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Active contour (snake)

The active contour (snake) approach for image segmentation
was introduced by Kass-Witkin-Terzopoulos (IJCV 1988).

An active contour is a 2-D parametric curve z(s) = (x(s), y(s)),
s ∈ [0, 1], that moves through the spatial domain Ω of an image
I(x, y) to minimize the following energy functional:

Esnake(z) =
∫ 1

0

1
2

(
α|zs(s)|2 + β|zss(s)|2

)
+ Eext(z(s)) ds.

α, β : parameters controlling the snake’s tension and rigidity
Eext : a given external function related to the image data

Active contour (snake)
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Image segmentation

(Top): Images of cardiac MRI, brain tumor, airplane, and hand
(Bottom): Deformation processes by the proposed AeGVF
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An evolution equation

To obtain a snake z(s) that at least locally minimizes Esnake, we
consider the associated Euler-Lagrange equation:

αzss(s)− βzssss(s)︸ ︷︷ ︸
Fint(z(s))

−∇zEext(z(s))︸ ︷︷ ︸
+ Fext(z(s))

= 0, 0 < s < 1.

The internal force Fint suppresses the stretching and bending of
the snake contour, while the external force Fext attracts it to the
desired image features such as the edges.

In practice, we treat the curve z as a function not only in variable
s but also in time t. Thus, we solve the evolution equation,

∂z
∂t

(s, t)− αzss(s, t) + βzssss(s, t) = −∇zEext(z(s, t)),︸ ︷︷ ︸
external force

for (s, t) ∈ (0, 1)× (0, T] to reach a steady-state solution for a
time T � 0, where we have to impose the initial contour
z(s, 0) = z0(s) for s ∈ [0, 1] with appropriate BCs.
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The external function Eext

If an image I(x, y) is a line drawing (black on white), the external
function can be chosen as one of

Eext(x, y) = I(x, y) in Ω,
Eext(x, y) = Gσ ∗ I(x, y) in Ω,

where Gσ is the two-dimensional Gaussian kernel with standard
deviation σ, and the symbol ∗ denotes the usual convolution.

If an image is a gray-level one and someone wants to seek step
edges, two popular external functions are given by

Eext(x, y) = −|∇I(x, y)|2 in Ω,

Eext(x, y) = −|∇(Gσ ∗ I(x, y))|2 in Ω.

Limitations: (i) limited capture range; (ii) poor convergence for
concavities.
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The gradient vector flow (GVF) model

In Xu-Prince (IEEE-TIP 1998), they defined the edge map by

f (x, y) := −Eext(x, y) in Ω,

whose value is larger near the desired features. Then consider
the minimization problem: Find V(x, y) = (u(x, y), v(x, y))> in a
suitable function space that minimizes the energy functional

E(u, v) =
∫∫

Ω
µ|∇V |2 + |∇f |2|V −∇f |2 dxdy,

where µ > 0 is a regularization parameter and

|∇V | = |(∇u,∇v)>| =
√

u2
x + u2

y + v2
x + v2

y.

Solution V of the minimization problem is called the gradient
vector flow (GVF) field, which will be applied to replace the term
−∇zEext to obtain a snake.
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IBVP for the associated Euler-Lagrange equation

Consider the associated Euler-Lagrange equation. Then the GVF
is obtained by solving the IBVP for a time T � 0 to reach a
steady-state solution:

∂V
∂t

= µ∇2V − |∇f |2(V −∇f ) in Ω× (0, T],

V(z, 0) = ∇f in Ω,

∇V · n = 0 on ∂Ω× (0, T],

where n denotes the unit outer normal vector to ∂Ω.

The GVF is almost equal to the external force V ≈ ∇f = −∇Eext
when |∇f | is sufficiently large (near the edges) and the diffusion
term will spread the forces to the regions far from the edges.

