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Abstract. Many problems of fundamental and practical importance have multiple scale solutions. The direct numer-
ical solution of multiple scale problems is difficult to obtain even with modern supercomputers. The major difficulty
of direct solutions is the scale of computation. The ratio between the largest scale and the smallest scale could be as
large as 105 in each space dimension. From an engineering perspective, it is often sufficient to predict the macroscopic
properties of the multiple-scale systems, such as the effective conductivity, elastic moduli, permeability, and eddy
diffusivity. Therefore, it is desirable to develop a method that captures the small scale effect on the large scales, but
does not require resolving all the small scale features.

The purpose of this lecture note is to review some recent advances in developing multiscale finite element (volume)
methods for flow and transport in strongly heterogeneous porous media. Extra effort is made in developing a multiscale
computational method that can be potentially used for practical multiscale for problems with a large range of
nonseparable scales. Some recent theoretical and computational developments in designing global upscaling methods
will be reviewed. The lectures can be roughly divided into 4 parts. In part 1, I will review some homogenization theory
for elliptic and hyperbolic equations. This homogenization theory provides the critical guideline for designing effective
multiscale methods. In part 2, I will review some recent developments of multiscale finite element (volume) methods.
We also discuss the issue of upscaling one-phase, two-phase flows through heterogeneous porous media and the use
of limited global information in multiscale finite element (volume) methods. In part 4, we will consider multiscale
simulations of two-phase flow immiscible flows using a flow-based adaptive coordinate, and introduce a theoretical
framework which enables us to perform global upscaling for heterogeneous media with long range connectivity.

1 Introduction

Many problems of fundamental and practical importance have multiple scale solutions. Composite materials,
porous media, and turbulent transport in high Reynolds number flows are examples of this type. A com-
plete analysis of these problems is extremely difficult. For example, the difficulty in analyzing groundwater
transport is mainly caused by the heterogeneity of subsurface formations spanning over many scales. This
heterogeneity is often represented by the multiscale fluctuations in the permeability of media. For composite
materials, the dispersed phases (particles or fibers), which may be randomly distributed in the matrix, give
rise to fluctuations in the thermal or electrical conductivity; moreover, the conductivity is usually discontin-
uous across the phase boundaries. In turbulent transport problems, the convective velocity field fluctuates
randomly and contains many scales depending on the Reynolds number of the flow.

The direct numerical solution of multiple scale problems is difficult even with the advent of supercom-
puters. The major difficulty of direct solutions is the scale of computation. For groundwater simulations, it
is common that millions of grid blocks are involved, with each block having a dimension of tens of meters,
whereas the permeability measured from cores is at a scale of several centimeters. This gives more than 105

degrees of freedom per spatial dimension in the computation. Therefore, a tremendous amount of computer
memory and CPU time are required, and this can easily exceed the limit of today’s computing resources. The
situation can be relieved to some degree by parallel computing; however, the size of the discrete problem is
not reduced. The load is merely shared by more processors with more memory. Whenever one can afford to
resolve all the small scale features of a physical problem, direct solutions provide quantitative information of
the physical processes at all scales. On the other hand, from an engineering perspective, it is often sufficient
to predict the macroscopic properties of the multiscale systems, such as the effective conductivity, elastic
moduli, permeability, and eddy diffusivity. Therefore, it is desirable to develop a method that captures the
small scale effect on the large scales, but does not require resolving all the small scale features. Upscaling
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procedures have been commonly applied for this purpose and are effective in many cases. More recently, a
number of multiscale techniques have been developed and successfully applied to various areas, e.g., porous
media flows. The main idea of upscaling techniques is to form coarse-scale equations with a prescribed an-
alytical form that may differ from the underlying fine-scale equations. In multiscale methods, the fine-scale
information is carried throughout the simulation and the coarse-scale equations are generally not expressed
analytically, but rather formed and solved numerically.

The purpose of this lecture note is to review some recent advances in developing multiscale finite element
(volume) methods for flow and transport in strongly heterogeneous porous media. Extra effort is made
in developing a multiscale computational method that can be potentially used for practical multiscale for
problems with a large range of nonseparable scales. Substantial progress has been made in recent years
by combining modern mathematical techniques such as multiscale analysis, adaptivity and multiresolution.
The lectures can be roughly divided into four parts. In Section 2, we will review some homogenization
theory for elliptic and hyperbolic equations as well as for incompressible flows. This homogenization theory
provides the critical guideline for designing effective multiscale methods. In Section 3, we discuss some
recent developments of multiscale finite element methods. We also discuss the issue of upscaling one-phase,
two-phase flows through heterogeneous porous media and the use of limited global information in multiscale
finite element methods. In Section 4, we discuss the generalization of the multiscale finite element methods to
nonlinear partial differential equations. In Section 5, we will consider multiscale simulations of two-phase flow
immiscible flows using a flow-based adaptive coordinate system. There are many other multiscale methods
which we will not cover due to the limited scope of these lectures. The above methods are chosen because they
are similar philosophically and the materials complement each other very well. This paper is not intended
to be a detailed survey of all available multiscale methods. The discussion is limited by scope of the lectures
and expertise of the author.

2 Review of Homogenization Theory

In this section, we will review some classical homogenization theory for elliptic and hyperbolic PDEs. This
homogenization theory will play an essential role in designing effective multiscale numerical methods for
partial differential equations with multiscale solutions.

2.1 Homogenization Theory for Elliptic Problems

Consider the second order elliptic equation

L(uε) ≡ − ∂

∂xi

(

aij (x/ε)
∂

∂xj

)

uε + a0(x/ε)uε = f, uε|∂Ω = 0, (2.1)

where aij(y) and a0(y) are 1-periodic in both variables of y, and satisfy aij(y)ξiξj ≥ αξiξi, with α > 0, and
a0 > α0 > 0. Here we have used the Einstein summation notation, i.e. repeated index means summation
with respect to that index.

This model equation represents a common difficulty shared by several physical problems. For porous
media, it is the pressure equation through Darcy’s law, the coefficient aε representing the permeability
tensor. For composite materials, it is the steady heat conduction equation and the coefficient aε represents
the thermal conductivity. For steady transport problems, it is a symmetrized form of the governing equation.
In this case, the coefficient aε is a combination of transport velocity and viscosity tensor.

Homogenization theory is to study the limiting behavior uε → u as ε → 0. The main task is to find the
homogenized coefficients, a∗ij and a∗0, and the homogenized equation for the limiting solution u

− ∂

∂xi

(

a∗ij
∂

∂xj

)

u+ a∗0u = f, u|∂Ω = 0. (2.2)
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Define the L2 and H1 norms over Ω as follows

‖v‖2
0 =

∫

Ω

|v|2 dx, ‖v‖2
1 = ‖v‖2

0 + ‖∇v‖2
0. (2.3)

Further, we define the bilinear form

aε(u, v) =

∫

Ω

aεi,j(x)
∂u

∂xj

∂v

∂xi
dx+

∫

Ω

aε0uv dx. (2.4)

It is easy to show that

c1‖u‖2
1 ≤ aε(u, u) ≤ c2‖u‖2

1, (2.5)

with c1 = min(α, α0), c2 = max(‖aij‖∞, ‖a0‖∞).
The elliptic problem can also be formulated as a variational problem: find uε ∈ H1

0

aε(uε, v) = (f, v), for all v ∈ H1
0 (Ω), (2.6)

where (f, v) is the usual L2 inner product,
∫

Ω fv dx.

Special Case: One-Dimensional Problem Let Ω = (x0, x1) and take a0 = 0. We have

− d

dx

(

a(x/ε)
duε
dx

)

= f, in Ω , (2.7)

where uε(x0) = uε(x1) = 0, and a(y) > α0 > 0 is y-periodic with period y0.
By taking v = uε in the bilinear form, we have

‖uε‖1 ≤ c.

Therefore one can extract a subsequence, still denoted by uε, such that

uε ⇀ u in H1
0 (Ω) weakly. (2.8)

On the other hand, we notice that

aε ⇀m(a) =
1

y0

∫ y0

0

a(y) dy in L∞(Ω) weak star. (2.9)

It is tempting to conclude that u satisfies:

− d

dx

(

m(a)
du

dx

)

= f,

where m(a) = 1
y0

∫ y0
0
a(y) dy is the arithmetic mean of a. However, this is not true. To derive the correct

answer, we introduce

ξε = aε
duε

dx
.

Since aε is bounded, and uεx is bounded in L2(Ω), so ξε is bounded in L2(Ω). Moreover, since − dξε

dx = f , we
have ξε ∈ H1(Ω). Thus we get

ξε → ξ in L2(Ω) strongly,

so that
1

aε
ξε → m(1/a)ξ in L2(Ω) weakly.
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Further, we note that 1
aε ξ

ε = duε

dx . Therefore, we arrive at

du

dx
= m(1/a)ξ.

On the other hand, − dξε

dx = f implies − dξ
dx = f . This gives

− d

dx

(

1

m(1/a)

du

dx

)

= f. (2.10)

This is the correct homogenized equation for u. Note that a∗ = 1
m(1/a) is the harmonic average of aε. It is in

general not equal to the arithmetic average aε = m(a).

Multiscale Asymptotic Expansions. The above analysis does not generalize to multi-dimensions. In
this subsection, we introduce the multiscale expansion technique in deriving homogenized equations. This
technique is very effective and can be used in a number of applications.

We shall look for uε(x) in the form of asymptotic expansion

uε(x) = u0(x, x/ε) + εu1(x, x/ε) + ε2u2(x, x/ε) + · · · , (2.11)

where the functions uj(x, y) are double periodic in y with period 1.
Denote by Aε the second order elliptic operator

Aε = − ∂

∂xi

(

aij (x/ε)
∂

∂xj

)

. (2.12)

When differentiating a function φ(x, x/ε) with respect to x, we have

∂

∂xj
=

∂

∂xj
+

1

ε

∂

∂yj
,

where y is evaluated at y = x/ε. With this notation, we can expand Aε as follows

Aε = ε−2A1 + ε−1A2 + ε0A3, (2.13)

where

A1 = − ∂

∂yi

(

aij(y)
∂

∂yj

)

, (2.14)

A2 = − ∂

∂yi

(

aij(y)
∂

∂xj

)

− ∂

∂xi

(

aij(y)
∂

∂yj

)

, (2.15)

A3 = − ∂

∂xi

(

aij(y)
∂

∂xj

)

+ a0 . (2.16)

Substituting the expansions for uε and Aε into Aεuε = f , and equating the terms of the same power, we get

A1u0 = 0, (2.17)

A1u1 + A2u0 = 0, (2.18)

A1u2 + A2u1 +A3u0 = f. (2.19)

Equation (2.17) can be written as

− ∂

∂yi

(

aij(y)
∂

∂yj

)

u0(x, y) = 0, (2.20)
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where u0 is periodic in y. The theory of second order elliptic PDEs [46] implies that u0(x, y) is independent
of y, i.e. u0(x, y) = u0(x). This simplifies equation (2.18) for u1,

− ∂

∂yi

(

aij(y)
∂

∂yj

)

u1 =

(

∂

∂yi
aij(y)

)

∂u

∂xj
(x).

Define χj = χj(y) as the solution to the following cell problem

∂

∂yi

(

aij(y)
∂

∂yj

)

χj =
∂

∂yi
aij(y) , (2.21)

where χj is double periodic in y. The general solution of equation (2.18) for u1 is then given by

u1(x, y) = −χj(y) ∂u
∂xj

(x) + ũ1(x) . (2.22)

Finally, we note that the equation for u2 is given by

∂

∂yi

(

aij(y)
∂

∂yj

)

u2 = A2u1 +A3u0 − f . (2.23)

The solvability condition implies that the right hand side of (2.23) must have mean zero in y over one periodic
cell Y = [0, 1]× [0, 1], i.e.

∫

Y

(A2u1 +A3u0 − f) dy = 0.

This solvability condition for second order elliptic PDEs with periodic boundary condition [46] requires that
the right hand side of equation (2.23) have mean zero with respect to the fast variable y. This solvability
condition gives rise to the homogenized equation for u:

− ∂

∂xi

(

a∗ij
∂

∂xj

)

u+m(a0)u = f , (2.24)

where m(a0) = 1
|Y |

∫

Y a0(y) dy and

a∗ij =
1

|Y |

(
∫

Y

(aij − aik
∂χj

∂yk
) dy

)

. (2.25)

Justification of formal expansions The above multiscale expansion is based on a formal asymptotic
analysis. However, we can justify its convergence rigorously.

Let zε = uε − (u+ εu1 + ε2u2). Applying Aε to zε, we get

Aεzε = −εrε ,

where rε = A2u2 +A3u1 + εA3u2. If f is smooth enough, so is u2. Thus we have ‖rε‖∞ ≤ c.
On the other hand, we have

zε|∂Ω = −(εu1 + ε2u2)|∂Ω.

Thus, we obtain
‖zε‖L∞(∂Ω) ≤ cε.

It follows from the maximum principle [46] that

‖zε‖L∞(Ω) ≤ cε

and therefore we conclude that
‖uε − u‖L∞(Ω) ≤ cε.
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Boundary Corrections The above asymptotic expansion does not take into account the boundary condi-
tion of the original elliptic PDEs. If we add a boundary correction, we can obtain higher order approximations.

Let θε ∈ H1(Ω) denote the solution to

∇x · aε∇xθε = 0 in Ω, θε = u1(x, x/ε) on ∂Ω.

Then we have
(uε − (u+ εu1(x, x/ε) − εθε)) |∂Ω = 0.

Moskow and Vogelius [70] have shown that

‖uε − u− εu1(x, x/ε) + εθε‖0 ≤Cωε1+ω‖u‖2+ω,

‖uε − u− εu1(x, x/ε) + εθε‖1 ≤Cε‖u‖2,
(2.26)

where we assume u ∈ H2+ω(Ω) with 0 ≤ ω ≤ 1, and Ω is assumed to be a bounded, convex curvilinear
polygon of class C∞. This improved estimate will be used in the convergence analysis of the multiscale finite
element method to be presented in Section 3.

2.2 Convection of microstructure

It is most interesting to see if one can apply homogenization technique to obtain an averaged equation for the
large scale quantity for incompressible Euler or Navier-Stokes equations. In 1985, McLaughlin, Papanicolaou
and Pironneau [69] attempted to obtain a homogenized equation for the 3-D incompressible Euler equations
with highly oscillatory velocity field. More specifically, they considered the following initial value problem:

ut + (u · ∇)u = −∇p,

with ∇ · u = 0 and highly oscillatory initial data

u(x, 0) = U(x) +W (x, x/ε).

They then constructed multiscale expansions for both the velocity field and the pressure. In doing so, they
made an important assumption that the microstructure is convected by the mean flow. Under this assumption,
they constructed a multiscale expansion for the velocity field as follows:

uε(x, t) = u(x, t) + w( θ(x,t)ε , tε , x, t) + εu1(
θ(x,t)
ε , tε , x, t) +O(ε2).

The pressure field pε is expanded similarly. From this ansatz, one can show that θ is convected by the mean
velocity:

θt + u · ∇θ = 0 , θ(x, 0) = x .

It is a very challenging problems to develop a systematic approach to study the large scale solution in
three dimensional Euler and Navier-Stokes equations. The work of McLaughlin, Papanicolaou and Pironneau
provided some insightful understanding into how small scales interact with large scale and how to deal with
the closure problem. However, the problem is still not completely resolved since the cell problem obtained
this way does not have a unique solution. Additional constraints need to be enforced in order to derive a
large scale averaged equation. With additional assumptions, they managed to derive a variant of the k − ε
model in turbulence modeling.

Remark 2.1. One possible way to improve the work of [69] is take into account the oscillation in the La-
grangian characteristics, θε. The oscillatory part of θε in general could have order one contribution to the
mean velocity of the incompressible Euler equation. In [53–55], Hou and Yang and co-workers have studied
convection of microstructure of the 2-D and 3-D incompressible Euler equations using a new approach. They
do not assume that the oscillation is propagated by the mean flow. In fact, they found that it is crucial to
include the effect of oscillations in the characteristics on the mean flow. Using this new approach, they can
derive a well-posed cell problem which can be used to obtain an effective large scale average equation.
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More can be said for a passive scalar convection equation.

vt +
1

ε
∇ · (u(x/ε)v) = α∆v,

with v(x, 0) = v0(x). Here u(y) is a known incompressible periodic (or stationary random) velocity field with
zero mean. Assume that the initial condition is smooth.

Expand the solution vε in powers of ε

vε = v(t, x) + εv1(t, x, x/ε) + ε2v2(t, x, x/ε) + · · · .
The coefficients of ε−1 lead to

α∆yv1 − u · ∇yv1 − u · ∇xv = 0.

Let ek, k = 1, 2, 3 be the unit vectors in the coordinate directions and let χk(y) satisfy the cell problem:

α∆yχ
k − u · ∇yχ

k − u · ek = 0.

Then we have

v1(t, x, y) =

3
∑

k=1

χk(y)
v(t, x)

∂xk
.

The coefficients of ε0 give

α∆yv2 − u · ∇yv2 = u · ∇xv1 − 2α∇x · ∇yv1 − α∆xv + vt.

The solvability condition for v2 requires that the right hand side has zero mean with respect to y. This gives
rise to the equation for homogenized solution v

vt = α∆xv − u · ∇xv1.

Using the cell problem, McLaughlin, Papanicolaou, and Pironneau obtained [69]

vt =

3
∑

i,j=1

(αδij + αTij )
∂2v

∂xi∂xj
,

where αTij = −uiχj .

Nonlocal memory effect of homogenization It is interesting to note that for certain degenerate problem,
the homogenized equation may have a nonlocal memory effect.

Consider the simple 2-D linear convection equation:

∂uε(x, y, t)

∂t
+ aε(y)

∂uε(x, y, t)

∂x
= 0,

with initial condition uε(x, y, 0) = u0(x, y). Note that y = x2 is not a fast variable here.
We assume that aε is bounded and u0 has compact support. While it is easy to write down the solution

explicitly,
uε(x, y, t) = u0(x− aε(y)t, y),

it is not an easy task to derive the homogenized equation for the weak limit of uε.
Using Laplace Transform and measure theory, Luc Tartar [83] showed that the weak limit u of uε satisfies

∂

∂t
u(x, y, t) +A1(y)

∂

∂x
u(x, y, t) =

∫ t

0

∫

∂2

∂x2
u(x− λ(t− s), y, s)dµy(λ) ds,

with u(x, y, 0) = u0(x, y), where A1(y) is the weak limit of aε(y), and µy is a probability measure of y and
has support in [min(aε),max(aε)].

As we can see, the degenerate convection induces a nonlocal history dependent diffusion term in the
propagating direction (x). The homogenized equation is not amenable to computation since the measure µy
cannot be expressed explicitly in terms of aε.
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3 Numerical Upscaling based on Multiscale Finite Element Methods

In this section, we review the multiscale finite element method (MsFEM) for solving partial differential
equations with multiscale solutions, see [50,52,51,37,22,84,3,35]. The central goal of this approach is to
obtain the large scale solutions accurately and efficiently without resolving the small scale details. The main
idea is to construct finite element base functions which capture the small scale information within each
element. The small scale information is then brought to the large scales through the coupling of the global
stiffness matrix. Thus, the effect of small scales on the large scales is correctly captured. In our method, the
base functions are constructed from the leading order homogeneous elliptic equation in each element. As a
consequence, the base functions are adapted to the local microstructure of the differential operator. In the
case of two-scale periodic structures, we have proved that the multiscale method indeed converges to the
correct solution independent of the small scale in the homogenization limit [52].

In practical computations, a large amount of overhead time comes from constructing the base functions.
In general, these multiscale base functions are constructed numerically, except for certain special cases. Since
the base functions are independent of each other, they can be constructed independently and can be done
perfectly in parallel. This greatly reduces the overhead time in constructing these bases. In many applications,
it is important to obtain a scale-up equation from the fine grid equation. For example, the high degree of
variability and multiscale nature of formation properties in subsurface flows (such as permeability) pose
significant challenges for subsurface flow modeling. Geological characterizations that capture these effects
are typically developed at scales that are too fine for direct flow simulation, so techniques are required to
enable the solution of flow problems in practice. Upscaling procedures have been commonly applied for this
purpose and are effective in many cases (see e.g., [60] for reviews and discussion). Our multiscale finite
element method can be used for a similar purpose and successfully applied for problems of this type.

