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Fluid-structure interaction problem (流流流構構構耦耦耦合合合問問問題題題)

For computational fluid dynamics (CFD), the primary issues are
accuracy, computational efficiency, and the ability to handle
complex geometries.

A fluid-structure interaction (FSI) problem describes the coupled
dynamics of fluid mechanics and structure mechanics.

It usually requires the modeling of complex geometric structure
and moving boundaries. It is very challenging for conventional
body-fitted approach.

I will introduce a Cartesian grid based non-boundary conforming
approach, the direct-forcing immersed boundary projection methods.
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Time-dependent incompressible Navier-Stokes equations

Let Ω be an open bounded domain in Rd, d = 2 or 3, and let [0, T] be
the time interval. The time-dependent, incompressible Navier-Stokes
problem can be posed as: find u and p with

∫
Ω p = 0, so that

∂u
∂t
− ν∇2u + (u · ∇)u +∇p = f in Ω× (0, T],

∇ · u = 0 in Ω× (0, T],
u = ub on ∂Ω× [0, T],
u = u0 in Ω× {t = 0}.

u is the velocity field, p the pressure (divided by a constant
density ρ), ν the kinematic viscosity, f the density of body force.

By the divergence theorem, boundary velocity ub must satisfy∫
∂Ω

ub · n dA =
∫

Ω
∇ · u dV = 0, ∀ t ∈ [0, T].
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Time-discretization of the incompressible NS equations

First, we discretize the time variable of the Navier-Stokes problem,
with the spatial variable being left continuous. Consider the implicit
Euler time-discretization with explicit first-order approximation to
the nonlinear convection term:

un+1 − un

∆t
− ν∇2un+1 + (un · ∇)un +∇pn+1 = f n+1 in Ω,

∇ · un+1 = 0 in Ω,
un+1 = un+1

b on ∂Ω,

where ti := i∆t for i = 0, 1, · · · , ∆t > 0 is the time step length, and gn

denotes an approximate (or exact) value of g(tn) at the time level n.

It is highly inefficient in solving this coupled system of Stokes-like equations
directly. This is precisely the reason for proposing the projection approach to
decouple the computation of (un+1, pn+1).
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Helmholtz-Hodge decomposition

Let Ω be an open, bounded, connected, Lipschitz-continuous domain.
A vector field w ∈ L2(Ω) can be uniquely decomposed orthogonally as

w = u +∇ϕ, u ∈ H(div; Ω) and ϕ ∈ H1(Ω),

where u has zero divergence ∇ · u = 0 in Ω and u · n = 0 on ∂Ω.

gradient fields

vector fields that are 
divergence free and 
parallel to the boundary

∇ϕ w

u

Orthogonality:
∫

Ω u · ∇ϕ dV = 0 (L2-inner product)

The HHD describes the decomposition of a flow field w into its
divergence-free component u and curl-free component ∇ϕ.

A. J. Chorin and J. E. Marsden, A Mathematical Introduction to
Fluid Mechanics, 2nd Edition, Springer-Verlag, New York, 1990.
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Chorin projection scheme (Math. Comp. 1968/69)

Step 1: Solve for the intermediate velocity field u∗,
u∗ − un

∆t
− ν∇2u∗ + (un · ∇)un = f n+1 in Ω,

u∗ = un+1
b on ∂Ω.

Step 2: Determine un+1 and pn+1 by solving
un+1 − u∗

∆t
+∇pn+1 = 0 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = un+1

b · n on ∂Ω,

which is equivalent to solving the pressure-Poisson equation with the
homogeneous Neumann boundary condition:{

∇2pn+1 =
1

∆t
∇ · u∗ in Ω,

∇pn+1 · n = 0 on ∂Ω,

and then define the velocity field by un+1 = u∗ − ∆t∇pn+1.
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Remarks on Chorin’s first-order scheme

The second step is usually referred to as the projection step.

u∗ = un+1 + ∆t∇pn+1 = un+1 +∇(∆tpn+1).

