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a b s t r a c t 

In this paper, motivated by approximating the Euler-Lagrange equation of the p th-order regularization 

for 0 < p ≤ 1, we propose a new regularization model with adaptive diffusivity for variational image de- 

noising. The model is equipped with a regularization controller which is introduced to adaptively adjust 

the diffusivity from pixel to pixel according to the magnitude of image gradient. The associated energy 

functional is convex and thus the minimization problem can be efficiently solved using a modified split 

Bregman iterative scheme. A convergence analysis of the iterative scheme is established. Numerical exper- 

iments are performed to demonstrate the good performance of the proposed model. Comparisons with 

some other image denoising models are also made. 
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1. Introduction 

The study of image denoising has a rather long history, which

can be traced back to more than forty years ago. The goal is to

remove or reduce the noise, that corrupts a digital image, and to

make the features of image clearer and more discernible for im-

proving the quality and ability of human or machine vision iden-

tifications. Nowadays, denoising is still an attractive and challeng-

ing subject in image processing field. Denoising methods arising

from many different disciplines of mathematics and statistics have

been extensively studied, such as Wiener filters [2,18] , wavelet

shrinkage denoising [8,13,15,33] , Bayesian approaches [26,32] , level

set methods [25,27] , nonlinear isotropic and anisotropic diffusions

[5,21,29,37,38] , and total variation based methods [7,30,31,34] , just

to name a few. For more details, we refer the reader to a recent

review by Jain and Tyagi [19] , see also Lee et al. [20] , and many

references cited therein. 

In this paper, we will focus on the variational approach [1] for

image denoising, which seeks the desired image u defined in �, in

a suitable function space, as the minimizer of an energy functional
∗ Corresponding author. 
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omposed of a regularization term with a data fidelity term, 

in 

u 

{
E φ(u ) := 

∫ 
�

(
φ(|∇u | ) + 

λ

2 

(u − f ) 2 
)

dx 

}
, (1.1)

here f is the given noisy image degraded by, e.g., the Gaussian

hite noise, φ is a regularization function and | · | denotes the

sual � 2 -norm, and λ> 0 is a constant regularization parameter. A

reakthrough in this direction is the so-called total variation (TV)

egularization model [31] proposed by Rudin, Osher, and Fatemi

ROF) in 1992, where the regularizer is chosen as the L 1 norm

f the image gradient, i.e., φ(s ) = s in (1.1) . The search space of

he ROF model is the bounded variation space BV ( �), which in-

ludes piecewise smooth functions as the limit points of functions

n the Sobolev space W 

1,1 ( �), so that image features such as edges

r other sharp structures can be successfully preserved. 

Although the ROF model can suppress the variation caused by

oise without penalizing edge gradient too much, it may bring the

ndesirable staircasing effect [4] into the ramp regions; that is,

t replaces smooth transitions in the image with piecewise con-

tant regions, which is visually unpleasant to human eyes and may

e falsely identified as edges in computer vision related tasks. In

act, deriving the functional derivative of Eq. (1.1) and changing the

asis to the local normal direction N ( x ) := ∇ u /| ∇ u | and the local

angent direction T ( x ) := ∇ u ⊥ /| ∇ u |, we obtain the following Euler-
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agrange equation: 

φ′ (|∇u | ) 
|∇u | u T T + φ′′ (|∇u | ) u NN + λ( f − u ) = 0 in �, (1.2)

here u TT and u NN represent the second derivatives in the T and N

irections, respectively. For φ(s ) = s, we have φ′′ (s ) = 0 for all s ,

hich means that the diffusivity in the normal direction is always

ero. This is the main reason why TV model can preserve edges,

ut may cause staircases. A possible idea for overcoming the stair-

asing problem is to use higher-order regularizer at pixels of mod-

rate gradient (such as ramps). In [4] , Blomgren et al. proposed a

enoising model which minimizes the following adaptive energy

unctional, 

in 

u 

∫ 
�

(
|∇u | p(|∇u | ) + 

λ

2 

(u − f ) 2 
)

dx, (1.3)

here the exponent p is not a constant parameter but an adap-

ive function of | ∇u ( x )| which is used as a detector to distinguish

etween edges and ramps. A suitable exponent p can be designed

s a decreasing function from 2 to 1, which is large at ramps and

mall at edges. This means that the adaptive model behaves like

he TV model when | ∇u ( x )| is large and more and more like the

 

1 model when | ∇u ( x )| becomes small. In this direction, other de-

ectors have been proposed in [11,42] to replace the | ∇u ( x )| in p ( ·)
or better detection. 