As discussed in [60], upscaling methods and multiscale numerical techniques (as applied within the context
of subsurface flow modeling) have many similarities and some important differences. Upscaling techniques
provide coefficients, which are typically computed in a pre-processing step, for coarse scale equations of
prescribed analytical forms. In multiscale methods, the coarse scale equations are formed numerically and
fine scale information may be carried throughout the simulation and used at various stages. For example, in
multiscale procedures for subsurface flow applications, different grids are often used for flow and transport
computations. The advantage of deriving a scale-up equation or performing multiscale computations is that
one can perform many useful tests on the coarse model with different boundary conditions or source terms.
This would be very expensive if we have to perform all these tests on a fine grid. For time dependent problems,
the coarse-scale equation also allows for larger time steps. This results in additional computational saving.

It should be mentioned that many numerical methods have been developed with goals similar to ours.
These include generalized finite element methods [12,10,9], wavelet based numerical homogenization methods
[17,27,25,64], methods based on the homogenization theory (cf. [15,31,24]), equation-free computations (e.g.,
[63]), variational multiscale methods [58,20,59], heterogeneous multiscale methods [33], matrix-dependent
multigrid based homogenization [64,25], generalized p-FEM in homogenization [66,67], and some upscaling
methods based on simple physical and/or mathematical motivations (cf. [29,68]). The methods based on
the homogenization theory have been successfully applied to determine the effective conductivity and per-
meability of certain composite materials and porous media. However, their range of applications is usually
limited by restrictive assumptions on the media, such as scale separation and periodicity [14,62]. They are
also expensive to use for solving problems with many separate scales since the cost of computation grows
exponentially with the number of scales. But for the multiscale method, the number of scales does not in-
crease the overall computational cost exponentially. The upscaling methods are more general and have been
applied to problems with random coefficients with partial success (cf. [29,68]). But the design principle is
strongly motivated by the homogenization theory for periodic structures. Their application to nonperiodic
structures is not always guaranteed to work.

Most multiscale methods presented to date have applied local calculations for the determination of basis
functions. Though effective in many cases, global effects can be important for some problems. The importance
of global information has been illustrated within the context of upscaling procedures as well as multiscale
computations in recent investigations. These studies have shown that the use of limited global information in
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the calculation of the coarse-scale parameters (such as basis functions) can significantly improve the accuracy
of the resulting coarse model. In this lecture notes, we describe the use of limited global information in
multiscale simulations.

We remark that the idea of using base functions governed by the differential equations has been applied
to convection-diffusion equation with boundary layers (see, e.g., [13] and references therein). Babuska et al.
applied a similar idea to 1-D problems [12] and to a special class of 2-D problems with the coefficient varying
locally in one direction [10]. Most of these methods are based on the special property of one-dimensional
properties of the coefficients. As indicated by our convergence analysis, there is a fundamental difference
between one-dimensional problems and genuinely multi-dimensional problems. Special complications such as
the resonance between the mesh scale and the physical scale never occur in the corresponding 1-D problems.

3.1 Multiscale Finite Element Methods for Elliptic PDEs.

In this section we consider the multiscale finite element method applied to the following problem

Lεp := −∇ · (a(xε )∇p) = f in Ω, p = 0 on Γ = ∂Ω, (3.1)

where Ω is a convex polygon in R
2. The unknown is changed to p, since it will be used later in porous media

flow simulations, where the solution represents the pressure field. ε is assumed to be a small parameter, and
a(x) = (aij(x/ε)) is symmetric and satisfies α|ξ|2 ≤ aijξiξj ≤ β|ξ|2, for all ξ ∈ R

2 and with 0 < α < β.
Furthermore, aij(y) are smooth periodic function in y in a unit cube Y . We will always assume that f ∈
L2(Ω). In fact, the smoothness assumption on aij can be relaxed, which will be discussed later.

Let p0 be the solution of the homogenized equation

L0p0 := −∇ · (a∗∇p0) = f in Ω, p0 = 0 on Γ, (3.2)

where Γ = ∂Ω and

a∗ij =
1

|Y |

∫

Y

aik(y)(δkj −
∂χj

∂yk
) dy,

and χj(y) is the periodic solution of the cell problem

∇y · (a(y)∇yχ
j) =

∂

∂yi
aij(y) in Y,

∫

Y

χj(y) dy = 0.

It is clear that p0 ∈ H2(Ω) since Ω is a convex polygon. Denote by p1(x, y) = −χj(y)∂p0(x)
∂xj

and let θε be the

solution of the problem

Lεθε = 0 in Ω, θε(x) = p1(x,
x
ε ) on Γ. (3.3)

Our analysis of the multiscale finite element method relies on the following homogenization result obtained
by Moskow and Vogelius [70].

Lemma 3.1. Let p0 ∈ H2(Ω) be the solution of (3.2), θε ∈ H1(Ω) be the solution to (3.3) and p1(x) =
−χj(x/ε)∂p0(x)/∂xj . Then there exists a constant C independent of u0, ε and Ω such that

‖ p− p0 − ε(u1 − θε) ‖1,Ω ≤ Cε(| p0 |2,Ω + ‖ f ‖0,Ω).

Now we are going to introduce the multiscale finite element methods. Let Th be a regular partition of
Ω into triangles. Let {xj}Jj=1 be the interior nodes of the mesh Th and {ψj}Jj=1 be the nodal basis of the

standard linear finite element space Wh ⊂ H1
0 (Ω). Denote by Si = supp(ψi) and define φi with support in

Si as follows:

Lεφ
i = 0 in K, φi = ψi on ∂K ∀ K ∈ Th,K ⊂ Si. (3.4)
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It is obvious that φi ∈ H1
0 (Si) ⊂ H1

0 (Ω). Finally, let Vh ⊂ H1
0 (Ω) be the finite element space spanned by

{φi}Ji=1.
With above notation we can introduce the following discrete problem: find ph ∈ Vh such that

(a(xε )∇ph,∇vh) = (f, vh) ∀ vh ∈ Vh, (3.5)

where and hereafter we denote by (·, ·) the L2 inner product in L2(Ω).
As we will see later, the choice of boundary conditions in defining the multiscale bases will play a crucial

role in approximating the multiscale solution. Intuitively, the boundary condition for the multiscale base
function should reflect the multiscale oscillation of the solution p across the boundary of the coarse grid
element. By choosing a linear boundary condition for the base function, we will create a mismatch between
the exact solution p and the finite element approximation across the element boundary. In the next section,
we will discuss this issue further and introduce an over-sampling technique to alleviate this difficulty. The
over-sampling technique plays an important role when we need to reconstruct the local fine grid velocity
field from a coarse grid pressure computation for two-phase flows. This technique enables us to remove the
artificial numerical boundary layer across the coarse grid boundary element.

We remark that the multiscale finite element method with linear boundary conditions for the multiscale
base functions is similar in spirit to the residual-free bubbles finite element method [19] and the variational
multiscale method [58,20]. In a recent paper [77], Dr. G. Sangalli derives a multiscale method based on the
residual-free bubbles formulation in [77] and compares it with the multiscale finite element method described
here. There are many striking similarities between the two approaches.

To gain some insight into the multiscale finite element method, we next perform an error analysis for
the multiscale finite element method in the simplest case, i.e. we use linear boundary conditions for the
multiscale base functions.

3.2 Error Estimates (h < ε)

The starting point is the well-known Cea’s lemma.

Lemma 3.2. Let p be the solution of (3.1) and ph be the solution of (3.5). Then we have

‖ p− ph ‖1,Ω ≤ C inf
vh∈Vh

‖ p− vh ‖1,Ω.

Let Πh : C(Ω̄) →Wh ⊂ H1
0 (Ω) be the usual Lagrange interpolation operator:

Πhp(x) =

J
∑

j=1

p(xj)ψj(x) ∀ u ∈ C(Ω̄)

and Ih : C(Ω̄) → Vh be the corresponding interpolation operator defined through the multiscale base function
φ

Ihp(x) =

J
∑

j=1

p(xj)φ
j(x) ∀ u ∈ C(Ω̄).

From the definition of the basis function φi in (3.4) we have

Lε(Ihp) = 0 in K, Ihp = Πhp on ∂K, (3.6)

for any K ∈ Th.

Lemma 3.3. Let p ∈ H2(Ω) be the solution of (3.1). Then there exists a constant C independent of h, ε
such that

‖ p− Ihp ‖0,Ω + h‖ p− Ihp ‖1,Ω ≤ Ch2(| p |2,Ω + ‖ f ‖0,Ω). (3.7)
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Proof. At first it is known from the standard finite element interpolation theory that

‖ p− Πhp ‖0,Ω + h‖ p− Πhp ‖1,Ω ≤ Ch2(| p |2,Ω + ‖ f ‖0,Ω). (3.8)

On the other hand, since Πhp− Ihp = 0 on ∂K, the standard scaling argument yields

‖Πhp− Ihp ‖0,K ≤ Ch|Πhp− Ihp|1,K ∀ K ∈ Th. (3.9)

To estimate |Πhp− Ihp|1,K we multiply the equation in (3.6) by Ihp− Πhp ∈ H1
0 (K) to get

(a(xε )∇Ihp,∇(Ihp− Πhp))K = 0,

where (·, ·)K denotes the L2 inner product of L2(K). Thus, upon using the equation in (3.1), we get

(a(xε )∇(Ihp− Πhp),∇(Ihp− Πhp))K

= (a(xε )∇(p− Πhp),∇(Ihp− Πhp))K − (a(xε )∇p,∇(Ihp− Πhp))K

= (a(xε )∇(p− Πhp),∇(Ihp− Πhp))K − (f, Ihp− Πhp)K .

This implies that

|Ihp− Πhp|1,K ≤ Ch| p |2,K + ‖ Ihp− Πhp ‖0,K‖ f ‖0,K .

Hence

|Ihp− Πhp|1,K ≤ Ch(| p |2,K + ‖ f ‖0,K), (3.10)

where we have used (3.9). Now the lemma follows from (3.8)-(3.10). ut

In conclusion, we have the following estimate by using Lemmas 3.2-3.3.

Theorem 3.1. Let p ∈ H2(Ω) be the solution of (3.1) and ph ∈ Vh be the solution of (3.5). Then we have

‖ p− ph ‖1,Ω ≤ Ch(| p |2,Ω + ‖ f ‖0,Ω). (3.11)

Note that the estimate (3.11) blows up like h/ε as ε → 0 since | p |2,Ω = O(1/ε). This is insufficient for
practical applications. In next subsection we derive an error estimate which is uniform as ε→ 0.

3.3 Error Estimates (h > ε)

In this section, we will show that the multiscale finite element method gives a convergence result uniform in
ε as ε tends to zero. This is the main feature of this multiscale finite element method over the traditional
finite element method. The main result in this subsection is the following theorem.

Theorem 3.2. Let p ∈ H2(Ω) be the solution of (3.1) and ph ∈ Vh be the solution of (3.5). Then we have

‖ p− ph ‖1,Ω ≤ C(h+ ε)‖ f ‖0,Ω + C
( ε

h

)1/2

‖ p0 ‖1,∞,Ω, (3.12)

where p0 ∈ H2(Ω) ∩W 1,∞(Ω) is the solution of the homogenized equation (3.2).

To prove the theorem, we first denote by

pI(x) = Ihp0(x) =
J
∑

j=1

p0(xj)φ
j(x) ∈ Vh.
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From (3.6) we know that LεpI = 0 in K and pI = Πhp0 on ∂K for any K ∈ Th. The homogenization theory
(see (2.26)) implies that

‖ pI − pI0 − ε(pI1 − θIε) ‖1,K ≤ Cε(‖ f ‖0,K + | pI0 |2,K), (3.13)

where pI0 is the solution of the homogenized equation on K:

L0pI0 = 0 in K, pI0 = Πhp0 on ∂K, (3.14)

pI1 is given by the relation

pI1(x, y) = −χj(y)∂pI0

∂xj
in K, (3.15)

and θIε ∈ H1(K) is the solution of the problem:

LεθIε = 0 in K, θIε(x) = pI1(x,
x
ε ) on ∂K. (3.16)

It is obvious from (3.14) that

pI0 = Πhp0 in K, (3.17)

since Πhp0 is linear on K. From (3.13) we obtain that

‖ p− pI ‖1,Ω ≤ ‖ p0 − pI0 ‖1,Ω + ‖ ε(p1 − pI1) ‖1,Ω

+‖ ε(θε − θIε) ‖1,Ω + Cε‖ f ‖0,Ω, (3.18)

where we have used the regularity estimate ‖ p0 ‖2,Ω ≤ C‖ f ‖0,Ω. Now it remains to estimate the terms at
the right-hand side of (3.18).

Lemma 3.4. We have

‖ p0 − pI0 ‖1,Ω ≤ Ch‖ f ‖0,Ω, (3.19)

‖ ε(p1 − pI1) ‖1,Ω ≤ C(h+ ε)‖ f ‖0,Ω. (3.20)

Proof. The estimate (3.19) is a direct consequence of the standard finite element interpolation theory since
pI0 = Πhp0 by (3.17). Next we note that χj(x/ε) satisfies

‖χj ‖0,∞,Ω + ε‖∇χj ‖0,∞,Ω ≤ C (3.21)

for some constant C independent of h and ε. Thus we have, for any K ∈ Th,

‖ ε(p1 − pI1) ‖0,K ≤ Cε‖χj ∂

∂xj
(p0 − Πhp0) ‖0,K ≤ Chε| p0 |2,K ,

‖ ε∇(p1 − pI1) ‖0,K = ε‖∇(χj
∂(p0 − Πhp0)

∂xj
) ‖0,K

≤ C‖∇(p0 − Πhp0) ‖0,K + Cε| p0 |2,K
≤ C(h+ ε)| p0 |2,K .

This completes the proof. ut

Lemma 3.5. We have

‖ εθε ‖1,Ω ≤ C
√
ε‖ p0 ‖1,∞,Ω + Cε| p0 |2,Ω. (3.22)
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Proof. Let ζ ∈ C∞
0 (R2) be the cut-off function which satisfies ζ ≡ 1 in Ω\Ωδ/2, ζ ≡ 0 in Ωδ, 0 ≤ ζ ≤ 1 in

R
2, and |∇ζ| ≤ C/δ in Ω, where for any δ > 0 sufficiently small, we denote by Ωδ as

Ωδ = {x ∈ Ω : dist(x, ∂Ω) ≥ δ}.

With this definition, it is clear that θε − ζp1 = θε + ζ(χj∂p0/∂xj) ∈ H1
0 (Ω). Multiplying the equation in

(3.3) by θε − ζp1, we get

(a(xε )∇θε,∇(θε + ζχj
∂p0

∂xj
)) = 0,

which yields, by using (3.21),

‖∇θε ‖0,Ω ≤ C‖∇(ζχj∂p0/∂xj) ‖0,Ω

≤ C‖∇ζ · χj∂p0/∂xj ‖0,Ω + C‖ ζ∇χj∂p0/∂xj ‖0,Ω

+C‖ ζχj∂2p0/∂
2xj ‖0,Ω

≤ C
√

|∂Ω| · δD
δ

+ C
√

|∂Ω| · δD
ε

+ C| p0 |2,Ω, (3.23)

where D = ‖ p0 ‖1,∞,Ω and the constant C is independent of the domain Ω. From (3.23) we have

‖ εθε ‖0,Ω ≤ C(
ε√
δ

+
√
δ)‖ p0 ‖1,∞,Ω + Cε| p0 |2,Ω

≤ C
√
ε‖ p0 ‖1,∞,Ω + Cε| p0 |2,Ω. (3.24)

Moreover, by applying the maximum principle to (3.3), we get

‖ θε ‖0,∞,Ω ≤ ‖χj∂p0/∂xj ‖0,∞,∂Ω ≤ C‖ p0 ‖1,∞,Ω. (3.25)

Combining (3.24) and (3.25) completes the proof. ut
Lemma 3.6. We have

‖ εθIε ‖1,Ω ≤ C
( ε

h

)1/2

‖ p0 ‖1,∞,Ω. (3.26)

Proof. First we remember that for any K ∈ Th, θIε ∈ H1(K) satisfies

LεθIε = 0 in K, θIε = −χj(x
ε
)
∂(Πhp0)

∂xj
on ∂K. (3.27)

By applying maximum principle and (3.21) we get

‖ θIε ‖0,∞,K ≤ ‖χj∂(Πhp0)/∂xj ‖0,∞,∂K ≤ C‖ p0 ‖1,∞,K .

Thus we have

‖ εθIε ‖0,Ω ≤ Cε‖ p0 ‖1,∞,Ω. (3.28)

On the other hand, since the constant C in (3.23) is independent of Ω, we can apply the same argument
leading to (3.23) to obtain

‖ ε∇θIε ‖0,K ≤ Cε‖Πhp0 ‖1,∞,K(
√

|∂K|/
√
δ +

√

|∂K| · δ/ε) + Cε|Πhp0 |2,K
≤ C

√
h‖ p0 ‖1,∞,K(

ε√
δ

+
√
δ)

≤ C
√
hε‖ p0 ‖1,∞,K ,

which implies that

‖ ε∇θIε ‖0,Ω ≤ C
( ε

h

)1/2

‖ p0 ‖1,∞,Ω.

This completes the proof. ut
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Proof (of Theorem 3.2.). The theorem is now a direct consequence of (3.18) and the Lemma 3.4-3.6 and the
regularity estimate ‖ p0 ‖2,Ω ≤ C‖ f ‖0,Ω. ut
Remark 3.1. As we pointed out earlier, the multiscale FEM indeed gives correct homogenized result as ε
tends to zero. This is in contrast with the traditional FEM which does not give the correct homogenized
result as ε → 0. The error would grow like O(h2/ε2). On the other hand, we also observe that when h ∼ ε,
the multiscale method attains large error in both H1 and L2 norms. This is what we call the resonance effect
between the grid scale (h) and the small scale (ε) of the problem. This estimate reflects the intrinsic scale
interaction between the two scales in the discrete problem. Our extensive numerical experiments confirm
that this estimate is indeed generic and sharp. From the viewpoint of practical applications, it is important
to reduce or completely remove the resonance error for problems with many scales since the chance of hitting
a resonance sampling is high. In the next subsection, we propose an over-sampling method to overcome this
difficulty.

3.4 The Over-Sampling Technique

As illustrated by our error analysis, large errors result from the “resonance” between the grid scale and
the scales of the continuous problem. For the two-scale problem, the error due to the resonance manifests
as a ratio between the wavelength of the small scale oscillation and the grid size; the error becomes large
when the two scales are close. A deeper analysis shows that the boundary layer in the first order corrector
seems to be the main source of the resonance effect. By a judicious choice of boundary conditions for the base
function, we can eliminate the boundary layer in the first order corrector. This would give a nice conservative
difference structure in the discretization, which in turn leads to cancellation of resonance errors and gives
an improved rate of convergence.

Motivated by our convergence analysis, we propose an over-sampling method to overcome the difficulty
due to scale resonance [50]. The idea is quite simple and easy to implement. Since the boundary layer in the
first order corrector is thin, O(ε), we can sample in a domain with size larger than h + ε and use only the
interior sampled information to construct the bases; here, h is the mesh size and ε is the small scale in the
solution. By doing this, we can reduce the influence of the boundary layer in the larger sample domain on
the base functions significantly. As a consequence, we obtain an improved rate of convergence.

Specifically, let ψj be the base functions satisfying the homogeneous elliptic equation in the larger domain
S ⊃ K. We then form the actual base φi by linear combination of ψj ,

φi =

d
∑

j=1

cijψ
j .

The coefficients cij are determined by condition φi(xj) = δij . The corresponding θiε for φi are now free of
boundary layers. Our extensive numerical experiments have demonstrated that the over-sampling technique
does improve the numerical error substantially in many applications. On the other hand, the over-sampling
technique results in a non-conforming MsFEM method. In [37], we perform a careful estimate of the non-
conforming errors in both H1 norm and the L2 norm. The analysis shows that the non-conforming error
is indeed small, consistent with our numerical results [50,51]. Our analysis also reveals another source of
resonance, which is the mismatch between the mesh size and the “perfect” sample size. In case of a pe-
riodic structure, the “perfect” sample size is the length of an integer multiple of the period. We call the
new resonance the “cell resonance”. In the error expansion, this resonance effect appears as a higher order
correction. In numerical computations, we found that the cell resonance error is generically small, and is
rarely observed in practice. Nonetheless, it is possible to completely eliminate this cell resonance error by
using the over-sampling technique to construct the base functions but using piecewise linear functions as test
functions. This reduces the nonconforming error and eliminates the resonance error completely (see [48]).