This is indeed the standard HHD of u∗ when un+1
b = 0 on ∂Ω.

Summing all equations in Chorin’s projection scheme, we have

un+1 − un

∆t
− ν∇2u∗ + (un · ∇)un +∇pn+1 = f n+1 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = un+1

b · n on ∂Ω,

different from the original semi-implicit discretization. Since

un+1 = u∗ − ∆t∇pn+1 ≈ u∗ in Ω as ∆t→ 0+,

it is not surprising that we should expect

∇2un+1 ≈ ∇2u∗ in Ω and un+1 ≈ un+1
b on ∂Ω as ∆t→ 0+.
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Choi-Moin projection scheme (JCP 1994)

Step 1: Solve for the intermediate velocity field u∗,
ũ− un

∆t
− ν

2
∇2(ũ + un) + [(u · ∇)u]n+ 1

2 +∇pn− 1
2 = [f ]n+

1
2 in Ω,

ũ = un+1
b on ∂Ω;

u∗ − ũ
∆t

−∇pn− 1
2 = 0 in Ω.

Step 2: Determine un+1 and ϕn+1 by solving
un+1 − u∗

∆t
+∇ϕn+1 = 0 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = u∗ · n on ∂Ω.

It is equivalent to solving the ϕn+1-Neumann Poisson problem:{
∇2 ϕn+1 =

1
∆t
∇ · u∗ in Ω,

∇ϕn+1 · n = 0 on ∂Ω,
and then set un+1 = u∗ − ∆t∇ϕn+1.
Step 3: Update the pressure as pn+ 1

2 = ϕn+1 − ν

2
∇ · ũ.
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A fluid-solid interaction problem

A typical one-way coupling problem is flow over a stationary or
moving solid ball with a prescribed velocity. Let Ω be the fluid
domain which encloses a rigid body positioned at Ωs(t) with a
prescribed velocity us(t, x). The FSI problem with initial value and
no-slip boundary condition can be posed as follows:

∂u
∂t
− ν∇2u + (u · ∇)u +∇p = f in (Ω \Ωs)× (0, T],

∇ · u = 0 in (Ω \Ωs)× (0, T],
u = ub on ∂Ω× [0, T],
u = us on ∂Ωs × [0, T],
u = u0 in (Ω \Ωs)× {t = 0}.

Ω

Ωs(t) • us(t,x)
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The body-fitted approach

The body-fitted approach is a conventional method for solving the
FSI problem. For example, using the implicit Euler discretization at
time tn+1, we solve the linearization in the spatial domain Ω \Ωn+1

s

un+1 − un

∆t
− ν∇2un+1 + (un · ∇)un +∇pn+1 = f n+1 in Ω \Ωn+1

s ,

∇ · un+1 = 0 in Ω \Ωn+1
s ,

un+1 = un+1
b on ∂Ω,

un+1 = un+1
s on ∂Ωn+1

s .

Again, it is highly inefficient in solving these equations directly. Below, we
consider the direct-forcing immersed boundary projection approach.
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A direct-forcing approach: virtual force F

A virtual force term F is added to the momentum equation to
accommodate interaction between the solid and the fluid, and we
expect the problem can be solved on the whole domain Ω and do not
need to set the interior boundary condition us on the interface ∂Ωs:

∂u
∂t
− ν∇2u + (u · ∇)u +∇p = f + F in Ω× (0, T],

∇ · u = 0 in Ω× (0, T],
u = ub on ∂Ω× [0, T],
u = u0 in Ω× {t = 0}.

The virtual force F exists in the rigid body Ωs(t) which is treated as a
portion of the fluid but the virtual force enforces it to act like a solid body.
The virtual force will be specified in the time-discrete equations when we
apply the projection schemes to solve the time-discretization problem.