In contrast to using higher-order regularization model such as

(s ) = s p in (1.1) for constant parameter 1 < p ≤ 2 to eliminate the

taircasing effect, lower-order model for 0 < p < 1 was shown more

ffective than TV ( p = 1 ) for preserving edges [9,23,41] . The idea

s similar to using � p regularization with 0 < p < 1 to enhance the

parsity of the basis pursuit based � 1 regularization in the com-

ressed sensing community [10] . Here, instead of transforming im-

ges to wavelet domain, the sparsity is considered directly on the

mage gradient. To overcome the NP-hard nature of the L 0 min-

mization, the convex relaxation ( L 1 minimization) is often used,

hich is exactly the TV minimization. Although the L p minimiza-

ion with 0 < p < 1 can further promote the sparsity of image gra-

ient than TV, the main difficulty lies in that L p problem with

 < p < 1 is itself non-convex. Computationally, some iteratively re-

eighted type algorithm [12] should be employed for 0 < p < 1

uch that the original non-convex problem can be approximated

y a series of convex ones. 

In this paper, we will develop a new denoising model

ith adaptive diffusivity. Motivated by approximating the Euler-

agrange equation of the p th-order model for 0 < p ≤ 1, the pro-

osed regularization model relaxes the p th-order model to a q -

rder one, with q = 1 or 2, through a regularization controller

hich is introduced to adaptively adjust the diffusivity from pixel

o pixel according to the magnitude of image gradient. One of the

ost advantageous features of the developed model is that the as-

ociated energy functional is always convex and thus we can de-

elop a simple fast algorithm based on the split Bregman itera-

ion [16] to accelerate the computation. In this paper, a standard

onvergence analysis of the iterative scheme will be given. More-

ver, we will present some numerical examples to demonstrate the

ood performance of the newly proposed model. Comparisons with

everal other image denoising models are also carried out by con-

idering the ROF model [31] implemented by the split Bregman

ethod [16] , the variants [28,40] of the Lysaker–Osher–Tai (LOT)

odel [24] , the total generalized variation (TGV) model [6] im-

lemented by the fast Fourier transform [35] , the block-matching

nd 3D filtering (BM3D) approach [14] , and the nonlocal diffusion

NLD) approach [17] , where the LOT and TGV models mainly fo-

us on reducing the staircasing problem and both the BM3D and

LD approaches process images non-locally. Indeed, we find that

he newly proposed model is comparable to the above-mentioned
ethods for restoring natural images and it seems to be better

han the others in denoising synthetic images. 

The remainder of this paper is organized as follows. In

ection 2 , we introduce the new denoising model with an adap-

ive controller. In Section 3 , we show that this regularization

odel can be solved efficiently by a modified split Bregman it-

rative scheme. In Section 4 , we give a convergence analysis of

he iteration scheme. Numerical experiments are performed in

ection 5 to illustrate the good performance of the newly proposed

egularization model. Finally, some concluding remarks are given

n Section 6 . 

. The regularization model with an adaptive controller 

In this paper, we consider the following regularization model

or variational image denoising: 

in 

u 

{
E p,q (u ) := 

∫ 
�

(
αp,q 

q 
|∇u | q + 

λ

2 

(u − f ) 2 
)

dx 

}
, (2.1) 

here u and f are the recovered and noisy images, respectively;

 = 1 or 2 and αp,q = αp,q (|∇u ∗(x ) | ) > 0 is a spatially variable

ontroller depending on the given quantity | ∇u ∗( x )| that will be

efined later; the notion | · | is always considered as the � 2 norm;

 is a parameter with 0 < p ≤ 1 which should be specified in the

ontroller αp , q ; λ> 0 is a constant regularization parameter. We

emark that | ∇u ∗( x )| is considered as a quantity that approximates

he magnitude of the gradient of the original image at x . 