3.5 Performance and Implementation Issues

The multiscale method given in the previous section is fairly straightforward to implement. Here, we outline
the implementation and define some notations that are used in the discussion below. We consider solving
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problems in a unit square domain. Let N be the number of elements in the x and y directions. The mesh size
is thus h = 1/N . To compute the base functions, each element is discretized into M ×M subcell elements
with mesh size hs = h/M . To implement the over-sampling method, we partition the domain into sampling
domains and each of them contains many elements. From the analysis and numerical tests, the size of the
sampling domains can be chosen freely as long as the boundary layer is avoided. In practice, though, one
wants to maximize the efficiency of over-sampling by choosing the largest possible sample size which reduces
the redundant computation of overlapping domains to a minimum.

In general, the multiscale (sampling) base functions are constructed numerically, except for certain special
cases. They are solved in each K or S using standard FEM. The linear systems are solved using a robust
multigrid method with matrix dependent prolongation and ILLU smoothing (MG-ILLU, see [85]). The global
linear system on Ω is solved using the same method. Numerical tests show that the accuracy of the final
solution is insensitive to the accuracy of base functions.

Since the base functions are independent of each other, their construction can be carried out in parallel
perfectly. In our parallel implementation of over-sampling, the sample domains are chosen such that they can
be handled within each processor without communication. The multigrid solver is also modified to better
suit the parallelization. In particular, the ILLU smoothing is replaced by Gauss-Seidel iterations. More
implementation details can be found in [50].

Cost and Performance In practical computations, a large amount of overhead time comes from construct-
ing the base functions. On a sequential machine, the operation count of our method is about twice that of
a conventional FEM for a 2-D problem. However, due to good parallel efficiency, this difference is reduced
significantly on a massively parallel computer. For example, using 256 processors on an Intel Paragon, our
method with N = 32 and M = 32 only spends 9% more CPU time than the conventional linear FEM method
using 1024 × 1024 elements [50]. Note that this comparison is made for a single solve of the problem. In
practice, multiple solves are often required, then the overhead of base construction is negligible. A detailed
study of MsFEM’s parallel efficiency has been conducted in [50]. It was also found that MsFEM is helpful
for improving multigrid convergence when the coefficient aε has very large contrast (i.e., the ratio between
the maximum and minimum of aε).

Significant computational savings can be obtained for time dependent problems (such as two-phase flows)
by constructing the multiscale bases adaptively. Multiscale base functions are updated only for those coarse
grid elements where the saturation changes significantly. In practice, the number of such coarse grid elements
are small. They are concentrated near the interface separating oil and water. Also, the cost of solving a base
function in a small cell is more efficient than solving the fine grid problem globally because the condition
number for solving the local base function in each coarse grid element is much smaller than that of the
corresponding global fine grid pressure system. Thus, updating a small number of multiscale base functions
dynamically is much cheaper than updating the fine grid pressure field globally.

Another advantage of the multiscale finite element method is its ability to scale down the size of a large
scale problem. This offers a big saving in computer memory. For example, let N be the number of elements
in each spatial direction, and M be the number of subcell elements in each direction for solving the base
functions. Then there are total (MN)n (n is dimension) elements at the fine grid level. For a traditional
FEM, the computer memory needed for solving the problem on the fine grid is O(MnNn). In contrast,
MsFEM requires only O(Mn +Nn) amount of memory. For a typical value of M = 32 in a 2-D problem,
the traditional FEM needs about 1000 times more memory than MsFEM.

MsFEM for problems with scale separation If there is a scale separation in representative volumes
smaller than the coarse block, then multiscale finite element basis functions can be computed based on the
smaller regions. To demonstrate this, we first consider a periodic case. In this case, the basis functions can
be approximated by

φj(x) = φj0(x) + εχi∇iφ
j
0.

Consequently, the approximation of the basis functions can be carried out in a domain of size ε via the
computation of χi. This reduces the computational cost. Moreover, the assembly of stiffness matrix can be
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also performed in a period, because a(x/ε)∇φi · ∇φj is a periodic function. The results obtained by this
approximation gives the classical numerical homogenization procedure that is based on the computation of
effective coefficients based on periodic problems. We would like to note that this approximation procedure
is not limited to periodic problems and can be applied to random homogeneous problems with the strong
scale separation, i.e., the size of representative volume is much smaller than the coarse mesh size. In general,
this holds for problems where homogenization by periodization (see [62]) is true. Random homogeneous case
with ergodicity is one of them. We note that a number of methods used in practice employs this strategy
(e.g., [76,63,44,33]).

Convergence and Accuracy Since we need to use an additional grid to compute the base function
numerically, it makes sense to compare our MsFEM with a traditional FEM at the subcell grid, hs = h/M .
Note that MsFEM only captures the solution at the coarse grid h, while FEM tries to resolve the solution
at the fine grid hs. Our extensive numerical experiments demonstrate that the accuracy of MsFEM on the
coarse grid h is comparable to that of FEM on the fine grid. In some cases, MsFEM is even more accurate
than the FEM (see below and the next section).

As an example, in Table 3.1 we present the result for

a(x/ε) =
2 + P sin(2πx/ε)

2 + P cos(2πy/ε)
+

2 + sin(2πy/ε)

2 + P sin(2πx/ε)
(P = 1.8), (3.29)

f(x) = −1 and u|∂Ω = 0. (3.30)

The convergence of three different methods are compared for fixed ε/h = 0.64, where “-L” indicates that
linear boundary condition is imposed on the multiscale base functions, “os” indicates the use of over-sampling,
and LFEM stands for standard FEM with linear base functions. We see clearly the scale resonance in the

MsFEM-L MsFEM-os-L LFEM
N ε

||E||l2 rate ||E||l2 rate MN ||E||l2
16 0.04 3.54e-4 7.78e-5 256 1.34e-4
32 0.02 3.90e-4 -0.14 3.83e-5 1.02 512 1.34e-4
64 0.01 4.04e-4 -0.05 1.97e-5 0.96 1024 1.34e-4
128 0.005 4.10e-4 -0.02 1.03e-5 0.94 2048 1.34e-4

Table 3.1. Convergence for periodic case.

results of MsFEM-L and the (almost) first order convergence (i.e., no resonance) in MsFEM-os-L. Evident
also is the error of MsFEM-os-L being smaller than those of LFEM obtained on the fine grid. In [52,50],
more extensive convergence tests have been presented.

3.6 Applications

Flow in Porous Media One of the main application of our multiscale method is the flow and transport
through porous media. This is a fundamental problem in hydrology and petroleum engineering. Here, we
apply MsFEM to solve the single phase flow, which is a good test problem in practice.

We model the porous media by random distributions of aε generated using a spectral method. In fact,
aε = α10βp, where p is a random field represents porosity, and α and β are scaling constants to give the
desired contrast of aε. In particular, we have tested the method for a porous medium with a statistically
fractal porosity field (see Figure 3.1). The fractal dimension is 2.8. This is a model of flow in an oil reservoir
or aquifer with uniform injection in the domain and outflow at the boundaries. We note that the problem
has a continuous scale because of the fractal distribution.

The pressure field due to uniform injection is solved and the error is shown in Figure 3.2. The horizontal
dash line indicates the error of the LFEM solution withN = 2048. The coarse-grid solutions are obtained with
different number of elements, N , but fixed NM = 2048. We note that error of MsFEM-os-L almost coincide
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Fig. 3.1. Porosity field with fractal dimension of 2.8 generated using the spectral method.
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Fig. 3.2. The l2-norm error of the solutions using various schemes for a fractal distributed permeability field.

with that of the well-resolved solution obtained using LFEM. However, MsFEM without over-sampling is less
accurate. MsFEM-O indicates that oscillatory boundary conditions, obtained from solving some reduced 1-D
elliptic equations along ∂K (see [50]), are imposed on the base functions. The decay of error in MsFEM is
because of the decay of small scales in aε. The next figure shows the results for a log-normally distributed aε.
In this case, the effect of scale resonance shows clearly for MsFEM-L, i.e., the error increases as h approaches
ε. Here ε ∼ 0.004 roughly equals the correlation length. Using the oscillatory boundary conditions (MsFEM-
O) gives better results, but it does not completely eliminate resonance. On the other hand, the multiscale
method with over-sampling agrees extremely well with the well-resolved calculation. One may wonder why
the errors do not decrease as the number of coarse grid elements increase. This is because we use the same
subgrid mesh size, which is the same as the well-resolved grid size, to construct the base functions for various
coarse grid sizes (N = 32, 64, 128, etc). In some special cases, one can construct multiscale base functions
analytically. In this case, the errors for the coarse grid computations will indeed decrease as the number of
coarse grid elements increase.

Fine Scale Recovery To solve transport problems in the subsurface formations, as in oil reservoir simula-
tions, one needs to compute the velocity field from the elliptic equation for pressure, i.e v = −aε∇u, here u is
pressure. In some applications involving isotropic media, the cell-averaged velocity is sufficient, as shown by
some computations using the local upscaling methods (cf. [29]). However, for anisotropic media, especially
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Fig. 3.3. The l2-norm error of the solutions using various schemes for a log-normally distributed permeability field.

layered ones (Figure 3.4), the velocity in some thin channels can be much higher than the cell average, and
these channels often have dominant effects on the transport solutions. In this case, the information about
fine scale velocity becomes vitally important. Therefore, an important question for all upscaling methods is
how to take those fast-flow channels into account.

Fig. 3.4. A random porosity field with layered structure.

For MsFEM, the fine scale velocity can be easily recovered from the multiscale base functions, noting that
they provide interpolations from the coarse h-grid to the fine hs-grid. Using the over-sampling technique,
the error in velocity is O(ε/h), as proved in [37]. We remark that the resonance effect seems unavoidable
in the velocity. On the other hand, our numerical tests indicate that the error is small when ε ≈ h. The
cell-averaged velocity can also be obtained and its error is even smaller.

To demonstrate the accuracy of the recovered velocity and effect of small-scale velocity on the transport
problem, we show the fractional flow result of a “tracer” test using the layered medium in Figure 3.4: a
fluid with red color originally saturating the medium is displaced by the same fluid with blue color injected
by flow in the medium at the left boundary, where the flow is created by a unit horizontal pressure drop.
The linear convection equation is solved to compute the saturation of the red fluid (for details, see [30]). To
demonstrate that we can recover the fine grid velocity field from the coarse grid pressure calculation, we plot
the horizontal velocity fields obtained by two methods. In Figure 3.5a, we plot the horizontal velocity field
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Fig. 3.5. (a): Fine grid horizontal velocity field, N = 1024. (b): Recovered horizontal velocity field from the coarse
grid N = 64 calculation using multiscale bases.

Fig. 3.6. (a): Fine grid saturation at t = 0.06, N = 1024. (b): Saturation computed using the recovered velocity
field from the coarse grid calculation.

obtained by using a fine grid (N = 1024) calculation. In Figure 3.5b, we plot the same horizontal velocity
field obtained by using the coarse grid pressure calculation with N = 64 and using the multiscale finite
element bases to interpolate the fine grid velocity field. We can see that the recovered velocity field captures
very well the layer structure in the fine grid velocity field. Further, we use the recovered fine grid velocity
field to compute the saturation in time. In Figure 3.6a, we plot the saturation at t = 0.06 obtained by the
fine grid calculation. Figure 3.6b shows the corresponding saturation obtained using the recovered velocity
field from the coarse grid calculation. The agreement is striking.

We also check the fractional flow curves obtained by the two calculations. The fractional flow of the
red fluid, defined as F =

∫

Sredvx dy/
∫

vx dy (S being the saturation), at the right boundary is shown in
Figure 3.7. The top pair of curves are the solutions of the transport problem using the cell-averaged velocity
obtained from a well-resolved solution and from MsFEM; the bottom pair are solutions using well-resolved
fine scale velocity and the recovered fine scale velocity from the MsFEM calculation. Two conclusions can be
made from the comparisons. First, the cell-averaged velocity may lead to a large error in the solution of the
transport equation. Second, both recovered fine scale velocity and the cell-averaged velocity obtained from
MsFEM give faithful reproductions of respective direct numerical solutions.
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Fig. 3.7. Variation of fractional flow with time. DNS: well-resolved direct numerical solution using LFEM (N = 512).
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Scale-up of one-phase flows The multiscale finite element method has been used in conjunction with
some moment closure models to obtain an upscaled method for one-phase flows, see, e.g. [34,41,22]. Note
that the multiscale finite element method presented above does not conserve mass. For long time integration,
it may lead to significant loss of mass. This is an undesirable feature of the method. In a recent work with
Zhiming Chen [22], we have designed and analyzed a mixed multiscale finite element method, and we have
applied this mixed method to study the scale up of one-phase flows and found that mass is conserved very
well even for long time integration. Below we describe our results in some detail.

In its simplest form, neglecting the effect of gravity, compressibility, capillary pressure, and considering
constant porosity and unit mobility, the governing equations for the flow transport in highly heterogeneous
porous media can be described by the following partial differential equations [65], [86], and [34]

div(k(x)∇p) = 0, (3.31)

∂S

∂t
+ v · ∇S = 0, (3.32)

where p is the pressure, S is the water saturation, k(x) = (kij(x)) is the relative permeability tensor, and
v = −k(x)∇p is the Darcy velocity. The highly heterogeneous properties of the medium are built into the
permeability tensor k(x) which is generated through the use of sophisticated geological and geostatistical
modeling tools. The detailed structure of the permeability coefficients makes the direct simulation of the
above model infeasible. For example, it is common in real simulations to use millions of grid blocks, with
each block having a dimension of tens of meters, whereas the permeability measured from cores is at a scale
of centimeters [68]. This gives more than 105 degrees of freedom per spatial dimension in the computa-
tion. This makes a direct simulation to resolve all small scales prohibitive even with today’s most powerful
supercomputers. On the other hand, from an engineering perspective, it is often sufficient to predict the
macroscopic properties of the solutions. Thus it is highly desirable to derive effective coarse grid models to
capture the correct large scale solution without resolving the small scale features. Numerical upscaling is one
of the commonly used approaches in practice.

Now we describe how the (mixed) multiscale finite element can be combined with the existing upscaling
technique for the saturation equation (3.32) to get a complete coarse grid algorithm for the problem (3.31)-
(3.32). The numerical upscaling of the saturation equation has been under intensive study in the literature
[30,41,65,47,89,87]. Here, we use the upscaling method proposed in [41] and [34] to design an overall coarse
grid model for the problem (3.31)-(3.32). The work of [41] for upscaling the saturation equation involves a
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moment closure argument. The velocity and the saturation are separated into a local mean quantity and
a small scale perturbation with zero mean. For example, the Darcy velocity is expressed as v = v0 + v′

in (3.32), where v0 is the average of velocity v over each coarse element, v′ = (v′
1,v

′
2) is the deviation of

the fine scale velocity from its coarse scale average. After some manipulations, an average equation for the
saturation S can be derived as follows [41]:

∂S

∂t
+ v0 · ∇S =

∂

∂xi

(

Dij(x, t)
∂S

∂xj

)

, (3.33)

where the diffusion coefficients Dij(x, t) are defined by

Dii(x, t) = 〈|v′
i(x)|〉L0

i (x, t), Dij(x, t) = 0, for i 6= j,

〈|v′
i(x)|〉 stands for the average of |v′

i(x)| over each coarse element. L0
i (x, t) is the length of the coarse grid

streamline in the xi direction which starts at time t at point x, i.e.

L0
i (x, t) =

∫ t

0

yi(s) ds,

where y(s) is the solution of the following system of ODEs

dy(s)

ds
= v0(y(s)), y(t) = x.

Note that the hyperbolic equation (3.32) is now replaced by a convection-diffusion equation. The convection-
dominant parabolic equation (3.33) is solved by the characteristic linear finite element method [28], [75] in
our simulation. The flow transport model (3.31)-(3.32) is solved in the coarse grid as follows:

1. Solve the pressure equation (3.31) by the over-sampling mixed multiscale finite element method and
obtain the fine scale velocity field using the multiscale basis functions.

2. Compute the coarse grid average v0 and the fine scale deviation 〈|v′
i(x)|〉 on the coarse grid.

3. At each time step, solve the convection-diffusion equation (3.33) by the characteristic linear finite element
method on the coarse grid in which the lengths L0

i (x, t) of the streamline are computed for the center of
each coarse grid element.

The mixed multiscale finite element method can be readily combined with the above upscaling model
for the saturation equation. The local fine grid velocity v′ will be constructed from the multiscale finite
element base functions. The main cost in the above algorithm lies in the computation of multiscale bases
which can be done a priori and completely in parallel. This algorithm is particularly attractive when multiple
simulations must be carried out due to the change of boundary and source distribution as it is often the
case in engineering applications. In such a situation, the cost of computing the multiscale base functions is
just an over-head. Moreover, once these base functions are computed, they can be used for subsequent time
integration of the saturation. Because the evolution equation is now solved on a coarse grid, a larger time
step can be used. This also offers additional computational saving. For many oil recovery problems, due to
the excessively large fine grid data, upscaling is a necessary step before performing many simulations and
realizations on the upscaled coarse grid model. If one can coarsen the fine grid by a factor of 10 in each
dimension, the computational saving of the coarse grid model over the original fine model could be as large
as a factor 10,000 (three space dimensions plus time).

We perform a coarse grid computation of the above algorithm on the coarse 64×64 mesh. The fractional
flow curve using the above algorithm is depicted in Figure 3.8. It gives excellent agreement with the “exact”
fractional flow curve. The contour plots of the saturation S on the fine 1024 × 1024 mesh at time t = 0.25
and t = 0.5 computed by using the “exact” velocity field are displayed in Figure 3.10. In Figure 3.9, we show
the contour plots of the saturation obtained using the recovered velocity field from the coarse grid pressure
calculation N = 64. We can see that the the contour plots in Figure 3.9 approximate the “exact” ones in
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Figure 3.10 in certain accuracy but the sharp oil/water interfaces in Figure 3.10 are smeared out. This is
due to the parabolic nature of the upscaled equation (3.33). We have also performed many other numerical
experiments to test the robustness of this combined coarse grid model. We found that for permeability fields
with strong layered structure, the above coarse grid model is very robust. The agreement with the fine grid
calculations is very good. We are currently working toward some qualitative and quantitative understanding
of this upscaling model.
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Fig. 3.8. The accuracy of the coarse grid algorithm. Solid line is the “exact” fractional flow curve using mixed finite
element method solving the pressure equation. The slash-dotted line is the fractional flow curve using above coarse
grid algorithm.
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Fig. 3.9. The contour plots of the saturation S computed using the upscaled model on a 64 × 64 mesh at time
t = 0.25 (left) and t = 0.5 (right).

Finally, we remark that the upscaling equation (3.33) uses small scale information v′ of the velocity field
to define the diffusion coefficients. This information can be constructed locally through the mixed multiscale
basis functions. This is an important property of our multiscale finite element method. It is clear that solving
directly the homogenized pressure equation

div(k∗(x)∇p∗) = 0

will not provide such small scale information. On the other hand, whenever one can afford to resolve all
the small scale feature by a fine grid, one can use fast linear solvers, such as multigrid methods, to solve
the pressure equation (3.31) on the fine mesh. From the fine grid computation, one can easily construct the
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Fig. 3.10. The contour plots of the saturation S computed on the fine 1024 × 1024 mesh using the “exact” velocity
field at time t = 0.25 (left) and t = 0.5 (right).

average velocity v0 and its deviation v′. However, when multiple simulations must be carried out due to the
change of boundary conditions, the pressure equation (3.31) will then have to be solved again on the fine
mesh. The multiscale finite element method only solves the pressure equation once on a coarse mesh, and
the fine grid velocity can be constructed locally through the finite element bases. This is the main advantage
of our mixed multiscale finite element method. This process becomes more difficult for the nonlinear two-
phase flow due to the dynamic coupling between the pressure and the saturation. We are now investigating
the possibility of upscaling the two-phase flow by using multiscale finite element base functions that are
constructed from the one-phase flow (time independent). In this case, we need to provide corrections to the
pressure equation to account for the scale interaction near the oil/water interface.

