Problem 22. Let I : €(]0,1]; R) — R be defined by

_ Ll f(x)’dz

Show that [ is differentiable at every “point” f € €([0, 1]; R).

Hint: Figure out what (DI)(f) is by computing I(f 4+ h) — I(f), where h € €([0, 1];R) is
a “small” continuous function.

Remark. A map from a space of functions such as € ([0, 1];R) to a scalar field such as R

or C is usually called a functional. The derivative of a functional [ is usually denoted by
01 instead of DI.
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Proof. For each f e €([0,1];R), define L¢(h) = QJ f(z)h(x)dx.
0
claim: Ly e #(%¢(]0,1];R),R).
Proof of claim: It is trivial that L; € Z(€([0,1];R),R). Let h € €([0,1];R). Then
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by the sandwich lemma we conclude that

0< [I(f +h) = I(f) = Ly ()] < qim Mo g
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Therefore, I is differentiable at f, and (DI)(f)(h) = L¢(h). o

Problem 30. Let f : R — R be differentiable. Assume that forall z € R, 0 < f'(z) < f(x).
Show that g(z) = e *f(x) is decreasing. If f vanishes at some point, conclude that f is

Zero.

Proof. To see that g is decreasing, we compute the derivative of g and find that

g (x) =—e"f(x) +e " f'(x) = e *(f'(x) - f(x)) < 0;

thus ¢ is a decreasing function. Now suppose that f(c) = 0 for some c € R.



1. Since g is decreasing, g(z) < g(c) = 0 for all x > ¢; thus f(z) = e"g(xz) = 0 for all

x = C.

2. Since f'(z) = 0, f is an increasing function, thus f(z) < f(¢) = 0 for all x < ¢. Since

f is assumed to be non-negative, we must have f(x) =0 for all x < ¢
Combining 1 and 2, we conclude that f(z) = 0 for all z € R. o

Problem 32. 1. If f: ACR® - R™ and g : B < R™ — R’ are twice differentiable and
f(A) < B, then for xy € A, u,v € R", show that

D*(g o f)(@o)(u,v)
= (D?g)(f(20)) (D) (o) (u), Df (x0)(v)) + (Dg)(f (x0)) ((D*f)(wo)(u, v)) -

2. If p: R" - R™ is a linear map plus some constant; that is, p(x) = Lz + ¢ for some
Le BR"R™), and f: A< R™ — R® is k-times differentiable, prove that

DE(f o p)(zo) (D, - u®) = (D" £)(p(a0)) ((Dp)(mo)(u(l)), - (Dp)(xo)(u(k)) '

Proof. 1. First of all, we show that g o f is twice differentiable. Since ¢ and f are both
differentiable, the chain rule implies that g o f is differentiable and

Digo f)(x) = (Dg)(f(2)(DF) () = (((Dg) o £)(DF))(x).

Since g and f are twice differentiable, Dg and D f are differentiable. By the chain rule
again, (Dyg) o f is differentiable; thus the product rule implies that ((Dg) o f)(Df) is
differentiable. Therefore, g o f is twice differentiable.
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Now by Proposition 6.69 in + ¥ | we have
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= (D?g)(f(20)) (D f)(xo)u, (D) (xo)v) + (Dg)(f (0)) ((D*f)(wo)(u,v)) .

. The validity of the desired equality for the case k = 1 is the chain rule. Suppose that
the desired holds for £ = K. Then for k = K + 1, by Corollary 6.70 in ¥ ¥ we obtain
that
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Noting that (Dp)(x)(u") = Lu™ (which is independent of x), by Proposition 6.69 in

X & we find that

(DE(f op))(@)(u, -, ut)
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) 0
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where (Lu")s denotes the s-th component of the vector Lu. As a consequence,
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which shows the validity of the desired equality for the case k = K + 1. o

Problem 34. Let f : R" — R™ be differentiable, and D f is a constant map in Z(R", R™);
that is, (D f)(z1)(u) = (D f)(z2)(u) for all x1, 25 € R™ and u € R™. Show that f is a linear

term plus a constant and that the linear part of f is the constant value of Df.

Proof. Since Df is a constant map, Df is continuous; thus f € €. Therefore, the Taylor

Theorem implies that
f(x) = F(0) + (Df)(e)(z = 0)
for some ¢ on the line segment joining x and 0. Let L = (Df)(x). Then
f(x) = f(0)+ L(x — 0) = Lz + f(0). o

Problem 38. Prove Corollary 7.5; that is, show that if Y < R" is open, f : U — R" is

of class €', and (Df)(x) is invertible for all z € U, then f(W) is open for every open set
wel.

Proof. Let W < U be an open set. For each z € W, (D f)(z) is invertible; thus the inverse

function theorem implies that there exists d, > 0 such that

(a) D(z,6,) =< W; (b) f(D(x,d,)) is open; (c) f : D(z,8) — f(D(x,d,)) is one-to-one
and onto.

Since W = ., D(z,d,),
Fov) = £(D(x,6.))

xeld
is the union of infinitely many open sets; thus f(W) is open. o



Problem 40. Let f : R? — R be of class ¢!, and for some (a,b) € R?, f(a,b) = 0 and
fy(a,b) # 0. Show that there exist open neighborhoods U of @ and V of b such that every
y € V corresponds to a unique x € U such that f(z,y) = 0. In other words, there exists a
function y = y(z) such that y(a) = b and f(z,y(x)) =0 for all x € U.

Proof. Let z = (x,y) and w = (u,v), where z,y,u,v € R. Define w = F(z), where F is
given by F(z,y) = (z, f(z,y)). Then F : D — R? and
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: a f1<x7y) fy(x,y) ‘

We note that the Jacobian of F' at (a,b) is f,(a,b) # 0, so the inverse function theorem
implies that there exists open neighborhoods O = R? of (a,b) and W = R? of (a, f(a,b)) =
(a,0) such that

(a) F: O — W is one-to-one and onto;
(b) the inverse function F~!: W — O is of class €7;

() (DF)(x, f(z,y)) = (DF)(z,y)) "

W.L.O.G. we can assume that O = U x V, where Y < R and V < R are open, and a € U,
beV.
Write F~(u,v) = (p(u,v),¥(u,v)), where ¢ : W — U and ¢ : W — V. Then

(U, U) = F(Sp(ua U), ¢(u7 U)) = (@(u’ U)a f(ua ¢(u’ U)))

which implies that ¢(u,v) = u and v = f(u,¥(u,v)). Let y(z) = ¥(x,0). Then (u, f(u)) €
U x V is the unique point satisfying f(u, y(u)) =0 if uw € U. Therefore, f : U — V, and

f(z,y(z)) =0 Veel.

Since G(a,b) = (a,0) = G(a, f(a)), (a,b), (a, f(a)) € O, and G : O — W is one-to-one, we
must have b = f(a). o