We first consider the first-order projection scheme of Chorin.
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A primitive direct-forcing IB projection method (Chorin)

The main idea was proposed by Kajishima et al. (JSME-B 2001) &
Noor-Chern-Horng (CM 2009).

Step 1: Solve the intermediate velocity field u∗,
u∗ − un

∆t
− ν∇2u∗ + (un · ∇)un = f n+1 in Ω,

u∗ = un+1
b on ∂Ω.

Step 2: Determine u∗∗ and pn+1 by solving
u∗∗ − u∗

∆t
+∇pn+1 = 0 in Ω,

∇ · u∗∗ = 0 in Ω,
u∗∗ · n = un+1

b · n on ∂Ω.
It is equivalent to solving the pn+1-Neumann Poisson problem:{

∇2pn+1 =
1

∆t
∇ · u∗ in Ω,

∇pn+1 · n = 0 on ∂Ω,

and set u∗∗ = u∗ − ∆t∇pn+1 =⇒ ∇ · u∗∗ = 0, u∗∗ · n = un+1
b · n
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A primitive direct-forcing IB projection method (Chorin)

Step 3: Define the virtual force Fn+1 and then determine the velocity
field un+1 by setting

un+1 − u∗∗

∆t
= Fn+1 := η

us − u∗∗

∆t
in Ω,

where η(x, tn+1) is defined by

η(x, tn+1) =

{
1 x ∈ Ωn+1

s ,
0 x 6∈ Ωn+1

s .
The virtual force Fn+1 exists on the whole solid body and zero
elsewhere. In other words, in this step, we simply set

un+1 =

{
u∗∗ in Ω \Ωn+1

s ,
us in Ωn+1

s .

We remark that η can be taken fractional on the boundary cells when we
consider the space-discretization.
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Inconsistency in the direct-forcing IB projection method

1 Although the direct-forcing IB projection method seems to
produce reasonable results for many fluid-solid interaction
problems, it violates our physical intuition!

2 It is not always convergent when the direct-forcing IB approach
combined with an arbitrary chosen projection scheme, e.g., the
scheme of Brown et al., unless the time step is very small.
The reason for this is because the velocity and pressure used in solving
the intermediate velocity field u∗ may be not consistent!

In what follows, we will propose a simple remedy to retrieve the
direct-forcing IB projection method.

We will use the idea of the prediction-correction approach to fit the
physical intuition and carefully choose a “good” projection scheme!
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A direct-forcing IB projection method with PC (Choi-Moin)

Prediction –

Step 1.1: Solve for the intermediate velocity field u∗,
ũ− un

∆t
− ν

2
∇2(ũ + un) + [(u · ∇)u]n+ 1

2 +∇pn− 1
2 = [f ]n+

1
2 in Ω,

ũ = un+1
b on ∂Ω;

u∗ − ũ
∆t

−∇pn− 1
2 = 0 in Ω.

Step 1.2: Determine u∗∗ and ϕn+1 by solving
u∗∗ − u∗

∆t
+∇ϕn+1 = 0 in Ω,

∇ · u∗∗ = 0 in Ω,
u∗∗ · n = u∗ · n on ∂Ω.

Step 1.3: Predict the virtual force F̃
n+ 1

2 by setting

un+1 − u∗∗

∆t
= F̃

n+ 1
2 := η

us − u∗∗

∆t
in Ω.
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A direct-forcing IB projection method with PC (Choi-Moin)

Correction –

Step 2.1: Solve for the intermediate velocity field u∗,
ũ− un

∆t
− ν

2
∇2(ũ + un) + [(u · ∇)u]n+ 1

2 +∇pn− 1
2 = [f ]n+

1
2 + F̃

n+ 1
2 in Ω,

ũ = un+1
b on ∂Ω;u∗ − ũ

∆t
−∇pn− 1

2 = 0 in Ω.

Step 2.2: Determine u∗∗ and correct ϕn+1 by solving
u∗∗ − u∗

∆t
+∇ϕn+1 = 0 in Ω,

∇ · u∗∗ = 0 in Ω,
u∗∗ · n = u∗ · n on ∂Ω.