It should be noted that some adaptive scale-up strategies have also been developed [30,89]. The idea is to
refine the mesh around the fast-flow channels in order to capture their effect directly. The approach seems
to work well when the channels are isolated.

3.7 Brief overview of mixed finite element and finite volume element methods

Control volume multiscale finite element method In this section, we discuss multiscale finite volume
element method. Finite volume method is chosen because, by its construction, it satisfies the numerical local
conservation which is important in groundwater and reservoir simulations. Let Kh denote the collection of
coarse elements/rectangles K. Consider a coarse element K, and let ξK be its center. The element K is
divided into four rectangles of equal area by connecting ξK to the midpoints of the element’s edges. We
denote these quadrilaterals by Kξ, where ξ ∈ Zh(K), are the vertices of K. Also, we denote Zh =

⋃

K Zh(K)
and Z0

h ⊂ Zh the vertices which do not lie on the Dirichlet boundary of Ω. The control volume Vξ is defined
as the union of the quadrilaterals Kξ sharing the vertex ξ.

The key idea of the method is the construction of basis functions on the coarse grids, such that these basis
functions capture the small-scale information on each of these coarse grids. As before, the basis functions
are constructed from the solution of the leading order homogeneous elliptic equation on each coarse element
with some specified boundary conditions. We consider a coarse element K that has d vertices, the local basis
functions φi, i = 1, · · · , d are set to satisfy the following elliptic problem:

−∇ · (k · ∇φi) = 0 inK

φi = gi on ∂K,
(3.34)

for some function gi defined on the boundary of the coarse element K. As we discussed earlier, Hou et al. [50]
have demonstrated that a careful choice of boundary conditions would improve the accuracy of the method.
In previous findings, the function gi for each i is chosen to vary linearly along ∂K or to be the solution of
the local one-dimensional problems [61] or the solution of the problem in a slightly larger domain is chosen
to define the boundary conditions. For simplicity, we consider linear boundary conditions and also discuss
the boundary conditions obtained from a global solution. We will require φi(xj) = δij . Finally, a nodal basis
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function associated with the vertex xi in the domain Ω is constructed from the combination of the local
basis functions that share this xi and zero elsewhere. We would like to note that one can use an approximate
solution of (3.34) when it is possible. For example, in the case of periodic or random homogeneous cases, the
basis functions can be approximated using homogenization expansion φi = φ0

i + εχk∇kφ
0
i , where χk is the

solution of the cell problem and φ0
i is standard finite element basis on the coarse mesh (see [36]).

Next, we denote by V h the space of our approximate pressure solution, which is spanned by the basis
functions {φj}xj∈Z0

h
. Then we formulate the finite dimensional problem corresponding to finite volume el-

ement formulation of pressure equation. A statement of mass conservation on a coarse-control volume Vx
is formed from pressure equation, where the approximate solution is written as a linear combination of the
basis functions. Assembly of this conservation statement for all control volumes would give the corresponding
linear system of equations that can be solved accordingly. The resulting linear system has incorporated the
fine-scale information through the involvement of the nodal basis functions on the approximate solution. To
be specific, the problem now is to seek ph ∈ V h with ph =

∑

xj∈Z0
h
pjφj such that

∫

∂Vξ

k · ∇ph · n dl = 0, (3.35)

for every control volume Vξ ⊂ Ω. Here n defines the normal vector on the boundary of the control volume,
∂Vξ and S is the fine-scale saturation field at this point. The resulting multiscale method differs from the
multiscale finite element method, since it employs the finite volume element method as a global solver, and
it is called multiscale finite volume element method (MsFVEM). We would like to note that the coarse-scale
velocity field obtained using MsFVEM is conservative in control volume elements Vξ (not in Kh).

Mixed multiscale finite element methods For simplicity, we assume Neumann boundary conditions.
First, we review the mixed multiscale finite element formulation following [22] (see also [6], [1], and [7]). We
can rewrite two-phase flow equation as

k−1u−∇p = 0 in Ω

div(u) = 0 in Ω

k(x)∇p · n = g(x) on ∂Ω.

(3.36)

The variational problem associated with (3.36) is to seek (u, p) ∈ H(div,Ω) × L2(Ω)/R such that u · n = g
on ∂Ω and

(k−1u, v) + (divv, p) = 0 ∀v ∈ H0(div,Ω)

(divu, q) = 0 ∀q ∈ L2(Ω)/R.
(3.37)

where H0(div,Ω) is H(div,Ω) with homogeneous Neumann boundary conditions. By defining

a(u, v) = (k−1u, v), b(v, q) = (divv, q), (3.38)

we can rewrite the weak formulation as

a(u, v) + b(v, p) = 0 ∀v ∈ H0(div,Ω),

b(u, q) = 0 ∀q ∈ L2(Ω)/R.

Let Vh ⊂ H(div,Ω) and Qh ⊂ L2(Ω)/R be finite dimensional spaces and V 0
h = Vh ∩ H0(div,Ω). The

numerical approximation problem associated with (3.37) is to find (uh, ph) ∈ Vh ×Qh such that uh · n = gh
on ∂Ω, where gh = g0,hn on ∂Ω and g0,h =

∑

e∈{∂K
T

∂Ω,K∈τh}
(
∫

e gds)Ne, Ne ∈ Vh, is corresponding basis
function to edge e,

(k−1uh, vh) + (divvh, ph) = 0 ∀vh ∈ V 0
h

(divuh, qh) = 0 ∀qh ∈ Qh.
(3.39)
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One can define a linear operator Bh : V 0
h → Q′

h by b(uh, qh) = (Bhuh, qh).
Suppose that the following conditions are satisfied

a(uh, uh) is kerBh − coercive (3.40)

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

‖vh‖H(div,Ω)‖qh‖L2(Ω)
≥ C. (3.41)

Then the following approximation property follows (see e.g., [18]).

Lemma 31 If (u, p) and (uh, ph) respectively solve the problem (3.37) and (3.39) and the conditions (3.40)
and (3.41) hold, then

‖u− uh‖H(div,Ω) + ‖p− ph‖0,Ω ≤ inf
vh∈Vh
vh−g0,h∈V

0
h

‖u− vh‖H(div,Ω) + inf
qh∈Qh

‖p− qh‖0,Ω. (3.42)

Following Chen and Hou [22] (see also [6]), one can construct multiscale basis functions for velocity in
each coarse block K

div(k(x)∇wKi ) =
1

|K| in K

k(x)∇wKi nK =

{

gKi on eKi
0 else,

(3.43)

where gKi = 1
|eK
i
|
and eKi are the edges of K. Then, we can define the finite dimensional space for velocity by

Vh =
⊕

K

{ΨK
i },

V 0
h = Vh ∩H0(div,Ω),

where ΨK
i = k(x)∇wKi .

3.8 MsFEM using limited global information

Motivation Multiscale finite element methods and their modifications are used in two-phase flow simulations
through heterogeneous porous media. First, we briefly describe the underlying fine-scale equations. We
present two-phase flow equations neglecting the effects of gravity, compressibility, capillary pressure and
dispersion on the fine scale. Porosity, defined as the volume fraction of the void space, will be taken to
be constant and therefore serves only to rescale time. The two phases will be referred to as water and oil
and designated by the subscripts w and o, respectively. We can then write Darcy’s law, with all quantities
dimensionless, for each phase j as follows:

vj = −λj(S)k∇p, (3.44)

where vj is phase velocity, S is water saturation (volume fraction), p is pressure, λj = krj(S)/µj is phase
mobility, where krj and µj are the relative permeability and viscosity of phase j respectively, and k is the
permeability tensor, which is here taken to be diagonal, k = kI , where I is the identity matrix,

Combining Darcy’s law with conservation of mass, div(vw + vo)=0, allows us to write the flow equation
in the following form

div(λ(S)k∇p) = f, (3.45)

where the total mobility λ(S) is given by λ(S) = λw(S) + λo(S) and f is a source term. The saturation
dynamics affects the flow equations. One can derive the equation describing the dynamics of the saturation

∂S

∂t
+ div(F) = 0, (3.46)
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where F = vfw(S), with fw(S), the fractional flow of water, given by fw = λw/(λw + λo), and the total
velocity v by:

v = vw + vo = −λ(S)k∇p. (3.47)

In the presence of capillary effects, an additional diffusion term is present in (3.46).
If krw = S, kro = 1 − S and µw = µo, then the flow equation reduces to

div(k∇psp) = f.

This equation, the linear advection pollutant transport equation, will be referred to as the single-phase flow
equation associated with (3.45), and psp will be referred to as the single-phase flow solution.

As we see from (3.45) and (3.46), the pressure equation is solved many times for different saturation
profiles. Thus, computing the basis functions once at time zero is very beneficial and the basis functions are
only updated near sharp interfaces. In fact, our numerical results show that only slight improvement can be
achieved by updating the basis functions near sharp fronts. However, we have found that for heterogeneous
permeability fields with very strong non-local effects, the use of some type of global information can improve
multiscale finite element results significantly, which will be discussed next.

We present a representative numerical example for a permeability field generated using two-point geo-
statistics. To generate this permeability field, we have used GSLIB algorithm [26]. The permeability is
log-normally distributed with prescribed variance σ2 = 1.5 (σ2 here refers to the variance of log k) and some
correlation structure. The correlation structure is specified in terms of dimensionless correlation lengths in
the x and z-directions, lx = 0.4 and lz = 0.04, nondimensionalized by the system length. Linear boundary
conditions are used for constructing multiscale basis function in (3.34). Spherical variogram is used [26]. In
this numerical example, the fine-scale field is 120× 120, while the coarse-scale field is 12× 12 defined in the
rectangle with the length 5 and the width 1. For the two-phase flow simulations, the system is considered
to initially contain only oil (S = 0) and water is injected at inflow boundaries (S = 1 is prescribed), i.e., we
specify p = 1, S = 1 along the x = 0 edge and p = 0 along the x = 5 edge, and no flow boundary conditions
on the lateral boundaries. Relative permeability functions are specified as krw = S2, kro = (1 − S)2; water
and oil viscosities are set to µw = 1 and µo = 5. Porosity is constant and serves only to nondimensionalize
time. Results are presented in terms of the fraction of oil in the produced fluid (i.e., oil cut, designated F )
against pore volume injected (PVI). PVI represents dimensionless time and is computed via

∫

Qdt/Vp where
Vp is the total pore volume of the system and Q is the total flow rate.

In our first numerical test, Figure 3.11, we compare the fractional flows. The dashed line corresponds
to the calculations performed using a simple saturation upscaling (no subgrid treatment), while dotted line
corresponds to the calculations performed by solving the saturation equation on the fine grid using the
reconstructed fine-scale velocity field. We observe from this figure that the second approach is very accurate,
while the first approach over-predicts the breakthrough time. The saturation snapshots are compared in
Figure 3.12. One can observe that there is a very good agreement.

In the next set of numerical results, we consider strongly channelized permeability fields. These perme-
ability fields are proposed in some recent benchmark tests, such as the SPE comparative solution project
[23]. In Figure 3.13, one of the layers of this 3-D permeability field is depicted. All the layers have 220× 60
fine-scale resolution, and we take the coarse grid to be 22 × 6. As it can be observed, the permeability field
contains a high permeability channel, where most flow will occur in our simulation. In Figure 3.14, the frac-
tional flows are compared. The boundary conditions are taken to be p = 1, S = 1 along the x = 0 edge and
p = 0 along the x = 5 edge, and no flow boundary conditions on the lateral boundaries. Again, the dashed
line corresponds to the calculations performed using a simple saturation upscaling (no subgrid treatment),
while dotted line corresponds to the calculations performed by solving the saturation equation on the fine
grid using the reconstructed fine-scale velocity field. We observe from this figure that the second approach
is not very accurate in contrast to the permeability field generated using two-point geostatistics [26]. This
is because the local basis functions can not account accurately the global connectivity of the media. Indeed,
in the next figure, Figure 3.15, the saturation fields at time PVI = 0.5 are compared. We see that multiscale
finite element methods with local basis functions introduce some errors. In the bottom left corner, there is
a saturation pocket which is not in the reference solution computed using a fine grid. The reason for this is
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Fig. 3.11. Fractional flow comparison for a permeability field generated using two-point geostatistics.
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Fig. 3.12. Saturation maps at PVI=0.5 for fine-scale solution (left figure) and standard MsFVEM (right figure)

that the local basis functions in the lower left corner contains high permeability region. However, this high
permeability region does not have global connectivity, and the local basis functions can not take this effect
into account. Next, we discuss how global information can be incorporated into multiscale basis functions to
improve the accuracy of the computations.

Multiscale finite volume element method The main idea of the modified multiscale finite volume
element method (MsFVEM) is to use the solution of the fine-scale problem at time zero to determine the
boundary conditions for the basis functions. This approach is proposed in [35] to handle the permeability
fields which are strongly channelized. For this type of permeability fields, some type of global information is
needed. Next, we describe the method. We denote the solution of pressure equation at time zero by psp(x).
In defining psp(x), we use the actual boundary conditions of the global problem. psp(x) depends on global
boundary conditions, and, generally, is updated each time when global boundary conditions are changed.
The boundary conditions in (3.34) for modified basis functions are defined in the following way. For each
rectangular element K with vertices xi (i = 1, 2, 3, 4) denote by φi(x) a restriction of the nodal basis on
K, such that φi(xj) = δij . At the edges where φi(x) = 0 at both vertices, we take boundary condition for
φi(x) to be zero. Consequently, the basis functions are localized. We only need to determine the boundary
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Fig. 3.13. Log-permeability for one of the layers of upper Ness.
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Fig. 3.14. Fractional flow comparison for a channelized permeability field.

condition at two edges which have the common vertex xi (φi(xi) = 1). Denote these two edges by [xi−1, xi]
and [xi, xi+1] (see Figure 3.16). We only need to describe the boundary condition, gi(x), for the basis function
φi(x), along the edges [xi, xi+1] and [xi, xi−1]. If psp(xi) 6= psp(xi+1), then

gi(x)|[xi,xi+1] =
psp(x) − psp(xi+1)

psp(xi) − psp(xi+1)
, gi(x)|[xi,xi−1] =

psp(x) − psp(xi−1)

psp(xi) − psp(xi−1)
.

If psp(xi) = psp(xi+1) 6= 0, then

gi(x)|[xi,xi+1] = φ0
i (x) +

1

2psp(xi)
(psp(x) − psp(xi+1)),
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Fig. 3.15. Saturation maps at PVI=0.5 for fine-scale solution (left figure) and standard MsFVEM (right figure).

where φ0
i (x) is a linear function on [xi, xi+1] such that φ0

i (xi) = 1 and φ0
i (xi+1) = 0. Similarly,

gi+1(x)|[xi,xi+1] = φ0
i+1(x) +

1

2psp(xi+1)
(psp(x) − psp(xi+1)), (3.48)

where φ0
i+1(x) is a linear function on [xi, xi+1] such that φ0

i+1(xi+1) = 1 and φ0
i+1(xi) = 0. If psp(xi) =

psp(xi+1) 6= 0, then one can also use simply linear boundary conditions. If psp(xi) = psp(xi+1) = 0 then
linear boundary conditions are used. In the applications considered in this paper, the initial pressure is
always positive. Finally, the basis function φi(x) is constructed by solving (3.34). The choice of the boundary
conditions for the basis functions is motivated by the analysis. In particular, we would like to recover the
exact fine-scale solution along each edge if the nodal values of the pressure are equal to the values of exact
fine-scale pressure. This is the underlying idea for the choice of boundary conditions. Using this property and
Cea’s lemma one can show that the pressure obtained from the numerical solution is equal to the underlying
fine-scale pressure.

Mixed multiscale finite element methods Next, following [1], we present a mixed multiscale finite
element method that employs single-phase flow information. Suppose that psp solves the single-phase flow
equation. We set bKi = (k∇psp|eK

i
) · nK and assume that bKi is uniformly bounded. Then the new basis

functions for velocity is constructed by solving the following local problems (3.43) with gKi = bKi /β
K
i , where

βKi =
∫

eK
i

k∇psp · nKds. For further analysis, we assume that βKi 6= 0. In general, if βKi = 0 one can use

standard mixed multiscale finite element basis functions. Let NK
i = k(x)∇wKi and the multiscale finite

dimensional space V 0
h for velocity be defined by

Vh :=
⊕

K

{NK
i } ⊂ H(div,Ω),

V 0
h := Vh ∩H0(div,Ω).

First, we will show that the resulting multiscale finite element solution for velocity is exact for single-
phase flow (i.e., λ(x) = 1). Let vh|K = βKi N

K
i , then βKi is the interpolation value of the fine scale solution.
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Fig. 3.16. Schematic description of nodal points.

Furthermore, a direct calculation yields (vh|eK
i

) · nK = k∇psp · nK . Because

divvh = βKi divN
K
i =

1

|K|

∫

∂K

k∇psp · nKds =
1

|K|

∫

K

div(k∇pspd) = 0,

the following equation is obtained immediately

divvh = 0 in K (3.49)

vh · nK = k∇psp · nK on ∂K (3.50)

Because div(k∇psp) = 0, we get vh = k∇psp and the following proposition.
Proposition Let βKi =

∫

eK
i

k∇psp · nKds, then on each coarse block K

k∇psp = βKi N
K
i . (3.51)

Lemma 32 If |βKi | ≥ Ch with C is independent of h, then
(1) a(uh, uh) is kerBh-coercive;

(2) infqh∈Qh supvh∈V 0
h

b(vh,qh)
‖vh‖H(div,Ω)‖qh‖L2(Ω)

≥ C.

Numerical results Next, we show the numerical results obtained using modified multiscale finite element
type methods for the permeability layer depicted in Figure 3.13 and two-phase flow parameters presented
earlier. We consider two types of boundary conditions in a rectangular region [0, 5]× [0, 1]. For the first type
of boundary conditions, we specify p = 1, S = 1 along the x = 0 edge and p = 0 along the x = 5 edge. On the
rest of the boundaries, we assume no flow boundary condition. We call this type of the boundary condition
as side-to-side. The other type of boundary conditions is obtained by specifying p = 1, S = 1 along the x = 0
edge for 0.5 ≤ z ≤ 1 and p = 0 along the x = 5 edge for 0 ≤ z ≤ 0.5. On the rest of the boundaries, we
assume no flow boundary condition.

In Figure 3.17, the fractional flows are plotted for standard and modified MsFVEM. We observe from
this figure that modified MsFVEM is more accurate and provides nearly the same fractional flow response
as the direct fine-scale calculations. In Figure 3.18, we compare the saturation fields at PVI=0.5. As we see,
the saturation field obtained using modified MsFVEM is very accurate and there is no longer the saturation
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Fig. 3.17. Fractional flow comparison for standard MsFVEM and modified MsFVEM for side-to-side flow.
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Fig. 3.18. Saturation maps at PVI=0.5 for fine-scale solution (left figure) and modified MsFVEM (right figure).
Side-to-side boundary condition is used.

pocket at the left bottom corner. Thus, the modified MsFVEM captures the connectivity of the media
accurately.

In the next set of numerical results, we test the modified multiscale finite element methods for a different
layer (layer 40) of SPE comparative solution project. In Figure 3.19 and 3.20, the fractional flows and total
flow rates (Q) are compared for two different boundary conditions. One can see clearly that the modified
MsFVEM method gives nearly exact results for these integrated responses. The standard MsFVEM tends
to over-predict the total flow rate at time zero. This initial error persists at later times. This phenomena is
often observed in upscaling of two-phase flows. More numerical results and discussions can be found in [35].
These numerical results demonstrate that modified multiscale finite element methods which use a limited
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Fig. 3.19. Fractional flow (left figure) and total production (right figure) comparison for standard MsFVEM and
modified MsFVEM for side-to-side flow (layer 40).
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Fig. 3.20. Fractional flow (left figure) and total production (right figure) comparison for standard MsFVEM and
modified MsFVEM for corner-to-corner (layer 40).

global information are more accurate. Moreover, modified multiscale finite element methods are capable of
capturing the long-range flow features accurately for channelized permeability fields.

