NAME: \qquad Id No.: \qquad Class: \qquad
Problem 1: Let $A \in M_{n \times n}(\mathbb{R})$ satisfy $A^{2}=A$.
(1) (5 points) Show that A is diagonalizable.

Proof. Let $g(t)=t^{2}-t=t(t-1)$. Then $g(A)=O$, and hence the minimal polynomial $p(t)$ of A divides $g(t)$. This also implies that A has only possible eigenvalues 0 or 1 . Since $g(t)$ has no repeated factors, neither does $p(t)$. Thus A is diagonalizable by Theorem 7.16.
(2) (5 points) Show that $\operatorname{trace}(A)=\operatorname{rank}(A)$.

Proof.

$$
\exists Q \in M_{n \times n}(\mathbb{R}), \ni Q^{-1} A Q=\left(\begin{array}{cccccc}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & & 0
\end{array}\right)=D .
$$

Hence $\operatorname{trace}(A)=\operatorname{trace}\left(Q D Q^{-1}\right)=\operatorname{trace}(D)=\operatorname{rank}(A)$.
(3) (5 points) Let $B \in M_{n \times n}(\mathbb{R})$ be another square matrix satisfying $B^{2}=B$ such that $\operatorname{trace}(A)=\operatorname{trace}(B)$. Show that A is similar to B.

Proof.
$\exists Q, P \in M_{n \times n}(\mathbb{R}), \ni Q^{-1} A Q=P^{-1} B P=\left(\begin{array}{ccccccc}1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & & \ddots & \\ & & & & & 0\end{array}\right)$.
This implies $A=\left(Q P^{-1}\right)^{-1} B\left(Q P^{-1}\right)$. Hence A is similar to B.
Problem 2: (5 points) Find all possible 5×5 Jordan canonical forms which has the repeated eigenvalues -1 and 1 , and the minimal polynomial $(t-1)^{2}(t+1)^{2}$.
Solution.

$$
\left(\begin{array}{ccccc}
1 & 1 & & & \\
0 & 1 & & & \\
& & 1 & & \\
& & & -1 & 1 \\
& & & 0 & -1
\end{array}\right), \quad\left(\begin{array}{ccccc}
1 & 1 & & & \\
0 & 1 & & & \\
& & -1 & 1 & \\
& & 0 & -1 & \\
& & & & -1
\end{array}\right) .
$$