Step 2.3: Correct the velocity un+1 and virtual force Fn+ 1
2 ,

un+1 − u∗∗

∆t
= η

us − u∗∗

∆t
in Ω, Fn+ 1

2 = F̃
n+ 1

2 + η
us − u∗∗

∆t
in Ωn+1

s .

Step 2.4: Update the pressure as pn+ 1
2 = ϕn+1 − ν

2
∇ · ũ.
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Space-discretization on a staggered grid

In the following numerical experiments, we employ the two-stage
direct-forcing IB projection method (based on Choi-Moin scheme)
and apply the second-order centered differences over a staggered
grid for space-discretization:

Diagram of the computational domain Ω with staggered grid,
where the unknowns u, v and p are approximated at the

grid points marked by→, ↑ and •, respectively

In all examples, the body force f are zero. The volume-of-solid function η is
fractional on the boundary cells.
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Example 1: two cylinders moving towards each other

Problem setting–

I A uniform grid 640× 320 is adopted to discretize the
computational domain is Ω = (−8, 24)× (−8, 8).

I ∆t = 1/200 (CFL number is 0.1).

I The Reynolds number is Re = 40.
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Example 1: two cylinders moving towards each other

I The motion of the lower and upper cylinders are governed by
setting the dynamics of their centers (xlc, ylc) and (xuc, yuc) to

xlc =

{ 4
π

sin
(πt

4

)
, 0 ≤ t ≤ 16,

t− 16, 16 ≤ t ≤ 32
and ylc = 0,

and

xuc =

{
16− 4

π
sin
(πt

4

)
, 0 ≤ t ≤ 16,

32− t, 16 ≤ t ≤ 32
and yuc = 1.5.
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Example 1: two cylinders moving towards each other

18 20 22 24 26 28 30 32

time

0.5

1

1.5

2

2.5

3
drag coefficients

present

Xu and Wang

18 20 22 24 26 28 30 32

time

-1

-0.5

0

0.5

1

1.5
lift coefficients

present

Xu and Wang

The time evolution of drag and lift coefficients, Cd and C`,
for the upper cylinder in the flow around two cylinders

compared with the results of Xu-Wang (JCP 2006)

Fd = −
∫

Ω
F1dx = −

∫
Ωs

F1dx ≈ −∑
xij

F1h2 and Cd =
Fd

U2
∞D/2

,

F` = −
∫

Ω
F2dx = −

∫
Ωs

F2dx ≈ −∑
xij

F2h2 and C` =
F`

U2
∞D/2

,
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Example 2: fish swimming

Problem setting–

I Reynolds number is defined as Re = U∞L/ν, where L is the
chord length of wavy foil. In this simulation, L = U∞ = 1 and
Re = 5000.

I Computational domain size is 6L× 2L, Ω = (−2, 4)× (−1, 1).

I ∆x = ∆y = 1/480, ∆t = 0.0002, CFL number is 0.096, and the
final time T = 20.

Please see some animations of the numerical simulations.
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The governing equations of freely falling solid body

Consider a 2-D solid object of constant density ρs positioned at Ωs
with centroid Xc, translational velocity uc and angular velocity ω.
The velocity of the solid object is given by

us(t, x) = uc(t) + ω(t)× r(t, x), r := x−Xc, ∀ x ∈ Ωs(t).