For the next set of results, we consider another layer of the upper Ness (layer 59). In Figure 3.21, both
fractional flow (left figure) and total flow (right figure) are plotted. We observe that the modified MsFVEM
gives almost the exact results for these quantities, while the standard MsFVEM overpredicts the total flow
rate, and there are deviations in the fractional flow curve around PV I ≈ 0.6. Note that unlike the previous
case, fractional flow for standard MsFVEM is nearly exact at later times (PV I ≈ 2). In Figure 3.22,
the saturation maps are plotted at PV I = 0.5. The left figure represents the fine-scale, the middle figure
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Fig. 3.21. Fractional flow (left figure) and total production (right figure) comparison for standard MsFVEM and
modified MsFVEM for corner-to-corner flow.
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Fig. 3.22. Saturation maps at PVI=0.5 for fine-scale solution (left figure), standard MsFVEM (middle figure), and
modified MsFVEM (right figure). Corner-to-corner boundary condition is used.

represents the results obtained using standard MsFVEM, and the right figure represents the results obtained
using the modified MsFVEM. We observe from this figure that the saturation map obtained using standard
MsFVEM has some errors. These errors are more evident near the lower left corner. The results of the
saturation map obtained using the modified MsFVEM is nearly the same as the fine-scale saturation field.
It is evident from these figures that the modified MsFVEM performs better than the standard MsFVEM.

Analysis

Galerkin finite element methods with limited global information We have proposed some analysis
for modified multiscale finite element method in [35] and [2]. The main idea is to show that the pressure
evolution in two-phase flow simulations is strongly influenced by the initial pressure. To demonstrate this,
we consider a channelized permeability field, where the value of the permeability in the channel is large.
We assume the permeability has the form kI , where I is an identity matrix. In a channelized medium, the
dominant flow is within the channels. Our analysis assumes a single channel and restricted to 2-D. Here, we
briefly mention the main findings. Denote the initial stream function and pressure by η = ψ(x, t = 0) and
ζ = p(x, t = 0) (ζ is also denoted by psp previously). The stream function is defined

∂ψ/∂x1 = −v2, ∂ψ/∂x2 = v1. (3.52)
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Then the equation for the pressure can be written as

∂

∂η

(

|k|2λ(S)
∂p

∂η

)

+
∂

∂ζ

(

λ(S)
∂p

∂ζ

)

= 0. (3.53)

For simplicity, S = 0 at time zero is assumed. We consider a typical boundary condition that gives high flow
within the channel, such that the high flow channel will be mapped into a large slab in (η, ζ) coordinate
system. If the heterogeneities within the channel in η direction is not strong (e.g., narrow channel in Cartesian
coordinates), the saturation within the channel will depend on ζ. In this case, the leading order pressure will
depend only on ζ, and it can be shown that

p(η, ζ, t) = p0(ζ, t) + high order terms, (3.54)

where p0(ζ, t) is the dominant pressure. This asymptotic expansion shows that the time-varying pressure
strongly depends on the initial pressure (i.e., the leading order term in the asymptotic expansion is a function
of initial pressure and time only). In our analysis, we will assume that |p(x, t) − p̂(psp, t)|H1 is small.

Since the analysis of the multiscale finite element methods is carried out only for the pressure equation, we
will assume t (time) is fixed. Then, assuming the function p̂ is sufficiently smooth, one can state the following.
There existsAK in eachK, such that ‖∇p(x)−AK∇psp(x)‖L2(Ω) is small. Note that this assumption indicates
that the fine-scale features of pressure solutions of two-phase equations does not change significantly during a
simulation (e.g., streamlines do not vary significantly in each coarse block). This phenomena can be observed
in numerical simulations of two-phase flows when µo/µw > 1.

The assumption for the case with scale separation indicates that the coarse-scale features of two-phase
flow and single-phase flow are similar (e.g., coarse-scale streamlines do not vary significantly). We will use
the following assumption.

Assumption G. There exists a sufficiently smooth scalar valued function G(η) (G ∈ C3), such that

|p−G(psp)|1,Ω ≤ Cδ, (3.55)

where psp is single-phase flow pressure and δ is sufficiently small.

We note G is p0(ζ, t) at fixed t in (3.54). Moreover, one does not need to know the function G for
computing the multiscale approximation of the solution. It is only necessary that G has certain smoothness
properties, however, it is important that the basis functions span psp in each coarse block.

Theorem 33 Under Assumption G and psp ∈ W 1,s(Ω) (s > 2), multiscale finite element method converges
with the rate given by

|p− ph|1,Ω ≤ Cδ + Ch1−2/s|psp|W 1,s(Ω) + Ch1−2/s|psp|1,Ω + Ch‖f‖0,Ω ≤ Cδ + Ch1−2/s. (3.56)

The proof of this theorem is given in [2]. Note that Theorem(33) shows that MsFEM converges for
problems without any scale separation and the proof of this theorem does not use homogenization techniques.
Next, we present the proof.

Proof. Following standard practice of finite element estimation, we seek qh = ciφ
K
i , where φKi are single-phase

flow based multiscale finite element basis functions. Then from Cea’s lemma, we have

|p− ph|1,Ω ≤ |p−G(psp)|1,Ω + |G(psp) − ciφ
K
i |1,Ω. (3.57)

Next, we present an estimate for the second term. We choose ci = G(psp(xi)), where xi are vertices of K.
Furthermore, using Taylor expansion of G around pK , which is the average of psp over K,

G(psp(xi)) = G(pK) +G′(pK)(psp(xi) − pK) +
1

2
G′′(ξxi)(p

sp(xi) − pK)2,
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where ξxi = pK + θ(psp(xi) − pK), 0 < θ < 1, we have in each K

ciφ
K
i = G(pK)φKi +G′(pK)(psp(xi) − pK)φKi +

1

2
G′′(ξxi)(p

sp(xi) − pK)2φKi =

G(pK) +G′(pK)(psp(xi)φ
K
i − pK) +

1

2
G′′(ξxi)(p

sp(xi) − pK)2φKi .

(3.58)

In the last step, we have used
∑

i φ
K
i = 1. Similarly, in each K,

G(psp(x)) = G(pK) +G′(pK)(psp(x) − pK) +
1

2
G′′(ξx)(p

sp(x) − pK)2, (3.59)

where ξx = pK + θ(psp(x) − pK), 0 < θ < 1. Using (3.58) and (3.59), we get

|G(psp) − ciφ
K
i |1,K ≤ |G′(pK)(psp(x) − psp(xi)φ

K
i )|1,K + |1

2
G′′(ξxi)(p

sp(xi) − pK)2φKi |1,K+

|1
2
G′′(ξx)(p

sp(x) − pK)2|1,K .
(3.60)

Because of |psp(x) − psp(xi)|1,K ≤ Ch‖f‖0,K , the estimate of the first term is the following

|G′(pK)(psp(x) − psp(xi)φ
K
i )|1,K ≤ Ch‖f‖0,K.

For the second term on the right hand side of (3.60), assuming psp(x) ∈W 1,s(Ω), we have

|G′′(ξxi)(p
sp(xi) − pK)2φKi |1,K ≤ Ch2−4/s|psp|2W 1,s(K) ≤ Ch1−2/s|psp|W 1,s(K).

where s > 2. Here, we have used the inequality (e.g., [4])

|u(x) − u(y)| ≤ C|x − y|1−2/s|u|W 1,s ,

for s > 2, where C depends only on s.
For the third term, since G′′ and G′′′ are bounded, we have the following estimate:

|G′′(ξx)(p
sp(x) − pK)2|1,K ≤ C‖(psp(x) − pK)2∇psp(x)‖0,K+

C‖(psp(x) − pK)∇psp(x)‖0,K ≤ Ch2−4/s|psp|2W 1,s(K)|psp|1,K+

Ch1−2/s|psp|1,K ≤ Ch2−4/s|psp|2W 1,s(Ω)|psp|1,K+

Ch1−2/s|psp|1,K ≤ Ch1−2/s|psp|1,K .

(3.61)

Combining the above estimates, we have for (3.60),

|G(psp) − ciφ
K
i |1,K ≤ Ch1−2/s|psp|W 1,s(K) + Ch1−2/s|psp|1,K + Ch‖f‖0,K . (3.62)

Summing (3.62) over all K and taking into account Assumption G, we have

|p− ph|1,Ω ≤ Cδ + Ch1−2/s|psp|W 1,s(Ω) + Ch1−2/s|psp|1,Ω + Ch‖f‖0,Ω ≤ Cδ + Ch1−2/s. (3.63)

Consequently, if s > 2 (see e.g., [8]) single-phase flow based multiscale finite element method converges.

Extensions of Galerkin finite element methods with limited global information The multiscale
finite element methods considered above employ information from only one single-phase flow solution. In
general, depending on the source term, boundary data, and mobility λ(S) (if it contains sharp variations),
it might be necessary to use information from multiple global solutions for the computation of accurate two-
phase flow solution. The previous multiscale finite element methods can be extended to take into account
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additional global information. Next, we present an extension of the Galerkin multiscale finite element method
that uses the partition of unity method [11] (also see e.g., [80], [45], [57]).

Assume that u1, u2,..., uN are the global functions such that |p−G(u1, u2, ..., uN )|1,Ω is sufficiently small.
Here, u1, ..., uN can be possible pressure snapshots for different mobility λ(S) or pressure fields corresponding
to different source terms and/or boundary conditions. We would like to note that in a very interesting paper
[72], the authors prove under certain conditions on f (source term) and λ = 1 that p is a smooth function
of single-phase flow solutions (elliptic pressure equations) with boundary conditions x1 and x2 (it is also
extended to multi-dimensional case). In this case, u1 and u2 are the solutions of single-phase flow equations
with boundary conditions ui = xi (i = 1, 2), and it was shown that p(u1, u2) ∈ H2. Next, we will formulate
the method.

Let ωi be a patch (see Figure 3.23), and define φ0
i to be piecewise linear basis function in patch ωi, such

that φ0
i (xj) = δij . For simplicity of notation, denote u1 = 1. Then, the multiscale finite element method for

each patch ωi is constructed by
ψij = φ0

i uj (3.64)

where j = 1, .., N and i is the index of nodes (see Figure 3.23). First, we note that in each K,
∑n

i=1 ψij = uj
is the desired single-phase flow solution.

i

xi

ω
K

Fig. 3.23. Schematic description of patch

We will use the following assumption. There exists a sufficiently smooth scalar valued function G(η),
η ∈ RN (G ∈ C3), such that

|p−G(u1, ..., uN )|1,Ω ≤ Cδ, (3.65)

where δ is sufficiently small.
As before the form of the function G is not important for the computations, however, it is crucial that

the basis functions span u1,..., uN in each coarse block. The next theorem shows that MsFEM converges for
problems without scale separation in this case.

Theorem 34 Assume (3.65) and ui ∈W 1,s(Ω), s > 2, i = 1, ..., N . Then

|p− ph|1,Ω ≤ Cδ + Ch1−2/s.

The proof of this theorem is given in [2].

Mixed finite element methods with limited global information One can carry out the analysis of
mixed multiscale finite element method with limited global information. First, we re-formulate our assump-
tion for the analysis of mixed multiscale finite element methods. From (3.55), it follows that

‖∇p−G′(psp)∇psp‖0,Ω ≤ Cδ.
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Using the fact that k and λ(x) are bounded, we have

‖λ(x)k∇p−G′(psp)λ(x)k∇psp‖0,Ω ≤ Cδ.

Noting that u = λ(x)k∇p and usp = k∇psp, it follows that there exists a coarse-scale function scalar A(x)
such that

‖u−A(x)usp‖0,Ω ≤ δ. (3.66)

Since A(x)usp approximates u, we assume that it has small divergence,

|
∫

K

div(A(x)usp)dx| ≤ Cδ1h
2 (3.67)

in each K, where δ1 is a small number. For our analysis, we note that (3.67) gives

|
∫

∂K

A(x)uspnKds| ≤ Cδ1h
2. (3.68)

We will assume that A(x) ∈ Cγ (0 < γ ≤ 1). (3.68) can be written as

|
∑

i

Ai

∫

∂eK
i

uspnKds| ≤ Cδ1h
2. (3.69)

Here Ai’s are defined as Ai =
∫

∂eK
i

A(x)uspnKds/
∫

∂eK
i

uspnKds, since
∫

∂eK
i

uspnKds = βKi 6= 0. Note that

not for any A(x), Ai is necessarily a value of A(x) along the edge eKi because uspnK can change sign.
However, we only need to define A(x) for each edge by its value Ai (e.g., the value of A(x) at the center of
edge). Then, for any such A(x), (3.66) is satisfied provided δ < hγ . This can be directly verified. Thus, our
main assumption will be (3.66) and (3.69), where A(x) is defined, for example, at the center of each edge
eKi . We would like to note that from the fact that div(A(x)usp) is small in each K, it follows that A(x), for
example, can be taken as an approximation of stream function corresponding to usp. As before, the form of
A(x) is not important for the computations of multiscale solutions.

The following theorem about the convergence of mixed multiscale finite element methods for problems
without scale separation is proven in [2].

Theorem 35 Assume (3.66) and (3.69) and A(x) ∈ Cγ , 0 < γ ≤ 1. Let (u, p) and (uh, ph) respectively solve
the problem (3.37) and (3.39) with single-phase flow based mixed multiscale finite element, then

‖u− uh‖H(div,Ω) + ‖p− ph‖0,Ω ≤ Cδ + Cδ1 + Chγ . (3.70)

4 Multiscale finite element methods for nonlinear partial differential equations

Next, we show that MsFEM can be naturally generalized to nonlinear partial differential equations. The
goal of MsFEM is to find a numerical approximation of a homogenized solution without solving auxiliary
problems (e.g., periodic cell problems) that arise in homogenization. The homogenized solutions are sought
on a coarse grid space Sh, where h � ε. Let Kh be a partition of Ω. We denote by Sh standard family
of finite dimensional space, which possesses approximation properties, e.g., piecewise linear functions over
triangular elements,

Sh = {vh ∈ C0(Ω) : the restriction vh is linear for each element K and vh = 0 on ∂Ω}. (4.1)

In further presentation, K is a triangular element that belongs to Kh. To formulate MsFEM for general
nonlinear problems, we will need (1) a multiscale mapping that gives us the desired approximation containing
the small scale information and (2) a multiscale numerical formulation of the equation.
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We consider the formulation and analysis of MsFEM for general nonlinear elliptic equations, uε ∈W 1,p
0 (Ω)

−divaε(x, uε,∇uε) + a0,ε(x, uε,∇uε) = f, (4.2)

where aε(x, η, ξ) and a0,ε(x, η, ξ), η ∈ R, ξ ∈ R
d satisfy the following assumptions:

|aε(x, η, ξ)| + |a0,ε(x, η, ξ)| ≤ C (1 + |η|p−1 + |ξ|p−1), (4.3)

(aε(x, η, ξ1) − aε(x, η, ξ2), ξ1 − ξ2) ≥ C |ξ1 − ξ2|p, (4.4)

(aε(x, η, ξ), ξ) + a0,ε(x, η, ξ)η ≥ C|ξ|p. (4.5)

Denote

H(η1, ξ1, η2, ξ2, r) = (1 + |η1|r + |η2|r + |ξ1|r + |ξ2|r), (4.6)

for arbitrary η1, η2 ∈ R, ξ1, ξ2 ∈ R
d, and r > 0. We further assume that

|aε(x, η1, ξ1) − aε(x, η2, ξ2)| + |a0,ε(x, η1, ξ1) − a0,ε(x, η2, ξ2)|
≤ C H(η1, ξ1, η2, ξ2, p− 1) ν(|η1 − η2|)
+ C H(η1, ξ1, η2, ξ2, p− 1 − s) |ξ1 − ξ2|s,

(4.7)

where η ∈ R and ξ ∈ R
d, s > 0, p > 1, s ∈ (0,min(p− 1, 1)) and ν is the modulus of continuity, a bounded,

concave, and continuous function in R+ such that ν(0) = 0, ν(t) = 1 for t ≥ 1 and ν(t) > 0 for t > 0. These
assumptions guarantee the well-posedness of the nonlinear elliptic problem (4.2). Here Ω ⊂ R

d is a Lipschitz
domain and ε denotes the small scale of the problem. The homogenization of nonlinear partial differential
equations has been studied previously (see, e.g., [73]). It can be shown that a solution uε converges (up to a
sub-sequence) to u in an appropriate norm, where u ∈ W 1,p

0 (Ω) is a solution of a homogenized equation

−diva∗(x, u,Du) + a∗0(x, u,Du) = f. (4.8)

Multiscale mapping. Introduce the mapping EMsFEM : Sh → V hε in the following way. For each element
vh ∈ Sh, vε,h = EMsFEMvh is defined as the solution of

−divaε(x, ηvh ,∇vε,h) = 0 in K, (4.9)

vε,h = vh on ∂K and ηvh = 1
|K|

∫

K vhdx for each K. We would like to point out that different boundary

conditions can be chosen to obtain more accurate solutions and this will be discussed later. Note that for
linear problems, EMsFEM is a linear operator, where for each vh ∈ Sh, vε,h is the solution of the linear
problem. Consequently, V hε is a linear space that can be obtained by mapping a basis of Sh. This is precisely
the construction presented in [50] for linear elliptic equations.

Multiscale numerical formulation. Multiscale finite element formulation of the problem is the following.
Find uh ∈ Sh (consequently, uε,h(= EMsFEMuh) ∈ V hε ) such that

〈Aε,huh, vh〉 =

∫

Ω

fvhdx ∀vh ∈ Sh, (4.10)

where

〈Aε,huh, vh〉 =
∑

K∈Kh

∫

K

((aε(x, η
uh ,∇uε,h),∇vh) + a0,ε(x, η

uh ,∇uε,h)vh)dx. (4.11)

Note that the above formulation of MsFEM is a generalization of the Petrov-Galerkin MsFEM introduced
in [48] for linear problems. MsFEM, introduced above, can be generalized to different kinds of nonlinear
problems and this will be discussed later.
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4.1 Multiscale finite volume element method (MsFVEM)

The formulation of multiscale finite element (MsFEM) can be extended to a finite volume method. By
its construction, the finite volume method has local conservative properties [43] and it is derived from a
local relation, namely the balance equation/conservation expression on a number of subdomains which are
called control volumes. Finite volume element method can be considered as a Petrov-Galerkin finite element
method, where the test functions are constants defined in a dual grid. Consider a triangle K, and let zK
be its barycenter. The triangle K is divided into three quadrilaterals of equal area by connecting zK to the
midpoints of its three edges. We denote these quadrilaterals by Kz, where z ∈ Zh(K) are the vertices of
K. Also we denote Zh =

⋃

K Zh(K), and Z0
h are all vertices that do not lie on ΓD, where ΓD is Dirichlet

boundaries. The control volume Vz is defined as the union of the quadrilaterals Kz sharing the vertex z
(see Figure 4.1). The multiscale finite volume element method (MsFVEM) is to find uh ∈ Sh (consequently,

K

Vz

z

K

zK

z

Kz

Fig. 4.1. Left: Portion of triangulation sharing a common vertex z and its control volume. Right: Partition of a
triangle K into three quadrilaterals

uε,h = EMsFV EMuh such that

−
∫

∂Vz

aε (x, ηuh ,∇uε,h) · n dS +

∫

Vz

a0,ε (x, ηuh ,∇uε,h) dx =

∫

Vz

f dx ∀z ∈ Z0
h, (4.12)

where n is the unit normal vector pointing outward on ∂Vz . Note that the number of control volumes that
satisfies (4.12) is the same as the dimension of Sh. We will present numerical results for both multiscale
finite element and multiscale finite volume element methods.

4.2 Examples of V h

ε

Linear case. For linear operators, V hε can be obtained by mapping a basis of Sh. Define a basis of Sh,
Sh = span(φi0), where φi0 are standard linear basis functions. In each element K ∈ Kh, we define a set of
nodal basis {φiε}, i = 1, . . . , nd with nd(= 3) being the number of nodes of the element, satisfying

−divaε(x)∇φiε = 0 in K ∈ Kh (4.13)

and φiε = φi0 on ∂K. Thus, we have

V hε = span{φiε; i = 1, . . . , nd, K ⊂ Kh} ⊂ H1
0 (Ω).