We may expect that the GVF has a wider capture range and can enter
concave regions.
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Limitations and some improved models

1 If an image has one of the following characteristics, then the
GVF snake generally exhibit a poor performance:

a weak edge and a strong edge are very close
the image has a narrow and deep concavity
a strong edge is near a missing edge
the image is corrupted by noise

2 We are going to introduce some improved models, including

generalized gradient vector flow (GGVF, 1998)
normal gradient vector flow (NGVF, 2007)
normally biased gradient vector flow (NBGVF, 2010)
adaptive diffusion flow (ADF, 2013)
advection-enhanced gradient vector flow (AeGVF)
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The generalized gradient vector flow (GGVF) model

This GGVF is obtained by solving the IBVP at time T � 0:
∂V
∂t

= g(|∇f |)∇2V − h(|∇f |)(V −∇f ) in Ω× (0, T],

V(z, 0) = ∇f in Ω,

∇V · n = 0 on ∂Ω× (0, T],

where g and h are spatially varying weighting functions.

When g(|∇f |) := µ and h(|∇f |) := |∇f |2, this model reduces to
the original GVF model.

We hope that the effect of diffusion only exists at locations far
from the edges to prevent the edges from being polluted too
much and that V ≈ ∇f as much as possible when it is near the
edges. In Xu-Prince (Signal Processing 1998), they suggested

g(|∇f |) := exp{−|∇f |/k},
h(|∇f |) := 1− g(|∇f |),

with a constant parameter k > 0.
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The normal gradient vector flow (NGVF) model

The NGVF is obtained by solving the IBVP at time T � 0 (Ning et al.,
PRL 2007):

∂V
∂t

= µVNN − |∇f |2(V −∇f ) in Ω× (0, T],

V(z, 0) = ∇f in Ω,

∇V · n = 0 on ∂Ω× (0, T].

The NGVF only employs the normal component VNN to generate the
force fields. The Laplacian diffusion can be locally decomposed as

∇2V = VTT + VNN,

where VTT = (uTT, vTT)
> and VNN = (uNN, vNN)

> denote the second
derivatives of V in the tangential direction T and normal direction N.

uTT =
u2

xuyy + u2
yuxx − 2uxuyuxy

|∇u|2 , uNN =
u2

xuxx + u2
yuyy + 2uxuyuxy

|∇u|2 .

It is an anisotropic method and the attractive forces on the bottom of
the concavities have more chances to be spread out to the entrance.
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The normally biased gradient vector flow (NBGVF) model

The NBGVF is obtained by solving the IBVP at time T � 0 (Wang et
al., IEEE-SPL 2010):

∂V
∂t

= µ
(
VTT + g(|∇f |)VNN

)
− |∇f |2(V −∇f ) in Ω× (0, T],

V(z, 0) = ∇f in Ω,

∇V · n = 0 on ∂Ω× (0, T],

where g(|∇f |) := exp{−(|∇f |/k)2} with parameter k > 0.

When |∇f | is large (i.e., near the edges), this model mainly
adopts the diffusion in the tangential direction which is
beneficial for preserving weak edges.

When |∇f | is getting small, the value of the bias is getting large
so that this model almost uses the Laplacian diffusion to carry
forces in homogeneous regions.
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An adaptive diffusion flow (ADF) model

The ADF is obtained by solving the IBVP at time T � 0 (Wu et al.,
CVIU 2013) (expected to possess the advantages of NGVF & NBGVF):

∂V
∂t

= g(|∇f |)
{

γ
∆∞V
|∇V |2 + (1− γ)∇ ·

( Φ′(|∇V |)
|Gσ ∗ ∇V |Gσ ∗ ∇V

)}
−h(|∇f |)

(
V −∇f

)
in Ω× (0, T],

V(z, 0) = ∇f in Ω, ∇V · n = 0 on ∂Ω× (0, T],

g, h are the same as those of GGVF, ∆∞ denotes infinity Laplacian,

Φ(|∇V |) =
1

p(|∇f |)

(√
1 + |Gσ ∗ ∇V |2

)p(|∇f |)
,

p(|∇f |) = 1 +
1

1 + |∇(Gσ ∗ f )| ,

γ =

{ (
1− f 2/(5k2)

)2 if (f 2/5) ≤ `2,
0 otherwise,

` = 1.4826
(
E(|∇f − E(|∇f |)|

)
,

with k > 0 a constant parameter and E(·) the mean value.
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Advection: an alternative to tangential diffusion

1 In image denoising, it is well known that the total variation (TV)
regularization model can suppress the variation caused by noise
without penalizing the edge gradient too much.