From Newton’s second law, we have
duc

dt

∫
Ωs

ρf dV =
∫

∂Ωs
σ · n dS +

∫
Ωs

ρf F dV +
∫

Ωs
ρf g dV,

If
dω

dt
=

∫
∂Ωs

r× (σ · n) dS +
∫

Ωs
ρf r× F dV,

where σ = −pI + 2µf ε(u) is the stress tensor of the fluid, ε(u) is the
rate of strain tensor, µf is the dynamic viscosity, n is the outward unit
normal vector on ∂Ωs, ρf is the density of fluid, g is the gravity,
If (=

∫
Ωs

ρf |r|2dV) is the rotational inertia for the fluid, and F is the
virtual force, which is chosen to ensure u = us on Ωs.
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From the viewpoint of solid body

The motion of solid object can also be described by translational and
angular momentum of the solid body. Thus, we have

duc

dt

∫
Ωs

ρs dV =
∫

∂Ωs
σ · ndS +

∫
Ωs

ρsg dV,

Is
dω

dt
=

∫
∂Ωs

r× (σ · n) dS,

where Is(=
∫

Ωs
ρs|r|2dV) is the rotational inertia for the solid object,

ρs is the density of solid. Since the virtual force F is chosen to make
these two systems are equivalent, so we have the following equations
of motion:

duc

dt

Ms−Mf︷ ︸︸ ︷∫
Ωs
(ρs − ρf ) dV =

(Ms−Mf )g︷ ︸︸ ︷∫
Ωs
(ρs − ρf )gdV−

∫
Ωs

ρf F dV,

(Is − If )
dω

dt
= −

∫
Ωs

ρf r× F dV.
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The two-way fluid-solid interaction problem

The fluid-solid interaction of the freely falling solid body with a
virtual force can be formulated as the following initial-boundary
value problem: find u, p, F, uc and ω with

∫
Ω p = 0 such that

∂u
∂t
− ν∇2u + (u · ∇)u +∇p = f + F t ∈ (0, T], x ∈ Ω,

∇ · u = 0 t ∈ (0, T], x ∈ Ω,
u = ub t ∈ (0, T], x ∈ ∂Ω,

u = u0 t = 0, x ∈ Ω,

u = us := uc + ω× r in Ωs,

(Ms −Mf )
duc

dt
= (Ms −Mf )g−

∫
Ωs

ρf FdV, uc(0) = uc0,

(Is − If )
dω

dt
= −

∫
Ωs

ρf r× FdV, ω(0) = ω0.
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Time-discretization of the equations of motion

At the time level tn+1, we compute the translational velocity and the
angular velocity, denoted by un+1

c and ωn+1, by considering

Ms
un+1

c − un
c

∆t
= (Ms −Mf )g−

∫
Ωn

s

ρf FndV + Mf
un

c − un−1
c

∆t
,

Is
ωn+1 −ωn

∆t
= −

∫
Ωn

s

ρf rn × FndV + If
ωn −ωn−1

∆t
.

Once un+1
c and ωn+1 are obtained, we compute the solid center and

rotational angle by taking

Xn+1
c −Xn

c
∆t

= un+1
c ,

θn+1 − θn

∆t
= ωn+1,

then update the solid domain Ωn+1
s and set the solid velocity by

un+1
s = un+1

c + ωn+1 × rn+1 with rn+1 = X −Xn+1
c .
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A two-stage direct-forcing IB projection method

Based on the time-discretization of the equations of motion, we
can design a two-stage direct-forcing IB projection method for
FSI problems without prescribed solid velocity.

In case where multiple bodies exist in fluid, a collision model is
generally needed to avoid particles overlapping, see next page.
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A simple collision model

Singh-Joseph-Hesla-Glowinski-Pan (潘從輝)
(JCP 2000) introduced an additional body force,
called repulsion force, arising in body-body or
body-wall collision:

Fij
co =


0, if dij > Ri + Rj + δ,

(X(i)
c −X(j)

c )

ε
(Ri + Rj + δ− dij)

2, otherwise,

where dij is the distance between the center of
the ith and jth particles and Ri and Rj are their
radius, respectively. The δ is the range within
which the repulsive force acts on both bodies, ε
is the smaill positive coefficient.