Oversampling technique can be used to improve the method [50].
Special nonlinear case. For the special case, aε(x, uε,∇uε) = aε(x)b(uε)∇uε, V hε can be related to the

linear case. Indeed, for this case, the local problems associated with the multiscale mapping EMsFEM (see
(4.9)) have the form

−divaε(x)b(ηvh )∇vε,h = 0 in K.
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Because ηvh are constants over K, the local problems satisfy the linear equations,

−divaε(x)∇φiε = 0 in K,

and V hε can be obtained by mapping a basis of Sh as it is done for the first example. Thus, for this case one
can construct the base functions in the beginning of the computations.

V hε using subdomain problems. One can use the solutions of smaller (than K ∈ Kh) subdomain
problems to approximate the solutions of the local problems (4.9). This can be done in various ways based
on a homogenization expansion. For example, instead of solving (4.9) we can solve (4.9) in a subdomain
S with boundary conditions vh restricted onto the subdomain boundaries, ∂S. Then the gradient of the
solution in a subdomain can be extended periodically to K to approximate ∇vε,h in (4.11). vε,h can be
easily reconstructed based on ∇vε,h. When the multiscale coefficient has a periodic structure, the multiscale
mapping can be constructed over one periodic cell with a specified average.

4.3 Convergence of MsFEM for nonlinear partial differential equations

In [39] it was shown using G-convergence theory that

lim
h→0

lim
ε→0

‖uh − u‖W 1,p
0 (Ω) = 0, (4.14)

(up to a subsequence) where u is a solution of (4.8) and uh is a MsFEM solution given by (4.10). This
result can be obtained without any assumption on the nature of the heterogeneities and can not be improved
because there could be infinitely many scales, α(ε), present such that α(ε) → 0 as ε→ 0.

For the periodic case, it can be shown that the convergence of MsFEM in the limit as ε/h→ 0. To show
the convergence for ε/h→ 0, we consider h = h(ε), such that h(ε) � ε and h(ε) → 0 as ε→ 0. We would like
to note that this limit as well as the proof of the periodic case is different from (4.14), where the double-limit
is taken. In contrast to the proof of (4.14), the proof of the periodic case requires the correctors for the
solutions of the local problems.

Next we will present the convergence results for MsFEM solutions. For general nonlinear elliptic equations
under the assumptions (4.3)-(4.7) the strong convergence of MsFEM solutions can be shown. In the proof
of this theorem we show the form of the truncation error (in a weak sense) in terms of the resonance
errors between the mesh size and small scale ε. The resonance errors are derived explicitly. To obtain the
convergence rate from the truncation error, one needs some lower bounds. Under the general conditions,
such as (4.3)-(4.7), one can prove strong convergence of MsFEM solutions without an explicit convergence
rate (cf. [78]). To convert the obtained convergence rates for the truncation errors into the convergence rate
of MsFEM solutions, additional assumptions, such as monotonicity, are needed.

Next, we formulate convergence theorems. The proofs can be found in [36].

Theorem 41 Assume aε(x, η, ξ) and a0,ε(x, η, ξ) are periodic functions with respect to x and let u be a solution
of (4.8) and uh is a MsFEM solution given by (4.10). Moreover, we assume that ∇uh is uniformly bounded
in Lp+α(Ω) for some α > 0. Then

lim
ε→0

‖uh − u‖W 1,p
0 (Ω) = 0 (4.15)

where h = h(ε) � ε and h→ 0 as ε→ 0 (up to a subsequence).

Theorem 42 Let u and uh be the solutions of the homogenized problem (4.8) and MsFEM (4.10), respectively,
with the coefficient aε(x, η, ξ) = a(x/ε, ξ) and a0,ε = 0. Then

‖uh − u‖p
W 1,p

0 (Ω)
≤ c

( ε

h

)
s

(p−1)(p−s)

+ c
( ε

h

)

p
p−1

+ ch
p
p−1 . (4.16)
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4.4 Multiscale finite element methods for nonlinear parabolic equations

We consider
∂

∂t
uε − div(aε(x, t, uε,∇uε)) + a0,ε(x, t, uε,∇uε) = f, (4.17)

where ε is a small scale. Our motivation in considering (4.17) mostly stems from the applications of flow in
porous media (multi-phase flow in saturated porous media, flow in unsaturated porous media) though many
applications of nonlinear parabolic equations of these kinds occur in transport problems. Many problems in
subsurface modeling have multiscale nature where the heterogeneities associated with the media is no longer
periodic. It was shown that a solution uε converges to u (up to a subsequence) in an appropriate sense where
u is a solution of

∂

∂t
u− div(a∗(x, t, u,∇u)) + a∗0(x, t, u,∇u) = f. (4.18)

In [38] the homogenized fluxes a∗ and a∗0 are computed under the assumption that the heterogeneities are
strictly stationary random fields with respect to both space and time.

The numerical homogenization procedure presented in the previous section can be extended to parabolic
equations. To do this we will first formulate MsFEM in a slightly different manner from that presented in
[50] for the linear problem. Consider a standard finite dimensional Sh space over a coarse triangulation of
Ω, (4.1) and define EMsFEM : Sh → V hε in the following way. For each uh ∈ Sh there is a corresponding
element uh,ε in V hε that is defined by

∂

∂t
uh,ε − div(aε(x, t)∇uh,ε) = 0 in K × [tn, tn+1], (4.19)

with boundary condition uh,ε = uh on ∂K, and uh,ε(t = tn) = uh. For the linear equations EMsFEM is a
linear operator and the obtained multiscale space, V h

ε is a linear space on Ω× [tn, tn+1]. Moreover, the basis
in the space V hε can be obtained by mapping the basis functions of Sh. Forthe nonlinear parabolic equations
considered in this paper the operator EMsFEM is constructed similar to (4.19) using the local problems, i.e.,
for each uh ∈ Sh there is a corresponding element uh,ε in V hε that is defined by

∂

∂t
uh,ε − div(aε(x, t, η,∇uh,ε)) = 0 in K × [tn, tn+1], (4.20)

with boundary condition uh,ε = uh on ∂K, and uh,ε(t = tn) = uh. Here η = 1
|K|

∫

K
uhdx. Note EMsFEM is

a nonlinear operator and V hε is no longer a linear space.
The following method that can be derived from general multiscale finite element framework is equivalent

to our numerical homogenization procedure. Find uh ∈ V hε such that

∫ tn+1

tn

∫

Ω

∂

∂t
uhvhdxdt +A(uh, vh) =

∫ tn+1

tn

∫

Ω

fvhdxdt, ∀vh ∈ Sh,

where

A(uh, wh) =
∑

K

∫ tn+1

tn

∫

K

(aε(x, t, η
uh ,∇vε),∇wh) + a0,ε(x, t, η

uh ,∇vε)wh)dxdt,

where vε is the solution of the local problem 4.20), uh = luh in each K, ηuh = 1
|K|

∫

K l
uhdx, and uh is known

at t = tn.
We would like to note that the operator EMsFEM can be constructed using larger domains as it is done

in MsFEM with oversampling [50]. This way one reduces the effects of the boundary conditions and initial
conditions. In particular, for the temporal oversampling it is only sufficient to start the computations before
tn and end them at tn+1. Consequently, the oversampling domain for K× [tn, tn+1] consists of [t̃n, tn+1]×S,
where t̃n < tn and K ⊂ S. More precise formulation and detail numerical studies of oversampling technique
for nonlinear equations are currently under investigation. Further we would like to note that oscillatory initial
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conditions can be imposed (without using oversampling techniques) based on the solution of the elliptic part
of the local problems (4.20). These initial conditions at t = tn are the solutions of

−div(aε(x, t, η,∇uh,ε)) = 0 in K, (4.21)

or
−div(aε(x, η,∇uh,ε)) = 0 in K, (4.22)

where aε(x, η, ξ) = 1
tn+1−tn

∫ tn+1

tn
a(T (x/εβ, τ/εα)ω, η, ξ)dτ and uh,ε = uh on ∂K. The latter can become

efficient depending on the inter-play between the temporal and spatial scales. This issue is discussed below.
Note that in the case of periodic media the local problems can be solved in a single period in order to

construct A(uh, vh). In general, one can solve the local problems in a domain different from K (an element)
to calculate A(uh, vh), and our analysis is applicable to these cases. Note that the numerical advantages of
our approach over the fine scale simulation is similar to that of MsFEM. In particular, for each Newton’s
iteration a linear system of equations on a coarse grid is solved.

For some special cases the operator EMsFEM introduced in the previous section can be simplified (see
[39]). In general one can avoid solving the local parabolic problems if the ratio between temporal and spa-
tial scales is known, and solve instead a simplified equation. For example, assuming that aε(x, t, η, ξ) =
a(x/εβ , t/εα, η, ξ), we have the following. If α < 2β one can solve instead of (4.20) the local problem
−div(aε(x, t, ηuh ,∇vε)) = 0, if α > 2β one can solve instead of (4.20) the local problem −div(aε(x, ηuh ,∇vε)) =
0, where aε(x, η, ξ) is an average over time of aε(x, t, η, ξ), while if α = 2β we need to solve the parabolic
equation in K × [tn, tn+1], (4.20).

We would like to note that, in general, one can use (4.21) or (4.22) as oscillatory initial conditions and
these initial conditions can be efficient for some cases. For example, for α > 2β with initial conditions given
by (4.22) the solutions of the local problems (4.20) can be computed easily since they are approximated by
(4.22). Moreover, one can expect better accuracy with (4.22) for the case α > 2β because this initial condition
is more compatible with the local heterogeneities compare to the artificial linear initial conditions (cf. (4.20)).
The comparison of various oscillatory initial conditions including the ones obtained by oversampling method
is a subject of future studies.

Finally, we would like to mention that one can prove the following theorem.

Theorem 43 uh =
∑

i θi(t)φ
0
i (x) converges to u, a solution of the homogenized equation in V0 = Lp(0, T,W 1,p

0 (Ω))
as limh→0 limε→0 under additional not restrictive assumptions (see [39]).

Remark 4.1. The proof of the theorem uses the convergence of the solutions and the fluxes, and consequently
it is applicable for the case of general heterogeneities that usesG-convergence theory. Since the G-convergence
of the operators occurs up to a subsequence the numerical solution converges to a solution of a homogenized
equation (up to a subsequence of ε).

4.5 Numerical results

In this section we present several ingredients pertaining to the implementation of multiscale finite element
method for nonlinear elliptic equations. More numerical examples relevant to subsurface applications can be
found in [36]. We will present numerical results for both MsFEM and multiscale finite volume element method
(MsFVEM). We use an Inexact-Newton algorithm as an iterative technique to tackle the nonlinearity. For

the numerical examples below, we use aε(x, uε,∇uε) = aε(x, uε)∇uε. Let {φi0}
Ndof
i=1 be the standard piecewise

linear basis functions of Sh. Then MsFEM solution may be written as

uh =

Ndof
∑

i=1

αi φ
i
0 (4.23)

for some α = (α1, α2, · · · , αNdof )T , where αi depends on ε. Hence, we need to find α such that

F (α) = 0, (4.24)
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where F : R
Ndof → R

Ndof is a nonlinear operator such that

Fi(α) =
∑

K∈Kh

∫

K

(aε(x, η
uh )∇uε,h),∇φi0) dx−

∫

Ω

f φi0 dx. (4.25)

We note that in (4.25) α is implicitly buried in ηuh and uε,h. An inexact-Newton algorithm is a variation
of Newton’s iteration for nonlinear system of equations, where the Jacobian system is only approximately
solved. To be specific, given an initial iterate α0, for k = 0, 1, 2, · · · until convergence do the following:

• Solve F ′(αk)δk = −F (αk) by some iterative technique until ‖F (αk) + F ′(αk)δk‖ ≤ βk ‖F (αk)‖.
• Update αk+1 = αk + δk.

In this algorithm F ′(αk) is the Jacobian matrix evaluated at iteration k. We note that when βk = 0 then we
have recovered the classical Newton iteration. Here we have used

βk = 0.001

( ‖F (αk)‖
‖F (αk−1)‖

)2

, (4.26)

with β0 = 0.001. Choosing βk this way, we avoid over-solving the Jacobian system when αk is still considerably
far from the exact solution.

Next we present the entries of the Jacobian matrix. For this purpose, we use the following notations.
Let Kh

i = {K ∈ Kh : zi is a vertex of K}, I i = {j : zj is a vertex of K ∈ Kh
i }, and Kh

ij = {K ∈ Kh
i :

K shares zizj}. We note that we may write Fi(α) as follows:

Fi(α) =
∑

K∈Kh
i

(
∫

K

(aε(x, η
uh )∇uε,h,∇φi0) dx−

∫

K

f φi0 dx

)

, (4.27)

with

−divaε(x, ηuh )∇uε,h = 0 in K and uε,h =
∑

zm∈ZK

αm φ
m
0 on ∂K, (4.28)

where ZK is all the vertices of elementK. It is apparent that Fi(α) is not fully dependent on all α1, α2, · · · , αd.
Consequently, ∂Fi(α)

∂αj
= 0 for j /∈ I i. To this end, we denote ψjε =

∂uε,h
∂αj

. By applying chain rule of differenti-

ation to (4.28) we have the following local problem for ψjε :

−divaε(x, ηuh)∇ψjε =
1

3
div

∂aε(x, η
uh )

∂u
∇uε,h in K and ψjε = φjε on ∂K. (4.29)

The fraction 1/3 comes from taking the derivative in the chain rule of differentiation. In the formulation
of the local problem, we have replaced the nonlinearity in the coefficient by ηvh , where for each triangle
K ηvh = 1/3

∑3
i=1 α

K
i , which gives ∂ηvh/∂αi = 1/3. Moreover, for a rectangular element the fraction 1/3

should be replaced by 1/4.
Thus, provided that vε,h has been computed, then we may compute ψjε using (4.29). Using the above

descriptions we have the expressions for the entries of the Jacobian matrix:

∂Fi
∂αi

=
∑

K∈Kh
i

(

1

3

∫

K

(
∂aε(x, η

uh)

∂u
∇uε,h,∇φi0) dx +

∫

K

(aε(x, η
uh)∇ψi,∇φi0) dx,

)

(4.30)

∂Fi
∂αj

=
∑

K∈Kh
ij

(

1

3

∫

K

(
∂aε(x, η

uh )

∂u
∇uε,h,∇φiε) dx +

∫

K

(aε(x, η
uh)∇ψjε ,∇φi0) dx,

)

(4.31)

for j 6= i, j ∈ I i.
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The implementation of the oversampling technique is similar to the procedure presented earlier, except
the local problems in larger domains are used. As in the non-oversampling case, we denote ψjε =

∂vε,h
∂αj

, such

that after applying chain rule of differentiation to the local problem we have:

−divaε(x, ηuh )∇ψjε =
1

3
div

∂aε(x, η
uh )

∂u
∇vε,h in S and ψjε = φj0 on ∂S, (4.32)

where ηuh is computed over the corresponding element K and φj0 is understood as the nodal basis functions
on oversampled domain S. Then all the rest of the inexact-Newton algorithms are the same as in the non-
oversampling case. Specifically, we also use (4.30) and (4.31) to construct the Jacobian matrix of the system.
We note that we will only use ψjε from (4.32) pertaining to the element K.

From the derivation (both for oversampling and non-oversampling) it is obvious that the Jacobian matrix
is not symmetric but sparse. Computation of this Jacobian matrix is similar to computing the stiffness matrix
resulting from standard finite element, where each entry is formed by accumulation of element by element
contribution. Once we have the matrix stored in memory, then its action to a vector is straightforward.
Because it is a sparse matrix, devoting some amount of memory for entries storage is inexpensive. The
resulting linear system is solved using preconditioned bi-conjugate gradient stabilized method.

We want to solve the following problem:

−diva(x/ε, uε)∇uε = −1 in Ω ⊂ R
2,

uε = 0 on ∂Ω,
(4.33)

where Ω = [0, 1]× [0, 1], a(x/ε, uε) = k(x/ε)/ (1 + uε)
l(x/ε)

, with

k(x/ε) =
2 + 1.8 sin(2πx1/ε)

2 + 1.8 cos(2πx2/ε)
+

2 + sin(2πx2/ε)

2 + 1.8 cos(2πx1/ε)
(4.34)

and l(x/ε) is generated from k(x/ε) such that the average of l(x/ε) over Ω is 2. Here we use ε = 0.01.
Because the exact solution for this problem is not available, we use a well resolved numerical solution
using standard finite element method as a reference solution. The resulting nonlinear system is solved using
inexact-Newton algorithm. The reference solution is solved on 512 × 512 mesh. Tables 4.2 and 4.4 present
the relative errors of the solution with and without oversampling, respectively. In tables 4.3 and 4.5, the
relative errors for multiscale finite volume element method are presented. The relative errors are computed
as the corresponding error divided by the norm of the solution. In each table, the second, third, and fourth
columns list the relative error in L2, H1, and L∞ norm, respectively. As we can see from these two tables,
the oversampling significantly improves the accuracy of the multiscale method.

For our next example, we consider the problem with non-periodic coefficients, where aε(x, η) = kε(x)/(1+
η)αε(x). kε(x) = exp(βε(x)) is chosen such that βε(x) is a realization of a random field with the spherical
variogram [26] and with the correlation lengths lx = 0.2, ly = 0.02 and with the variance σ = 1. αε(x) is
chosen such that αε(x) = kε(x) + const with the spatial average of 2. As for the boundary conditions we use
“left-to-right flow” in Ω = [0, 5]×[0, 1] domain, uε = 1 at the inlet (x1 = 0), uε = 0 at the outlet (x1 = 5), and
no flow boundary conditions on the lateral sides x2 = 0 and x2 = 1. In Table 4.6 we present the relative error
for multiscale method with oversampling. Similarly, in Table 4.7 we present the relative error for multiscale
finite volume method with oversampling. Clearly, the oversampling method captures the effects induced by
the large correlation features. Both H1 and horizontal flux errors are under five percent. Similar results
have been observed for various kinds of non-periodic heterogeneities. In the next set of numerical examples,
we test MsFEM for problems with fluxes aε(x, η) that are discontinuous in space. The discontinuity in the
fluxes is introduced by multiplying the underlying permeability function, kε(x), by a constant in certain
regions, while leaving it unchanged in the rest of the domain. As an underlying permeability field, kε(x), we
choose the random field used for the results in Table 4.6. In the first set of examples, the discontinuities are
introduced along the boundaries of the coarse elements. In particular, kε(x) on the left half of the domain is
multiplied by a constant J , where J = exp(1), or exp(2), or exp(4). The results in Tables 4.8-4.10 show that
MsFEM converges and the error falls below five percent for relatively large coarsening. For the second set of
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examples (Tables 4.11-4.13), the discontinuities are not aligned with the boundaries of the coarse elements.
In particular, the discontinuity boundary is given by y = x

√
2 + 0.5, i.e., the discontinuity line intersects

the coarse grid blocks. Similar to the aligned case, various jump magnitudes are considered. These results
demonstrate the robustness of our approach for anisotropic fields where h and ε are nearly the same, and
the fluxes that are discontinuous spatial functions.

As for CPU comparisons, we have observed more than 92 percent CPU savings when using MsFEM with-
out oversampling. With the oversampling approach, the CPU savings depend on the size of the oversampled
domain. For example, if the oversampled domain size is two times larger than the target coarse block (half
coarse block extension on each side) we have observed 70 percent CPU savings for 64 × 64 and 80 percent
CPU savings for 128 × 128 coarse grid. In general, the computational cost will decrease if the oversampled
domain size is close to the target coarse block size, and this cost will be close to the cost of MsFEM with-
out oversampling. Conversely, the error decreases if the size of the oversampled domains increases. In the
numerical examples studied in our paper, we have observed the same errors for the oversampling methods
using either one coarse block extension or half coarse block extensions. The latter indicates that the leading
resonance error is eliminated by using a smaller oversampled domain. Oversampled domains with one coarse
block extension are previously used in simulations of flow through heterogeneous porous media. As it is
indicated in [50], one can use large oversampled domains for simultaneous computations of the several local
solutions. Moreover, parallel computations will improve the speed of the method because MsFEM is well
suited for parallel computation [50]. For the problems where aε(x, η, ξ) = aε(x)b(η)ξ (see section 4.2 and the
next section for applications) our multiscale computations are very fast because the base functions are built
in the beginning of the computations. In this case, we have observed more than 95 percent CPU savings.