In this section, we first consider q = 2 (see Remark 2.2 below

or q = 1 ) that makes the energy functional E p , q ( u ) in (2.1) always

 convex functional in u (see Section 4 ) and the corresponding d -

ubproblem in the split Bregman-type iteration has a closed-form

olution (see Section 3 ). Our goal is to design an effective regular-

zation controller αp ,2 which has the adaptive capability to adjust

he diffusivity from pixel to pixel according to the magnitude of

mage gradient. First, note that the Euler-Lagrange equation associ-

ted with (2.1) can be derived as follows: 

iv 
(
αp, 2 ∇u 

)
+ λ( f − u ) = 0 in �. (2.2)

rom another perspective, in order to keep the edge-preserving

roperty, in general we should consider the lower-order energy

unctional with 0 < p ≤ 1: 

 p (u ) := 

∫ 
�

(
1 

p 
|∇u | p + 

λ

2 

(u − f ) 2 
)
. (2.3)

ven though (2.3) is non-convex when 0 < p < 1, the Euler-Lagrange

quation of (2.3) is still given by 

iv 
(|∇ u | p−2 ∇ u 

)
+ λ( f − u ) = 0 in �. (2.4)

s a result, in comparison with (2.2) , Eq. (2.4) suggests us to define

he adaptive diffusivity αp ,2 in (2.1) with q = 2 as 

p, 2 (|∇u 

∗(x ) | ) := 

{|∇u 

∗(x ) | p−2 if |∇u 

∗(x ) | � = 0 , 

ε −1 if |∇u 

∗(x ) | = 0 , 
(2.5)

here 0 < p ≤ 1 and ε > 0 is a prescribed small number. 

Intuitively, we may expect that the model (2.1) for q = 2 and

 < p ≤ 1 with the adaptive diffusivity (2.5) will effectively preserve

dges just like the lower-order regularization model (2.3) with

 < p ≤ 1. Indeed, we will show that this novel regularization model

xhibits a high adaptive capability for image denoising in the fol-

owing sections. 

emark 2.1. For the image pixels where | ∇u ∗( x )| ≈ 0, the model

2.1) for q = 2 and 0 < p ≤ 1 with the adaptive diffusivity (2.5) has

xtra smoothing effect since αp ,2 is large. Therefore, the newly pro-

osed model not only inherits the advantages of edge-preserving

odels, but also exhibits the smoothness of H 

1 model to alleviate
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the staircasing effect. This observation will be confirmed by the

numerical studies in Section 5 . 

Remark 2.2. For the case q = 1 and 0 < p ≤ 1, following the similar

process described above, we obtain the adaptive controller αp ,1 , 

αp, 1 (|∇u 

∗(x ) | ) := 

{|∇u 

∗(x ) | p−1 if |∇u 

∗(x ) | � = 0 , 

ε −1 if |∇u 

∗(x ) | = 0 . 
(2.6)

In this case, the minimization problem, 

min 

u 

{
E p, 1 (u ) := 

∫ 
�

(
αp, 1 |∇u | + 

λ

2 

(u − f ) 2 
)

dx 

}
, (2.7)

is similar to the TV model except the adaptive diffusion coefficient

αp , 1 (| ∇u ∗( x )|). Since the regularization term will not penalize the

edge too much, we believe that the model (2.7) with (2.6) can deal

with more complicated boundary geometry such as snowflakes

whose small-scale features of the edges can not be preserved eas-

ily. However, the staircasing effect will probably be strengthened

such that the model (2.7) with (2.6) seems not suitable for denois-

ing natural images. 

