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9.6 A CONTINUOUS NOWHERE
DIFFERENTIABLE FUNCTION

Weierstrass presented the first example of a continuous function f : R — R that has the
remarkable property that there is no point at which it is differentiable: Such a function is
said to be nowhere differentiable. We will analyze such an example, where f is defined
by an expansion

)= m(x) forallx
k=0

and the function f inherits all the nondifferentiability possessed by the individual A, ’s.
We first prove a preliminary proposition regarding the construction of continuous
functions as series of continuous functions.

Proposition 9.43 Suppose that ) -, c; is a convergent sequence of nonnegative num-
bers. For each nonnegative integer &, let i, : R — R be a continuous function such

that
Iy (x)] < e for all x. (9.40)
Define
fx) = lim th(x)jl = th(x) for all x. (9.41)
k=0 k=0

Then the function f :R — R is continuous.

Proof
The proof rests on the Cauchy Convergence Criterion for the convergence of se-
quences of numbers and the Weierstrass Uniform Convergence Criterion for the
uniform convergence of sequences of functions.

For each number x and each natural number »n, define

) =Y ).
k=0

Since each function A; is continuous, each function f, is also continuous. We will
prove that the sequence of functions {f,} is uniformly Cauchy on R. Once this is
proven, it follows from the Weierstrass Uniform Convergence Criterion that { fu}
converges uniformly on R. Then, by Theorem 9.31, we can conclude that the limit
function f, being the uniform limit of a sequence of continuous functions, is con-
tinuous.

By assumption (9.40) and the Triangle Inequality, for each index n, natural
number &, and any number x,

[ frrre () = faCO = [Rpii(X) + -+ + Apyr ()]

S gk X+ -+ - F | Bpp (0]
< Cpgr+ 0+ Cugte (9.42)
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The Cauchy Convergence Criterion for sequences of numbers, applied to the se-
quence of partial sums of the series Y poq Ck, asserts that the sequence of partial
sums is a Cauchy sequence. Thus, from the estimate (9.42) we conclude that the
sequence of functions { £, } is uniformly Cauchy on R. .

We will now make a particular choice of the A;’s so that the function f defined
by (9.41) fails, at each point, to be differentiable.
Recall that a function f : R — R is said to be periodic, with period p, provided that

fx+p)=fx) for all x
Observe that if a function has period p and k is any integer, then it also has period kp.
It is convenient to introduce the following descriptive terminology: For a positive
number £, we define the tent function of base length 2¢ to be the periodic function of
period 2¢, A: R — R whose values on the interval [—¢, ¢] are defined by

h(x) = |x| for —¢ <x <{.

For an integer m, we call the interval [m€, (m 4 1)£] an interval of monotonicity for this
tent function.

{20 y = h(x)
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FIGURE 9.6 The tent function of base length 2¢.

Lemma 9.44 For ¢ > 0, let 4 : R — R be the tent function of base length 2¢. Let x be
any number. Then either the interval [xq, xo + £/2] or the interval [xq — £/2, x¢} is
contained in an interval of monotonicity for the function A.

Proof

Recall Theorem 1.8, which asserts that for any number ¢ there is a unique integer
belonging to the interval [c, ¢ + 1). We apply this theorem, with ¢ = [x¢/¢] — 1, to
choose an integer m such that

[x0/€] — 1 <m < xo/¢.

The left-hand side of this inequality yields x¢ < (m + 1)£. This, with the right-hand
side of the inequality, yields

meé < xg < (m+ 1)£.
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Consider the midpoint z of the interval [m£, (m + 1)¢]. Since x; belongs to the
interval (m¢, (m + 1)£}, either x, belongs to the left-hand interval (m¢, z] or
it belongs to the right-hand interval (z, (m + 1)£]. In the first case, the interval
[xg, xo + £/2] is contained in the interval [m¢€, (m + 1)¢], while in the second
case, [xo — £/2, xo] is contained in the interval [mf, (m + 1)£]. Of course,
[me€, (m + 1)£] is an interval of monotonicity for the tent function 4. »

We will need the following two observations regarding /2 : R — R, the tent function
of base length 2¢: If u and v belong to an interval of monotonicity for the function #,
then

h(u) —h(v)
u—v

+1. (9.43)

Since A has period 2¢, any integer multiple of 2¢ is also a period for 4; that is, for any
integer j and any number u,

h(u + j[2€]) = h(x). (9.44)

Theorem 9.45 For each nonnegative integer k, let 4, : R — R be the tent function of
base length 2¢,, where £, = (1/4)*. Define the function f:R — R by

flx) = th(x) for all x.
k=1

Then

i. the function f is continuous, but
ii. there is no point at which the function f is differentiable.

Proof
By the definition of tent function, for each nonnegative integer k£ and any number x,

()] < & = (1/4)*.

Therefore, since the Geometric Series Y ,o,(1/4)* converges, it follows from
Proposition 9.43 that f : R — R is continuous.
Let x, be any number. We will show that f is not differentiable at x, by choosing
a sequence of numbers {x,}, with each x, # x,, that converges to xo but for which
the limit
y J (xn) — f (x0)
im ——————
oo Xy = Xo
does not exist.
Let n be a natural number. We apply Lemma 9.44, with £ = ¢,. Thus, either
the interval [xq, xo + £,/2] or the interval [xo — £,/2, x,] is contained in an interval
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of monotonicity for the function #,,. In the first case define x, = x, — £,/2, and in
the second case define x, = x, + £,/2. Hence, since the points x, and x, belong to
an interval of monotonicity for the function 4,, by (9.43),

R (xn) — hn(x) _

Xp — Xp

x1.

For k > n, the function /; : R — R has period 2¢,. Therefore, since

’en . en —] — .
— = jl24], where j = — = 4""7) is a natural number,
2 4,

it follows from (9.44) that
hi(x0) — hi(xn) = hi(x0) — hi(xo £ j[26]) = 0.

Consequently,

] . (9.45)

Xn — Xo n — X0 Xp — Xop

fo) = f) _ o [hk(xn—hk(xo)} ¥ {hk(xn)—hk(xo)

On the other hand, for an integerk, 0 < k < n, since the ratio of base lengths, £; /¢,
is a natural number, any monotonicity interval for 4, is contained in a monotonicity
interval for 4,. Thus, again using (9.43),

hi(xn) — hy(xo) _
Xn — X0

+1 forO <k <n.

We conclude that the right-hand side of (9.45) is the sum of #n + 1 numbers each of
which equals +1 or —1. Thus,

fO) = flxo) {an odd integer if n is even -

X, — Xo an even integer if n is odd.

As a consequence, the limit

hm f(xn) - f(xo)

n—o0 Xn — 'xO

does not exist. Thus, since the sequence {x,} converges to x,, with each x, # x,
the function f is not differentiable at the point x. "

EXERCISES FOR SECTION 9.6

1.

Suppose that the function g : R — R has period p. Show that for each integer &, the
function g also has period kp.

. Suppose that {#,} is a sequence such that ¢, is an odd integer if the index & is even,

and an even integer if the index k is odd. Show that {¢,} does not converge.