Table 4.2. Relative MsFEM Errors without Oversampling

N
L2-norm H1-norm L∞-norm

Error Rate Error Rate Error Rate

32 0.029 0.115 0.03
64 0.053 -0.85 0.156 -0.44 0.0534 -0.94

128 0.10 -0.94 0.234 -0.59 0.10 -0.94

Table 4.3. Relative MsFVEM Errors without Oversampling

N
L2-norm H1-norm L∞-norm

Error Rate Error Rate Error Rate

32 0.03 0.13 0.04
64 0.05 -0.65 0.19 -0.60 0.05 -0.24

128 0.058 -0.19 0.25 -0.35 0.057 -0.19

Applications of MsFEM to Richards’ equation are presented in [36].

4.6 Generalizations of MsFEM and some remarks

Next, we present the framework of MsFEM for general equations. Consider

Lεuε = f, (4.35)

where ε is a small scale and Lε : X → Y is an operator. Moreover, we assume that Lε G-converges to L∗ (up
to a sub-sequence), where u is a solution of

L∗u = f, (4.36)
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Table 4.4. Relative MsFEM Errors with Oversampling

N
L2-norm H1-norm L∞-norm

Error Rate Error Rate Error Rate

32 0.0016 0.036 0.0029
64 0.0012 0.38 0.019 0.93 0.0016 0.92

128 0.0024 -0.96 0.0087 1.14 0.0026 -0.71

Table 4.5. Relative MsFVEM Errors with Oversampling

N
L2-norm H1-norm L∞-norm

Error Rate Error Rate Error Rate

32 0.002 0.038 0.005
64 0.003 -0.43 0.021 0.87 0.003 0.72

128 0.001 1.10 0.009 1.09 0.001 1.08

Table 4.6. Relative MsFEM Errors for random heterogeneities, spherical variogram, lx = 0.20, lz = 0.02, σ = 1.0

N
L2-norm H1-norm L∞-norm hor. flux

Error Rate Error Rate Error Rate Error Rate

32 0.0006 0.0505 0.0025 0.025
64 0.0002 1.58 0.029 0.8 0.001 1.32 0.017 0.57

128 0.0001 1 0.016 0.85 0.0005 1 0.011 0.62

Table 4.7. Relative MsFVEM Errors for random heterogeneities, spherical variogram, lx = 0.20, lz = 0.02, σ = 1.0

N
L2-norm H1-norm L∞-norm hor. flux

Error Rate Error Rate Error Rate Error Rate

32 0.0006 0.0515 0.0025 0.027
64 0.0002 1.58 0.029 0.81 0.0013 0.94 0.018 0.58

128 0.0001 1 0.016 0.85 0.0005 1.38 0.012 0.58

Table 4.8. Relative MsFEM Errors for random heterogeneities, spherical variogram, lx = 0.20, lz = 0.02, σ = 1.0,
aligned discontinuity, jump = exp(1)

N
L2-norm H1-norm L∞-norm hor. flux

Error Rate Error Rate Error Rate Error Rate

32 0.0006 0.0641 0.0020 0.039
64 0.0002 1.58 0.0382 0.75 0.0010 1.00 0.027 0.53

128 0.0001 1.00 0.0210 0.86 0.0005 1.00 0.018 0.59

Table 4.9. Relative MsFEM Errors for random heterogeneities, spherical variogram, lx = 0.20, lz = 0.02, σ = 1.0,
aligned discontinuity, jump = exp(2)

N
L2-norm H1-norm L∞-norm hor. flux

Error Rate Error Rate Error Rate Error Rate

32 0.0008 0.0817 0.0040 0.061
64 0.0004 1.00 0.0493 0.73 0.0023 0.80 0.041 0.57

128 0.0002 1.00 0.0256 0.95 0.0011 1.06 0.025 0.71
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Table 4.10. Relative MsFEM Errors for random heterogeneities, spherical variogram, lx = 0.20, lz = 0.02, σ = 1.0,
aligned discontinuity, jump = exp(4)

N
L2-norm H1-norm L∞-norm hor. flux

Error Rate Error Rate Error Rate Error Rate

32 0.0011 0.1010 0.0068 0.195
64 0.0006 0.87 0.0638 0.66 0.0045 0.59 0.109 0.84

128 0.0003 1.00 0.0349 0.87 0.0024 0.91 0.063 0.79

Table 4.11. Relative MsFEM Errors for random heterogeneities, spherical variogram, lx = 0.20, lz = 0.02, σ = 1.0,
nonaligned discontinuity, jump = exp(1)

N
L2-norm H1-norm L∞-norm hor. flux

Error Rate Error Rate Error Rate Error Rate

32 0.0006 0.0623 0.0023 0.035
64 0.0002 1.58 0.0366 0.77 0.0014 0.72 0.024 0.54

128 0.0001 1.00 0.0203 0.85 0.0006 1.22 0.016 0.59

Table 4.12. Relative MsFEM Errors for random heterogeneities, spherical variogram, lx = 0.20, lz = 0.02, σ = 1.0,
nonaligned discontinuity, jump = exp(2)

N
L2-norm H1-norm L∞-norm hor. flux

Error Rate Error Rate Error Rate Error Rate

32 0.0010 0.0785 0.0088 0.052
64 0.0003 1.74 0.0440 0.84 0.0052 0.76 0.031 0.75

128 0.0001 1.59 0.0239 0.88 0.0022 1.24 0.017 0.87

Table 4.13. Relative MsFEM Errors for random heterogeneities, spherical variogram, lx = 0.20, lz = 0.02, σ = 1.0,
nonaligned discontinuity, jump = exp(4)

N
L2-norm H1-norm L∞-norm hor. flux

Error Rate Error Rate Error Rate Error Rate

32 0.0067 0.1775 0.1000 0.164
64 0.0016 2.07 0.0758 1.23 0.0288 1.80 0.077 1.09

128 0.0009 0.83 0.0687 0.14 0.0423 -0.55 0.039 0.98

(we refer to [73], page 14 for the definition of G-convergence for operators). The objective of MsFEM is to
approximate u in Sh. Denote Sh a family of finite dimensional space such that it possesses an approximation
property (see [90], [74]) as before. Here h is a scale of computation and h� ε. For (4.35) multiscale mapping,
EMsFEM : Sh → V hε , will be defined as follows. For each element vh ∈ Sh, vε,h = EMsFEM vh is defined as

Lmapε vε,h = 0 in K, (4.37)

where Lmapε can be, in general, different from Lε and allows us to capture the effects of the small scales.
Moreover, the domains different from the target coarse block K can be used in the computations of the
local solutions. To solve (4.37) one needs to impose boundary and initial conditions. This issue needs to be
resolved on a case by case basis, and the main idea is to interpolate vh onto the underlying fine grid. Further,
we seek a solution of (4.35) in V hε as follows. Find uh ∈ Sh (consequently uε,h ∈ V hε ) such that

〈Lglobalε uε,h, vh〉 = 〈f, vh〉, ∀vh ∈ Sh, (4.38)

where 〈u, v〉 denotes the duality between X and Y , and Lglobalε can be, in general, different from Lε.
For example, for nonlinear elliptic equations we have Lεu = −divaε(x, u,∇u) + a0,ε(x, u,∇u), Lmapε u =
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divaε(x, η
u,∇u) in K, and Lglobalε = divaε(x, η

u,∇u) + a0,ε(x, η
u,∇u) in K. The convergence of MsFEM is

to show that uh → u and uε,h → uε, where uε,h = EMsFEMuh in appropriate space. The correct choices of
Lmapε and Lglobalε are the essential part of MsFEM and guarantees the convergence of the method.

In conclusion, we have presented a natural extension of MsFEM to nonlinear problems. This is accom-
plished by considering a multiscale map instead of the base functions that are considered in linear MsFEM
[50]. Our approaches share some common elements with recently introduced HMM [33], where macroscopic
and microscopic solvers are also needed. In general, the finding of “correct” macroscopic and microscopic
solvers is the main difficulty of the multiscale methods. Our approaches follow MsFEM and, consequently,
finite element methods constitute its main ingredient. The resonance errors, that arise in linear problems
also arise in nonlinear problems. Note that the resonance errors are the common feature of multiscale meth-
ods unless periodic problems are considered and the solutions of the local problems in an exact period are
used. To reduce the resonance errors we use oversampling technique and show that the error can be greatly
reduced by sampling from the larger domains. The multiscale map for MsFEM uses the solutions of the
local problems in the target coarse block. This way one can sample the heterogeneities of the coarse block.
If there is a scale separation and, in addition, some kind of periodicity, one can use the solutions of the
smaller size problems to approximate the multiscale map. Note that a potential disadvantage of periodicity
assumption is that the periodicity can act to disrupt large-scale connectivity features of the flow. For the
examples similar to the non-periodic ones considered in this paper, with the use of the smaller size problems
for approximating the solutions of the local problems, we have found very large errors (of order 50 percent).

5 Multiscale simulations of two-phase immiscible flow in adaptive coordinate

system

Previously, we discussed some applications of MsFEM to two-phase flows. In this section, we explore the use
of adaptive coordinate system in multiscale simulations of two-phase porous media flows. In particular, we
would like to present upscaling of transport equations and its coupling to MsFEM.

As we discussed earlier, the use of global information can improve the multiscale finite element method. In
particular, the solution of the pressure equation at initial time is used to construct the boundary conditions
for the basis functions. It is interesting to note that the multiscale finite element methods that employ a
limited global information reduces to standard multiscale finite element method in flow-based coordinate
system. This can be verified directly and the reason behind it is that we have already employed a limited
global information in flow-based coordinate system. To achieve high degree of speed-up in two-phase flow
computations, we also consider the upscaling of transport equation and its coupling to pressure equation.

We would like to derive an upscaled model for the transport equation. We will assume the velocity is
independent of time, λ(S) = 1, and restrict ourselves to the two-dimensional case. Then using the pressure-
streamline framework, one obtains

Sεt + vε0f(Sε)p = 0 (5.1)

S(p, ψ, t = 0) = S0,

where ε denotes the small scale, vε0 denotes the Jacobian of the transformation and is positive, and p denotes
the initial pressure. For simplicity, we assume k(x) = k(x)I and we have ∇ψ · ∇p = 0. For deriving upscaled
equations, we will first homogenize (5.1) along the streamlines, and then to homogenize across the streamlines.
The homogenization along the streamlines can be done following Bourgeat and Mikelic [16] or following Hou
and Xin [56] and E [32]. The latter uses two-scale convergence theory and we refer to [79] for the results
on homogenization of (5.1) using two-scale convergence theory. We note that the homogenization results of
Bourgeat and Mikelic is for general heterogeneities without an assumption on periodicity, and thus, is more
appropriate for problems considered in the paper. Following [16], the homogenization of (5.1) can be easily
derived (see Proposition 3.4 in [16]). Here, we briefly sketch the proof.

For ease of notations, we ignore the ψ dependence of vε0 and Sε, and treat ψ as a parameter. We consider

vε0(p) = v0(p,
p

ε
).
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Moreover, we assume that the domain is a unit interval. Then, for each ψ, it can be shown that Sε(p, ψ, t) →
S̃(p, ψ, t) in L1((0, 1) × (0, T )), where S̃ satisfies

S̃t + ṽ0f(S̃)p = 0, (5.2)

and where ṽ0 is harmonic average of vε0, i.e.,

1

vε0
→ 1

ṽ0
weak ∗ in L∞(0, 1).

The proof of this fact follows from Proposition 3.4. of [16].

Following [16] and assuming for simplicity
∫ 1

0
dη
vε0(η) =

∫ 1

0
dη
ṽ0(η) = 1, we introduce

dXε(p)

dp
= vε0(X

ε(p)),
dX0(p)

dp
= ṽ0(X

0(p)).

Then (Lemma 3.1 of [16]):
Xε → X0 in C[0, 1] as ε→ 0. (5.3)

Consequently,

∫ T

0

∫ 1

0

|Sε(p, τ) − S̃(p, τ)|dpdτ =

∫ T

0

∫ 1

0

|Sε(Xε(p), τ) − S̃(Xε(p), τ)|vε0(Xε(p))dpdτ ≤
∫ T

0

∫ 1

0

|Sε(Xε(p), τ) − S̃(X0(p), τ)|vε0(Xε(p))dpdτ+

∫ T

0

∫ 1

0

|S̃(Xε(p), τ) − S̃(X0(p), τ)|vε0(Xε(p))dpdτ ≤
∫ T

0

∫ 1

0

|Sε(Xε(p), τ) − S̃(X0(p), τ)|dpdτ +

∫ T

0

∫ 1

0

|S̃(Xε(p), τ) − S̃(X0(p), τ)|dpdτ

(5.4)

The first term on the right hand side of (5.4) converges to zero because Sε(Xε(p), τ) and S̃(X0(p), τ) satisfy
the same equation ut + f(u)p = 0, however, with the following initial conditions Sε(Xε(p), t = 0) = S0 ◦Xε,

S̃(X0(p), τ) = S0 ◦X0. Because of (5.3) and comparison principle

∫ T

0

∫ 1

0

|Sε(Xε(p), τ) − S̃(X0(p), τ)|dpdτ ≤ C

∫ 1

0

|S0 ◦Xε − S0 ◦X0|dp,

the first term converges to zero. The convergence of the second term for each ψ follows from the argument
in [16] (page 368) using Lebesgue’s dominated convergence theorem.

Next, we provide a convergence rate (see also [79]) of the fine saturation Sε to the homogenized limit S̃
as ε→ 0.

Theorem 51 Assume that vε0(p) is bounded uniformly

C−1 ≤ vε0(p,
p

ε
) ≤ D.

Denote by F (t, T ) the solution to St + f(S)T = 0. The solution S̃ of (5.2) converges to Sε (assuming initial
conditions that don’t depend on the fast scale) at a rate given by

‖Sε − S̃‖∞ ≤ Gε,

when F remains Lipschitz for all time, and

‖Sε − S̃‖n ≤ Gε1/n,

when F develops at most a finite number of discontinuities.
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Proof. First, we note that the velocity bound implies that C̃−1 ≤ ṽ0(p) ≤ D̃, uniformly in ψ, ζ. We transform
the equations for Sε (5.1) and S̃ (5.2) to the time of flight variable defined by

dT ε

dp = 1
vε0(p,ψ)

T ε(0) = 0
for Sε and

dT̃
dp = 1

ṽ(p,ψ,ψ
ε
)

T̃ (0) = 0
for S̃.

Both equations reduce to
St + f(S)T = 0.

The solution to this equation is F (t, T ). Since the initial condition does not depend on ε neither does
F . Then S = F (t, T ε(P,Ψ)), S̃ = F (t, T̃ (P,Ψ)). Using these expressions for the saturation we can obtain
the desired estimates by following the same steps as in the linear case. When F remains Lipschitz for
all times we can easily obtain a pointwise estimate in terms of the Lipschitz constant M ‖Sε − S̃‖∞ =
‖F (t, T ε) − F (t, T̃ )‖∞ ≤ M‖T ε − T̃‖∞ ≤ Gε. Otherwise we will need the time of flight bound that we
derived for the linear flux that reduces here to

|T ε(P ) − T̃ (P )| ≤ 2Cε. (5.5)

We will divide the domain in regions where F is Lipschitz with constantM in the second variable, denoted
by A2, and shock regions, denoted by A1, and estimate the difference of Sε and S̃ in each region separately.
To fix the notation, let that there be n discontinuities in F (t, ·) of magnitude less than ∆F , which does not
have to be small, at {T = Ti}i=1,...,n. We will denote the thin strips of width 2Cε around the discontinuities
with A1

A1 = {T such that |T − Ti| ≤ 2Cε, for some i = 1, . . . , n}
and with A2 its complement. We selected the width of the strip based on (5.5), so that for any point P , if
T ε(P ) /∈ A1, then T ε(P ) and T̃ (P ) are on the same side of any jump Ti. When T ε(P ) ∈ A2, F is Lipschitz
in the region between T ε and T̃ , and we can show

∫

A2
(Sε − S̃)2dpdψ =

∫

A2
(F (t, T ε) − F (t, T̃ ))2dpdψ ≤ M2‖T ε − T̃‖2

∞|T ε(A2)
−1|

≤ N2ε2|T ε(A2)
−1|,

where we used the time of flight bound (5.5). By |T ε(A2)
−1| we denoted the image of A2 under the inverse

of T ε(P ). Inside the strip A1, even though Sε and S̃ differ by an O(1) quantity we can use the smallness of
the area of the strip to make the L2 norm of their difference small

∫

A1
(Sε − S̃)2dpdψ =

∫

A2
(F (t, T ε) − F (t, T̃ ))2dpdψ ≤ (∆S +Nε)2|T ε(A1)

−1|
≤ (∆S +Nε)24CDnε.

We estimated the area |T ε(A1)
−1| by using the definition of A1 and the fact that the Jacobian of the

transformation T ε(P )−1 is vε0 and is bounded uniformly in p, ψ. Putting together the two estimates for
regions A1 and A2 we obtain ‖Sε− S̃‖2 ≤ Gε1/2. Estimates in terms of the other Lp norms follow similarly.

The homogenized operator given by (5.2) still contains variation of order ε through the fast variable ψ
ε ,

however there it does not contain any derivatives in that variable. Its dependence on ψ
ε is only parametric.

We can homogenize the dependence of the partially homogenized operator on ψ
ε and arrive at a homogenized

operator that is independent of the small scale. In the latter case, we will only obtain weak convergence
of the partially homogenized solution. When we homogenized along the streamlines, the resulting equation
was of hyperbolic type like the original equation. In a seminal and celebrated paper, Tartar [83] showed
that homogenization across streamlines leads to transport with the average velocity plus a time-dependent
diffusion term, referred to as macrodispersion, a physical phenomenon that was not present in the original
fine equation. In particular, if the velocity field does not depend on p inside the cells, that is, ṽ(ψ, ψε ), then

the homogenized solution, S̃, (weak∗ limit of S̃, which will be denoted by S), satisfies

St + ṽ0Sp =

∫ t

0

∫

Spp(p− λ(t− τ), ψ, τ)dµψ
ε
(λ)dτ. (5.6)
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Here, dνψ
ε

the Young measure associated with the sequence ṽ0(ψ, ·) and dµψ
ε

is a Young measure that

satisfies
(

∫ dνψ
ε

(λ)

s
2πiq + λ

)−1

=
s

2πiq
+ ṽ0 −

∫ dµψ
ε

(λ)

s
2πiq + λ

.

We have denoted by ṽ0 the weak limit of the velocity. This equation has no dependence on the small scale and
we consider it to be the full homogenization of the fine saturation equation. Efendiev and Popov [42] have
extended this method for the Riemann problem in the case of nonlinear flux. Note that the homogenization
across streamlines provides a weak limit of partially homogenized solution. Because the original solution S ε

strongly converges to partially homogenized solution for each ψ, it can be easily shown that Sε → S weakly.
We omit this proof here.

In numerical simulations, it is difficult to use (5.6) as a homogenized operator, and often a second order
approximation of this equation is used. These approximate equations can be also derived using perturbation
analysis. In particular, using the higher moments of the saturation and the velocity, one can model the
macrodispersion. In the context of two-phase flow this idea was introduced by Efendiev, Durlofsky, and Lee
[41], [40], Chen and Hou [22] and Hou et al., [49]. In our case, the computation of the macrodispersion is
much simpler because the transport equations have been already averaged along the streamlines, and thus
we will be applying perturbation technique to one dimensional problem.

We expand S̃, ṽ0 (following [41]) as an average over the cells in the pressure-streamline frame and the
corresponding fluctuations

S̃ = S(p, ψ, t) + S′(p, ψ, ζ, t)
ṽ0 = ṽ0(p, ψ, t) + ṽ′0(p, ψ, ζ, t).

(5.7)

We will derive the homogenized equation for f(S) = S. Averaging equations (5.2) with respect to ψ we find
an equation for the mean of the saturation

St + ṽ0Sp + ṽ′0S
′
p = 0.