Remark 2.3. For the general p th-order regularization model asso-

ciated with the energy functional (2.3) , one may design an adap-

tive exponent p = p(|∇u ∗| ) ∈ [1 , 2] for adaptive smoothing, that

is, using p near 1 to preserve edges and using p near 2 to smooth

flat regions. However, this adaptive regularization model cannot be

implemented easily by the split Bregman algorithm just like TV

model. In such case, the d -subproblem in the split Bregman iter-

ation is very time-consuming, since the solution formula at each

pixel is not the same such that one cannot solve it in the vector

sense and the roots of high-order polynomials should be solved

numerically for 1 < p < 2. In contrast, the newly proposed model

(2.1) can also integrate the adaptive regularization model into the

unified format and the corresponding d -subproblem can be solved

very efficiently (see Section 3 ). 

3. A split Bregman-type iterative scheme 

In this section, we will show that the newly proposed model

(2.1) can be solved numerically by a split Bregman-type iteration

[16] . We remark that the main purpose of designing such a split

Bregman-type iteration is to introduce a unified approach to solve

the proposed model (2.1) for both q = 1 and q = 2 , even though

the case q = 2 could be solved in another way due to the better

differentiability. 

Below we focus on describing the algorithmic details for the

case of q = 2 . The other case of q = 1 can be derived in a sim-

ilar way with a slight modification. Without loss of generality,

grayscale images are considered as N × N matrices. Introducing the

discrete gradient operator as (∇u ) i, j = ((∇ 

+ 
x u ) i, j , (∇ 

+ 
y u ) i, j ) , 

(∇ 

+ 
x u ) i, j := 

{
u i, j+1 − u i, j , 1 ≤ j ≤ N − 1 , 

0 , j = N, 

(∇ 

+ 
y u ) i, j := 

{
u i +1 , j − u i, j , 1 ≤ i ≤ N − 1 , 

0 , i = N, 

we discretize the model (2.1) for q = 2 and 0 < p ≤ 1 as 

min 

u 

{ 

E p, 2 (u ) := 

∑ 

i, j 

(αp, 2 ,i, j 

2 

| (∇u ) i, j | 2 + 

λ

2 

(u i, j − f i, j ) 
2 
)} 

. (3.1)

Applying the operator splitting technique to (3.1) , we obtain the

equivalent minimization problem, 
min 

u,d 

{ 

E p, 2 (u, d) := 

∑ 

i, j 

(αp, 2 ,i, j 

2 

| d i, j | 2 + 

λ

2 

(u i, j − f i, j ) 
2 
)} 

subject to d = ∇u. (3.2)

he splitted problem (3.2) can be solved by using the Bregman it-

ration. Introducing a penalty parameter γ > 0, we arrive at the

ollowing unconstrained minimization problem: 

min 

u,d 

{ 

E p, 2 (u, d) := 

∑ 

i, j 

(αp, 2 ,i, j 

2 

∣∣d i, j 

∣∣2 + 

λ

2 

(u i, j − f i, j ) 
2 

+ 

γ

2 

∣∣(∇u ) i, j − d i, j − b i, j 

∣∣2 
)} 

, (3.3)

here b is a variable related to the Bregman iteration algorithm.

urthermore, (3.3) can be solved by alternating the search direc-

ions of u and d as follows: 

• u -subproblem: 

 

n +1 = arg min 

u 

{ ∑ 

i, j 

(
λ

2 

(u i, j − f i, j ) 
2 + 

γ

2 

∣∣(∇u ) i, j − d n i, j − b n i, j 

∣∣2 
)} 

;

(3.4)

• d -subproblem: 

 

n +1 = arg min 

d 

{ ∑ 

i, j 

(αp, 2 ,i, j 

2 

∣∣d i, j 

∣∣2 

+ 

γ

2 

∣∣(∇u 

n +1 ) i, j − d i, j − b n i, j 

∣∣2 
)} 

, (3.5)

where b n := b n −1 + d n − ∇u n . 