2 In our recent work, Hsieh-Shao-Yang (Signal Processing 2018), we
have introduced an adaptive TV regularizer as a controller to
improve the performance of the original TV regularizer:∫∫

Ω
α|∇w| dxdy,

where α := α(x, y) and w can be viewed as either component of
the vector field V = (u, v)>.

3 The associated functional derivative is given by

−∇ ·
( α

|∇w|∇w
)
= · · · = − 1

|∇w|

(
αwTT +∇α · ∇w

)
,

which reveals that both the terms αwTT and ∇α · ∇w are closely
related to the ability for preserving image edges.
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The advection-enhanced GVF (AeGVF) model

Taking α = f , the resulting advection term ∇f · ∇w can be
regarded as a better edge-preserving term than the tangential
diffusion term wTT, since it can not only increase the strength of
attractive forces to prevent the data fidelity from being
destroyed but also leave the homogeneous regions unaffected.

The AeGVF is obtained by solving the IBVP at time T � 0:

∂V
∂t

= g(|∇f |)VNN −
(
µcχΩ\Ec + µpχEp

)
∇f · ∇V

−h(|∇f |)
(
V −∇f

)
in Ω× (0, T],

V(z, 0) = ∇f in Ω,

∇V · n = 0 on ∂Ω× (0, T],

where g(|∇f |) := exp{−(|∇f |/k)2}, h(|∇f |) := 1− g(|∇f |), µc
and µp are two nonnegative parameters, χA is the characteristic
function of set A, Ec and Ep denote the sets of corner points and
endpoints of boundary curves in the image, respectively.
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Numerical implementation of snake models

1 We use the explicit forward Euler difference scheme in time and
the centered difference scheme in space, so the models with the
weighting function g must satisfy the stability condition
(Xu-Prince, Signal Processing 1998),

∆t ≤ ∆x∆y
4gmax

,

2 Following the idea that the filter Gσ can helpfully suppress the
influence of noise, we therefore use Gσ ∗ V instead of V in each
time step for all improved GVF models, where σ depends on the
noise level of an image.
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Missing edge recovery #1

(a) initialization (b) edge map

(c) GGVF (d) NGVF (e) NBGVF (f) ADF (g) AeGVF
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Missing edge recovery #2

(a) initialization (b) edge map

(c) GGVF (d) NGVF (e) NBGVF (f) ADF (g) AeGVF
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Convergence to long and thin indentations #1

(a) initialization (b) edge map

(c) GGVF (d) NGVF (e) NBGVF (f) ADF (g) AeGVF
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Convergence to long and thin indentations #2

(a) initialization (b) initialization

(c) ADF-550 (d) AeGVF-450 (e) ADF-800 (f) AeGVF-500
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Preventing weak-edge leakage #1

(a) initialization (b) initialization

(c) GGVF (d) NGVF (e) NBGVF (f) ADF (g) AeGVF
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Preventing weak-edge leakage #2

(a) initialization (b) initialization

(c) GGVF (d) NGVF (e) NBGVF (f) ADF (g) AeGVF
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Testing on noisy images

(a) salt-and-pepper (b) speckle (c) Gaussian

(d) GGVF (e) NGVF (f) NBGVF (g) ADF (h) AeGVF
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Image segmentation of some real images

(T): Images of cardiac MRI, brain tumor, airplane, and hand
(B): Deformation processes by the proposed AeGVF
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Image segmentation of some real images (cont’d)

(T): Human’s cardiac CT, human’s lung CT, brain CT, and ultrasound
(B): Deformation processes by the proposed AeGVF
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Summary and conclusions

1 We have proposed a new GVF model, called AeGVF, for the
active-contour image segmentation. This model is inspired by
the functional derivative of an adaptive TV regularizer
(Hsieh-Shao-Yang, Signal Processing 2018).

2 It is equipped with an advection term in solving the external
force field V . It has not been investigated before in the literature.

3 The AeGVF snake is able to recover missing edges, to converge
to a narrow and deep concavity, and to preserve weak edges.
Numerical results show that the AeGVF snake model seems
having much better segmentation quality than the others.

4 A rigorous qualitative analysis of AeGVF model should be very
interesting, and this deserves further study.
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Thank you for your attention!
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