An equation for the fluctuations is obtained by subtracting the above equation from (5.2)

S′
t + (ṽ0 − ṽ0)Sp + ṽ0S

′
p − ṽ′0S

′
p = 0.

Together, the equations for the saturation are

St + ṽ0Sp + ṽ′0S
′
p = 0 (5.8)

S′
t + ṽ′0Sp + ṽ0S

′
p − ṽ′0S

′
p = 0.

We can consider the second equation to be the auxiliary (cell) problem and the first equation to be the
upscaled equation. We note that the cell problem for a hyperbolic equation is O(1) whereas for an elliptic it
is O(ε). We can obtain an approximate numerical method by solving the cell problem only near the shock
region in space time, where the macrodispersion term is largest. In that case it is best to diagonalize these
equations by adding the first to the second one

St + ṽ0Sp = −ṽ′0(S̃p − Sp)

S̃t + ṽ0S̃p = 0.

Compared to (5.8), it has fewer forcing terms and no cross fluxes, which leads to a numerical method with
less numerical diffusion that is easier to implement .

5.1 Numerical Averaging across Streamlines

The derivation in the previous sections contained no approximation. In this section, we follow the same
idea as in the derivation to solve the equation for the fluctuations along the characteristics, but with the
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purpose of deriving an equation on the coarse grid. To achieve this, we will not perform analytical upscaling
in the sense of deriving a continuous upscaled equation as in the previous section. We will first discretize
the equation with a finite volume method in space and then upscaled the resulting equation. Our upscaled
equation will therefore be dependent on the numerical scheme.

We use the same definition for the average saturation and the fluctuations as in (5.7) and follow the same
steps until equation (5.8). We discretize the macrodispersion term in the equation for the average saturation

ṽ′0S
′
p =

ṽ′0S
′
i+1 − ṽ′0S

′
i

∆p
+O(∆p).

A superscript ·i refers to a discrete quantity defined at the center of the conservation cell. Instead of solving
the equation for the fluctuations on the fine characteristics as before, which would lead to a fine grid algorithm,
we solve it on the coarse characteristics defined by

dP

dt
= ṽ0, with P (p, 0) = p.

Compared to the equation that we obtained in the previous section for S ′, this equation for S′ has an extra
term, which appears second

S′ = −
∫ t

0

(

ṽ′0(P (p, τ), ψ)Sp(P (p, τ), ψ, τ) + ṽ′0(P (p, τ), ψ)S′
p(P (p, τ), ψ, τ) + ṽ′0S

′
p)
)

dτ.

The second term is second-order in fluctuating quantities, and we expect it to be smaller than the first term
so we neglect it. As before, we multiply by ṽ′0 and average over ψ to find

ṽ′0S
′ = −

∫ t

0

ṽ′0ṽ0(P (p, τ), ψ)Sp(P (p, τ), ψ, τ)dτ.

In this form at time t it is necessary to know information about the past saturation in (0, t) to compute
the future saturation. Following [41], it can be easily shown that Sp(P (p, τ) depends weakly on time, in
the sense that the difference between Sp(P (p, τ) and Sp(P (p, t) is of third-order in fluctuating quantities.
Therefore we can take Sp(P (p, τ) out of the time integral to find

ṽ′0S
′ = −

∫ t

0

ṽ′0ṽ
′
0(P (p, τ), ψ)dτSp.

The term inside the time integral is the covariance of the velocity field along each streamline. The macrodis-
persion in this form can be computed independent of the past saturation.

The nonlinearity of the flux function introduces an extra source of error in the approximation. We expand
f(S̃) near S (cf. [40]) and keep only the first term

S̃ = S(p, ψ, t) + S′(p, ψ, ζ, t)
ṽ0 = ṽ0(p, ψ, t) + ṽ′0(p, ψ, η, t)

f(S̃) = f(S) + fS(S)S′ +O(S′2)

f(S)p = fS(S)Sp + f(S)S′ + . . .

(5.9)

This approximation is not accurate near the shock because S ′ is not small near sharp fronts. The region
near the shock is important because the macrodispersion is large. Due to the dependence of the jump in
the saturation on the mobility we expect this approximation to be better for lower mobilities. Nevertheless
this approximation works well in practice. For more accuracy, it is also possible to retain more terms in the
Taylor expansion. We will show that in realistic examples these higher-order terms are not important in our
setting.
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Using these definitions we derive the following equations for the average saturation and the fluctuations
(see [79] for more details)

St + ṽ0f(S)p + ṽ′0(fS(S)S′)p = 0 (5.10)

S′
t + ṽ′0fS(S)Sp + ṽ0fS(S)S′

p − ṽ′0S
′
p = 0.

The macrodispersion is discretized as

ṽ′0(fS(S)S′)p =
ṽ′0fS(S)S′

i+1
− ṽ′0fS(S)S′

i

∆p
+O(∆p).

We solve the second equation on the coarse characteristics defined by

dP

dt
= ṽ0fS(S), with P (p, 0) = p

and form the terms that appear in the macrodispersion

ṽ′0fS(S)S′ = −
∫ t

0

ṽ′0fS(S)ṽ′0(P (p, τ), ψ)fS(S(P (p, τ), ψ, τ))Sp(P (p, τ), ψ, τ)dτ.

As before we have dropped terms that are second-order in fluctuating quantities. It can be shown (see [79])
that fS(S(P (p, τ), ψ, τ))Sp(P (p, τ), ψ, τ) does not vary significantly along the streamlines and it can be taken
out of the integration in time:

ṽ′0fS(S)S′ = −
∫ t

0

ṽ′0ṽ
′
0(P (p, τ), ψ)dτfS(S)2Sp. (5.11)

This expression is similar to the one obtained in the linear case, however the macrodispersion depends on
the past saturation through the equation for the coarse characteristics.

Even though the macrodispersion depends on the past saturation it is possible to compute it incrementally
as it is done in [40]. Given its value D(t) at time t we compute the values at t+∆t using the macrodispersion
at the previous time

D(t+ ∆t) =

∫ t+∆t

0

. . . dτ =

∫ t

0

. . . dτ +

∫ t+∆t

t

. . . dτ.

This is possible because in the derivation for the approximate expression for the macrodispersion we took
the terms that depend on S(τ) outside the time integration. The integrand, the average covariance of the
velocity field along the streamlines, needs to be computed only once at the beginning. Then updating the
macrodispersion takes O(n2) computations, as many as it takes to update S.

5.2 Numerical Results

In this section, we first show representative simulation results for λ(S) = 1 for flux functions f(S) = S and
nonlinear f(S) with viscosity ratio µo/µw = 5. For such setting, the pressure and saturation equations are
decoupled and we can investigate the accuracy of saturation upscaling independently from the pressure up-
scaling. At the end of the section we will present numerical results for two-phase flow. We consider two type
of permeability fields. The first type includes a permeability field generated using two-point geostatistics with
correlation lengths lx = 0.3, lz = 0.03 and σ2 = 1.5 (see Figure 5.1, left). The second type of permeability
fields correspond to a channelized system, and we consider two examples. The first example (middle figure of
Figure 5.1) is a synthetic channelized reservoir generated using both multi-point geostatistics (for the chan-
nels) and two-point geostatistics (for permeability distribution within each facies). The second channelized
system is one of the layers of the benchmark test (representing the North Sea reservoir), the SPE compar-
ative project [23] (upper Ness layers). These permeability fields are highly heterogeneous, channelized, and
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Fig. 5.1. Permeability fields used in the simulations. Left - permeability field with exponential variogram, middle -
synthetic channelized permeability field, right - layer 36 of SPE comparative project [23]

difficult to upscale. Because the permeability fields are highly heterogeneous, they are refined to 400 × 400
in order to obtain accurate comparisons.

Simulation results will be presented for saturation snapshots as well as the oil cut as a function of
pore volume injected (PVI). Note that the oil cut is also referred to as the fractional flow of oil. The oil
cut (or fractional flow) is defined as the fraction of oil in the produced fluid and is given by qo/qt, where
qt = qo + qw, with qo and qw being the flow rates of oil and water at the production edge of the model.
In particular, qw =

∫

∂Ωout
f(S)v · ndl, qt =

∫

∂Ωout
v · ndl, and qo = qt − qw, where ∂Ωout is the outer flow

boundary. We will use the notation Ω for total flow qt and F for fractional flow qo/qt in numerical results.

Pore volume injected, defined as PV I = 1
Vp

∫ t

0
qt(τ)dτ , with Vp being the total pore volume of the system,

provide a dimensionless time for the displacement.

When using multiscale finite element methods for two-phase flow, one can update the basis functions near
the sharp fronts. Indeed, sharp fronts modify the local heterogeneities and this can be taken into account
by re-solving the local equations, (3.34), for basis functions. If the saturation is smooth in the coarse block,
it can be approximated by its average in (3.34), and consequently, the basis functions do not needed to be
updated. It can be shown that this approximation yields first-order errors (in terms of coarse mesh size). In
our simulations, we have found only a slight improvement when the basis functions are updated, thus the
numerical results for the MsFVEM presented in this paper do not include the basis function update near
the sharp fronts. Since a pressure-streamline coordinate system is used the boundary conditions are given
by P = 1, S = 1 along the p = 1 edge and P = 0 along the p = 0 edge, and no flow boundary condition on
the rest of the boundaries.

For the upscaled saturation equation, which is a convection-diffusion equation, we need to observe an

extra CFL-like condition to obtain a stable numerical scheme ∆t ≤ ∆p2

2ν , where ν is the diffusivity. In our case

the diffusivity is
∫

cell

∫ t

0 ṽ
′
0(p(τ), ψ)ṽ′0(p, ψ)dτdψ. If the macrodispersion is large this can be a very restrictive

condition. To remedy this, we used an implicit discretization for the macrodispersion. This is straightforward
since the problem is one-dimensional. The resulting system was solved by a tridiagonal solver very fast. Since
the order of the highest derivative in the equation has increased, we require extra boundary conditions. For
the computation of the macrodispersion term, we impose no flux on both boundaries of the domain.

In the upscaled algorithm, a moving mesh is used to concentrate the points of computation near the
sharp front. Since the saturation equation is one dimensional in the pressure-streamline coordinates, the
implementation of the moving mesh is straightforward and efficient. For the details we refer to [79]. We
compare the saturation right before the breakthrough time so that the shock front is largest. For this
comparison we also average the fine saturation over the coarse blocks, since the upscaled model is defined
on a coarser grid. In Figures 5.2 5.3, we plot the saturation for linear and nonlinear (with µo/µw = 5) f(S).
As we see in both cases, we have very accurate representation of the saturation profile.

We proceed with a quantitative description of the error. We will distinguish between two sources of errors.
We will refer to the difference between the upscaled and the exact equation as the upscaling or modeling
error and to the difference between the solution of continuous upscaled equations and the solution to the
numerical scheme as the discretization error. We will refer to the difference between the solutions of the
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Fig. 5.2. Saturation snapshots for variogram based permeability field (top) and synthetic channelized permeability
field (bottom). Linear flux is used. Left figures represent the upscaled saturation plots and the right figures represent
the fine-scale saturation plots.

continuous fine equations and the numerical scheme of the upscaled equations as the total error. To separate
the upscaling error from the total error we will solve the upscaled equations on the fine grid, which is the
grid on which we solve to the fine equation. We will also solve them on the coarse grid to compute the total
error. The errors are computed in the p, ψ frame and are relative errors. We display the upscaling error
against the number of coarse cells for the computations of the previous section in Tables 5.14, 5.15, 5.16. As
we see from this table that upscaling using macrodispersion decreases the upscaling errors. We also see that
the effects of macrodispersion are more significant in the case of linear flux when the jump discontinuity in
the saturation profile is larger.

In Tables 5.17, 5.18, 5.19, we show the total error, that is, the modeling and discretization error when
we use a moving mesh to solve the saturation equation. It is interesting that the convergence of S̃ to S is
observed even though the upscaling error is larger than the numerical error of the fine solution, which is
0.02 for the linear flux and 0.002 for the nonlinear flux in the L1 norm, as mentioned before. The reason is
that the location of the moving mesh points was selected so that the points are as dense near the shock as
the fine solution using the parameter hmin. This was done to observe the upscaling error clearly and also
to have similar CFL constraints on the time step, which allows a clean comparison of computational times.
We compare the require CPU times in Table 5.20. We note that it took 26 units of time to interpolate one
quantity from the Cartesian to the pressure-streamline frame. The upscaled solutions were computed on a



56 Yalchin Efendiev and Thomas Y. Hou

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 5.3. Saturation snapshots for variogram based permeability field (top) and synthetic channelized permeability
field (bottom). Nonlinear flux is used. Left figures represent the upscaled saturation plots and the right figures
represent the fine-scale saturation plots.

Table 5.14. Upscaling error for permeability generated using two-point geostatistics

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0021 6.57 × 10−4 2.15 × 10−4 8.75 × 10−5

L1 error of S with macrodispersion 0.115 0.0696 0.0364 0.0135

L1 error of S fine without macrodispersion 0.1843 0.0997 0.0505 0.0191

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0023 8.05 × 10−4 2.89 × 10−4 1.29 × 10−4

L1 error of S with macrodispersion 0.116 0.0665 0.0433 0.0177

L1 error of S fine without macrodispersion 0.151 0.0805 0.0432 0.0186
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Table 5.15. Upscaling error for for synthetic channelized permeability field

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0222 0.0171 0.0122 0.0053

L1 error of S with macrodispersion 0.0819 0.0534 0.0333 0.0178

L1 error of S fine without macrodispersion 0.123 0.0834 0.0486 0.0209

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0147 0.0105 0.0075 0.0040

L1 error of S with macrodispersion 0.0842 0.0658 0.0371 0.0207

L1 error of S fine without macrodispersion 0.119 0.0744 0.0424 0.0214

Table 5.16. Upscaling error for SPE 10, layer 36

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0128 0.0093 0.0072 0.0042

L1 error of S with macrodispersion 0.0554 0.0435 0.0307 0.0176

L1 error of S fine without macrodispersion 0.123 0.0798 0.0484 0.0258

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0089 0.0064 0.0054 0.0033

L1 error of S with macrodispersion 0.0743 0.0538 0.0348 0.0189

L1 error of S fine without macrodispersion 0.0924 0.0602 0.0395 0.0202

25 × 25 grid and the fine solution was computed on a 400 × 400 grid so we expect the S computations to
be 256 times or more faster. The extra gain comes from a less restrictive CFL condition since we use an
averaged velocity. The computations in the Cartesian frame are much slower.

Table 5.17. Total error for permeability field generated using two-point geostatistics

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0021 6.57 × 10−4 2.15 × 10−4 8.75 × 10−5

L1 error of S̃ computed on coarse grid 0.0185 0.0062 0.0019 0.0015

L1 upscaling error of S 0.115 0.0696 0.0364 0.0135

L1 error of computed on coarse grid 0.139 0.0779 0.0390 0.0144

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0023 8.05 × 10−4 2.89 × 10−4 1.29 × 10−4

L1 error of S̃ computed on coarse grid 0.0268 0.0099 0.0027 9.38 × 10−4

L1 upscaling error of S 0.116 0.0665 0.0433 0.0177

L1 error of S computed on coarse grid 0.146 0.0797 0.0461 0.0184

The application of the proposed method to two-phase immiscible flow can be performed using the implicit
pressure and explicit saturation (IMPES) framework. This procedure consists of computing the velocity and
then using the velocity field in updating the saturation field. When updating the saturation field, we consider
the velocity field to be time independent and we can use our upscaling procedure at each IMPES time step.
First, we note that in the proposed method, the mapping is done between the current pressure-streamline
and initial pressure-streamline. This mapping is nearly the identity for the cases when µo > µw. In Figure
5.4, we plot the level sets of the pressure and streamfunction at time t = 0.4 in a Cartesian coordinate
system (left plot) and in the coordinate system of the initial pressure and streamline (right plot). Clearly,
the level sets are much smoother in initial pressure-streamline frame compared to Cartesian frame. This also
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Table 5.18. Total error for synthetic channelized permeability field

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0222 0.0171 0.0122 0.0053

L1 error of S̃ computed on coarse grid 0.0326 0.0161 0.0107 0.0113

L1 upscaling error of S 0.0819 0.0534 0.0333 0.0178

L1 error of S computed on coarse grid 0.135 0.0849 0.0477 0.0274

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0147 0.0105 0.0075 0.0040

L1 error of S̃ computed on coarse grid 0.0494 0.0295 0.0150 0.0130

L1 upscaling error of S 0.0842 0.0658 0.0371 0.0207

L1 error of S computed on coarse grid 0.17 0.11 0.0541 0.0303

Table 5.19. Total error for SPE10 layer 36

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0128 0.0093 0.0072 0.0042

L1 error of S̃ computed on coarse grid 0.023 0.0095 0.0069 0.0052

L1 upscaling error of S 0.0554 0.0435 0.0307 0.0176

L1 error of S computed on coarse grid 0.0683 0.052 0.0361 0.0205

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0089 0.0064 0.0054 0.0033

L1 error of S̃ computed on coarse grid 0.0338 0.0148 0.0074 0.0037

L1 upscaling error of S 0.0743 0.0538 0.0348 0.0189

L1 error of S computed on coarse grid 0.115 0.0720 0.0406 0.0204

Table 5.20. Computational cost

fine x.y fine p, ψ S̃ S

layered, linear flux 5648 257 9 1

layered, nonlinear flux 14543 945 28 4

percolation, linear flux 8812 552 12 1

percolation, nonlinear flux 23466 579 12 1

SPE10 36, linear flux 40586 1835 34 2

SPE10 36, nonlinear flux 118364 7644 25 2

explains the observed convergence of upscaling methods as we refined the coarse grid. In Figure 5.5, we plot
the saturation snapshots right before the breakthrough. In Figure 5.6, the fractional flow is plotted. Again,
the moving mesh algorithm is used to track the front separately. The convergence table is presented in Table
5.21. We see from this table that the errors decrease as first order which indicates that the pressure and
saturation is smooth functions of initial pressure and streamline.

6 Conclusions

In these lecture notes, we reviewed some of the recent advances in developing systematic multiscale methods
with particular emphasis on multiscale finite element methods and their applications to fluid flows in hetero-
geneous porous media. In particular, the local approaches and their convergence properties for various flow
problems are discussed. Moreover, improved subgrid capturing techniques through a judicious choice of local
boundary conditions or through oversampling techniques or through the use of limited global information
are reviewed. Other topics, such as homogenization, the sampling techniques in numerical homogenization,
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Fig. 5.4. Left: Pressure and streamline function at time t = 0.4 in Cartesian frame. Right: pressure and streamline
function at time t = 0.4 in initial pressure-streamline frame.
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Fig. 5.5. Left: Saturation plot obtained using coarse-scale model. Right: The fine-scale saturation plot. Both plots
are on coarse grid. Variogram based permeability field is used. µo/µw = 5.

Table 5.21. Convergence of the upscaling method for two-phase flow for variogram based permeability field

with S̃ 50x50 100x100 200x200

L2 pressure error at t =
3Tfinal

4
0.0014 0.007 0.004

L2 velocity error at t =
3Tfinal

4
0.0235 0.0137 0.0072

L1 saturation error t = Tfinal 0.0105 0.0052 0.0027

with S 50x50 100x100 200x200

L2 pressure error at t =
3Tfinal

4
0.0046 0.0021 0.0008

L2 velocity error at t =
3Tfinal

4
0.0530 0.0335 0.0246

L1 saturation error t = Tfinal 0.0546 0.0294 0.0134
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Fig. 5.6. Comparison of fractional flow for coarse- and fine-scale models. Variogram based permeability field is used.
µo/µw = 5.

and multiscale simulations of two-phase flows in heterogeneous porous media are also presented. Although
the results presented in this paper are encouraging, there is scope for further exploration. These include
the development and mathematical analysis of efficient numerical homogenization techniques for nonlin-
ear convection-diffusion equations with various Peclet numbers (e.g., convection dominated), inexpensive
approximations of multiscale basis functions, further exploration of accurate boundary conditions based
on local multiscale solutions, the use of limited global information for nonlinear problems, development of
adaptive criteria for multiscale basis functions (selection of coarse grid), applications of MsFEM to more
multi-phase/multi-component porous media flows, and etc.
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