b) = (0, a - b).

(2) (3 points) Show that $[T]_{\beta}$ is normal in your example.

Solution. $[T]_{\beta} = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$. Since $[T]_{\beta}$ is a diagonal matrix, hence $[T]_{\beta}$ is normal.

(3) (3 points) Show that T is not normal in your example.

Solution.
$$T^*(c, d) = (d, -d)$$
.
 $TT^*(a, b) = (0, 2b) \neq (a - b, -a + b) = T^*T(a, b)$.

Problem 2: (5 points) Let T and U be self-adjoint operators on an inner product space V. Prove that TU is self-adjoint if and only if TU = UT.

Proof. \Rightarrow Suppose that TU is self-adjoint. Since T and U are self-adjoint, $TU = (TU)^* = U^*T^* = UT$.

 \Leftarrow Suppose that TU = UT. Since T and U are self-adjoint, $TU = T^*U^* = (UT)^* = (TU)^* = U^*T^* = UT$.

Problem 3: (5 points) Suppose that $V = \mathbb{C}^2$ and T is defined by T(a, b) = (2a + ib, a + 2b). Determine whether T is normal, self-adjoint, or neither.

Solution. T is normal, but not self-adjoint.