Next we give more details about these two subproblems. For

he u -subproblem, differentiating the objective function given in

3.4) and then setting it to zero, we obtain the discrete screened

oisson equation: 

u 

n +1 
i, j 

− γ (	u 

n +1 ) i, j = λ f i, j − γ ( div (d n + b n )) i, j , (3.6)

hich is commonly seen in the standard split Bregman iteration.

he discrete operators div and 	 with Neumann boundary con-

itions are defined as follows [39] : given g = (g 1 , g 2 ) with g 1 ,

 

2 ∈ R 

N×N , we define 

( div g) i, j := (∇ 

−
x g 

1 ) i, j + (∇ 

−
y g 

2 ) i, j := (g 1 i, j − g 1 i, j−1 ) + (g 2 i, j − g 2 i −1 , j ) ,

here ∇ 

−
x and ∇ 

−
y are backward difference operators with Neu-

ann boundary conditions g 1 
i, 0 

= g 1 
i, 1 

and g 2 
0 , j 

= g 2 
1 , j 

. The dis-

rete Laplacian is then defined as the composite of ∇ and div as

u = div (∇u ) . Since (3.6) produces a symmetric and diagonally

ominant linear system, some iterative solvers such as Jacobi or

auss–Seidel method can be applied for efficiently solving u . 

For the d -subproblem, the objective function given in (3.5) is

trictly convex and differentiable, thus d n +1 has the closed-form

olution, 

 

n +1 
i, j 

= 

γ

αp, 2 ,i, j + γ
(∇u 

n +1 − b n ) i, j . (3.7)

o sum up, the split Bregman-type algorithm can be summarized

s below: 

split Bregman-type algorithm for solving (2.1) with q = 2 and 

0 < p ≤ 1 initialize u = f, d = 0 , b = 0 

while ‖ u − u pre v ‖ 

2 
2 / ‖ u ‖ 

2 
2 > tol do ∣∣∣∣∣ solve the u − subproblem defined in (3.4) using (3.6) 

solve the d − subproblem defined in (3.5) using (3.7) 

b = b + d − ∇u 

(3.8)
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We give the following remark to complete this section. 

emark 3.1. The constant penalty parameter γ > 0 should not be

hosen extremely small nor large in order to ensure good conver-

ence rate and numerical stability. In addition, the solution in the

 -subproblem need not be too accurate, an approximate solution is

lmost good enough. In general, to speed up the computation, only

ne simple iteration of Jacobi or Gauss Seidel method is used. The

plit Bregman-type iteration will rectify the approximate solution

uickly. Therefore, based on this implementation viewpoint, we

an employ the gradient information | (∇u n +1 ) i, j | obtained from

he n + 1 step to approximate αp , q (|( ∇u ∗) i , j |) by simply setting 

p,q,i, j := 

{| (∇u 

n +1 ) i, j | p−q if | (∇u 

n +1 ) i, j | � = 0 , 

ε −1 if | (∇u 

n +1 ) i, j | = 0 . 
(3.9) 

oreover, letting ε → 0 + , the solution of d -subproblem can be

irectly written as follows: 

 

n +1 
i, j 

= 

γ | (∇u 

n +1 ) i, j | 2 −p 

1 + γ | (∇u 

(n +1 ) i, j | 2 −p 
(∇u 

n +1 − b n ) i, j for q = 2 , 

nd 

d n +1 
i, j 

= 

(∇u 

n +1 ) i, j − b n 
i, j 

| (∇u 

n +1 ) i, j − b n 
i, j 

| 
× max 

{ 

| (∇u 

n +1 ) i, j − b n i, j | − 1 

γ | (∇u 

n +1 ) i, j | 1 −p 
, 0 

} 

for q = 1 , 

here 0 < p ≤ 1. 