0 1 2
0

1

2

3

4

5

6

7

8
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Flow field visualization
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Time evolution of position
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time
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Present: h=1/256

Glowinski et al.: h=1/256

Glowinski et al.: h=1/384
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Please see some animations of the numerical simulations of freely falling
solid bodies in an incompressible viscous fluid.
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A new direct-forcing IB projection method

Step 1: Find Ωn+1
s and Fn+1 by the following algorithm

Set Xn+1,0
c = Xn

c , un+1,0
c = un

c , and Fn+1,0 = Fn. For k = 1, · · · , N

ûn+1,k
c = un+1,k−1

c +
∆t
N

g− (∆t/N)

Ms −Mf

∫
Ωs(Xn+1,k−1

c )
ρf Fn+1,k−1 dx,

X̂
n+1,k
c = Xn+1,k−1

c +
∆t
2N

(
ûn+1,k

c + un+1,k−1
c

)
,

un+1,k
c = un+1,k−1

c +
∆t
N

g− ∆t/N
2(Ms −Mf )

{ ∫
Ωs(X̂

n+1,k
c )

ρf
un+1,k

c − un

k∆t/N
− RHSn dx

+
∫

Ωs(X
n+1,k−1
c )

ρf Fn+1,k−1 dx

}

Xn+1,k
c = Xn+1,k−1

c +
∆t
2N

(
un+1,k

c + un+1,k−1
c

)
Fn+1,k =

un+1,k
c − un

k∆t/N
− RHSn

Define Xn+1
c = Xn+1,N

c , un+1
c = un+1,N

c and Fn+1 = Fn+1,N .
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A new direct-forcing IB projection method (cont’d)

Step 1: Solve for the intermediate velocity field u∗, 3ũ− 4un + un−1

2∆t
− ν∇2ũ + [(u · ∇)u]n+1 +∇pn = f n+1 + Fn+1 in Ω,

ũ = un+1
b on ∂Ω;

3u∗ − 3ũ
2∆t

−∇pn = 0 in Ω.

Step 2: Determine un+1 and ϕn+1 by solving
3un+1 − 3u∗

2∆t
+∇ϕn+1 = 0 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = u∗ · n on ∂Ω.

Step 3: Update the pressure as pn+1 = ϕn+1 − ν∇ · ũ.
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Problem setting of sedimentation of a circular body: ν = 0.1

The computational domain Ω = (0, 2)× (0, 6).

The diameter of the body is d = 0.25 and is located at (1, 4) at
time t = 0.

The fluid density is ρf = 1 and the disk density ρs = 1.25.

ν = 0.1, h = 1/256, and ∆t = 7.5× 10−4.
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Numerical results of sedimentation: ν = 0.1
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R. Glowinski, T. W. Pan, T. I. Hesla, D. D. Joseph, and J. Périaux,
A fictitious domain approach to the direct numerical simulation of
incompressible viscous flow past moving rigid bodies: application to
particulate flow, JCP, 169 (2001), pp. 363-426.
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Problem setting of sedimentation of a circular body: ν = 0.01

The computational domain Ω = (0, 2)× (0, 6).

The diameter of the body is d = 0.25 and is located at (1, 4) at
time t = 0.

The fluid density is ρf = 1 and the disk density ρs = 1.5.

ν = 0.01, h = 1/256, and ∆t = 7.5× 10−5.

35 / 38



Numerical results of sedimentation: ν = 0.01
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Concluding remarks

1 We have developed a successful two-stage direct-forcing IB
projection method for simulating the fluid-solid interaction
problems, where the immersed solid object can be moving with
a prescribed velocity.

2 Details of the above approach can be found in

T.-L. Horng, P.-W. Hsieh, S.-Y. Yang*, and C.-S. You,
A simple direct-forcing immersed boundary projection method
with prediction-correction for fluid-solid interaction problems,
Computers & Fluids, in press, 2018.

3 Further works are needed, including efficient extensions of the
method to solve the freely falling body in an incompressible
viscous fluid and the fluid-elastic body interaction problems.
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Thank you for your attention!
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