. Convergence analysis 

In this section, we will give a convergence analysis of the model

2.1) . We only consider the case q = 2 and 0 < p ≤ 1, but all the

esults still hold for q = 1 and 0 < p ≤ 1 with a slight modifica-

ion (cf. [39] ). First, the convexity of the energy functional E p ,2 ,

hich guarantees the existence of minimizer of the minimization

roblem (2.1) , can be proved directly. 

emma 4.1. The energy functional E p ,2 is convex. That is, for any u

nd v , we have 

 p, 2 

(
tu + (1 − t) v 

)
≤ tE p, 2 (u ) + (1 − t) E p, 2 (v ) ∀ 0 ≤ t ≤ 1 , 

here 

 p, 2 (u ) := 

∫ 
�

(
αp, 2 

2 

|∇u | 2 + 

λ

2 

(u − f ) 2 
)

dx, αp, 2 > 0 . (4.1)

roof. By a direct computation, we have 

E p, 2 

(
tu + (1 − t) v 

)
= 

∫ 
�

αp, 2 

2 

(
t 2 |∇u | 2 + 2 t(1 − t) ∇u · ∇v + (1 − t) 2 |∇v | 2 

)
+ 

λ

2 

(
t 2 (u − f ) 2 + (1 − t) 2 (v − f ) 2 + 2 t(1 − t)(u − f )(v − f ) 

)
dx, 

hich implies 

E p, 2 

(
tu + (1 − t) v 

)
≤

∫ 
�

αp, 2 

2 

(
t 2 |∇u | 2 + t(1 − t)(|∇u | 2 + |∇v | 2 ) + (1 − t) 2 |∇v | 2 

)
+ 

λ

2 

(
t 2 (u − f ) 2 + (1 − t) 2 (v − f ) 2 + t(1 − t) 

(
(u − f ) 2 + (v − f ) 2 

))
dx 

= 

∫ 
�

αp, 2 

2 

(
t|∇u | 2 + (1 − t) |∇v | 2 

)
+ 

λ

2 

(
t(u − f ) 2 + (1 − t)(v − f ) 2 

)
dx 

= tE p, 2 (u ) + (1 − t) E p, 2 (v ) . 

his completes the proof. �

Secondly, the uniqueness of minimizer can be ensured easily. 
emma 4.2. If u 1 and u 2 are two minimizers of problem (2.1) with

 = 2 and 0 < p ≤ 1, then we have u 1 = u 2 . 

roof. From the definition of the energy functional E p , 2 ( u ) in (4.1) ,

e have 

 p, 2 

(
u 1 + u 2 

2 

)
= 

∫ 
�

αp, 2 

2 

∣∣∣∇u 1 
2 

+ 

∇u 2 
2 

∣∣∣2 

+ 

λ

2 

(
u 1 − f 

2 
+ 

u 2 − f 

2 

)2 

dx 

≤
∫ 
�

αp, 2 

2 

( |∇u 1 | 2 
2 

+ 

|∇u 2 | 2 
2 

)
+ 

λ

2 

(
(u 1 − f ) 2 

2 
+ 

(u 2 − f ) 2 

2 
−

( (u 1 − f ) − (u 2 − f ) 

2 

)2 
)

dx 

= 

1 

2 
E p, 2 (u 1 ) + 

1 

2 
E p, 2 (u 2 ) −

∫ 
�

λ

2 

(
u 1 − u 2 

2 

)2 

dx 

= E p, 2 (u 1 ) −
∫ 
�

λ

2 

(
u 1 − u 2 

2 

)2 

dx. 

f u 1 � = u 2 , then the above equation gives a contradiction that u 1 is

ot a minimizer. �

The well-posedness of the discrete counterpart (3.1) can be

roved in a similar way. Next, we are going to show that the split

regman-type iterative scheme proposed in Section 3 will converge

o the solution of the discretized model (3.1) . We first give some

otations and definitions. Let U denote the Euclidean space R 

N×N 

and D := U × U . Define the usual inner products and norms on U

nd D , respectively, 

(u, v ) U = 

∑ 

i, j 

u i, j v i, j , ‖ u ‖ U = 

√ 

(u, u ) U , (4.2) 

(d, e ) D = 

2 ∑ 

k =1 

(d k , e k ) U , ‖ d ‖ D = 

√ 

(d , d ) D , (4.3) 

here d := ( d 1 , d 2 ) and e := ( e 1 , e 2 ). With these notations, problem
3.3) can be rewritten as 

in 
u,d 

{ 
E p, 2 (u, d ) := 

1 

2 
‖ √ 

αp, 2 d ‖ 2 D + 

λ

2 
‖ u − f‖ 2 U + 

γ

2 
‖∇u − d − b‖ 2 D 

} 
, (4.4)

or in an equivalent form, 

min 

u,d 

{ 

L p, 2 (u, d ) := 

1 

2 

‖ 

√ 

αp, 2 d ‖ 

2 
D + 

λ

2 

‖ u − f‖ 

2 
U + γ (b, d − ∇u ) D 

+ 

γ

2 

‖ d − ∇u ‖ 

2 
D 

} 

, (4.5) 

rovided we expand the last term in (4.4) and drop the constant

erm ‖ b‖ 2 
D 

. In order to convert problem (4.5) into a saddle-point

roblem, we claim the following lemma: 

emma 4.3. Assume that ( u , d ) is the solution of problem (4.5) . Then

e have 

1 

2 

‖ 

√ 

αp, 2 e ‖ 

2 
D −

1 

2 

‖ 

√ 

αp, 2 d‖ 

2 
D 

+ γ (b, e − d) D + γ (d − ∇u, e − d) D ≥ 0 , (4.6) 

λ

2 

‖ v − f‖ 

2 
U −

λ

2 

‖ u − f‖ 

2 
U + γ ( div b, v − u ) U 

+ γ ( div (d − ∇u ) , v − u ) U ≥ 0 , (4.7) 

or all (v , e ) ∈ U × D . 

roof. Given any e ∈ D , since L p, 2 (u, d) ≤ L p, 2 

(
u, d + t(e − d) 

)
for

ll 0 ≤ t ≤ 1, we have 

1 

2 

‖ 

√ 

αp, 2 

(
d + t(e − d ) 

)‖ 

2 
D −

1 

2 

‖ 

√ 

αp, 2 d ‖ 

2 
D + γ

(
b, t(e − d) 

)
D 

+ 

γ

2 

(
‖ d + t(e − d) − ∇u ‖ 

2 
D − ‖ d − ∇u ‖ 

2 
D 

)
≥ 0 , (4.8) 
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or equivalently, 

1 

2 

‖ 

√ 

αp, 2 

(
te + (1 − t) d 

)‖ 

2 
D −

1 

2 

‖ 

√ 

αp, 2 d‖ 

2 
D + γ

(
b, t(e − d) 

)
D 

+ 

γ

2 

(
‖ t(e − d) ‖ 

2 
D + 2 

(
t(e − d) , d − ∇u 

)
D 

)
≥ 0 . (4.9)

Using the convexity of the norm ‖ · ‖ D , i.e., 

1 

2 

‖ 

√ 

αp, 2 

(
te + (1 − t) d 

)‖ 

2 
D ≤

t 

2 

‖ 

√ 

αp, 2 e ‖ 

2 
D + 

1 − t 

2 

‖ 

√ 

αp, 2 d‖ 

2 
D , 

(4.10)

or equivalently, 

 

 

‖ 

√ 

αp, 2 

(
te + (1 − t) d 

)‖ 

2 
D −

1 

2 

‖ 

√ 

αp, 2 d‖ 

2 
D 

≤ t 

2 

(
‖ 

√ 

αp, 2 e ‖ 

2 
D − ‖ 

√ 

αp, 2 d‖ 

2 
D 

)
, (4.11)

we obtain 

t 

2 

(
‖ 

√ 

αp, 2 e ‖ 

2 
D − ‖ 

√ 

αp, 2 d ‖ 

2 
D 

)
+ γ

(
b, t(e − d ) 

)
D 

+ 

γ

2 

(
‖ t(e − d) ‖ 

2 
D + 2 

(
t(e − d) , d − ∇u 

)
D 

)
≥ 0 , (4.12)

or equivalently, 

1 

2 

(
‖ 

√ 

αp, 2 e ‖ 

2 
D − ‖ 

√ 

αp, 2 d ‖ 

2 
D 

)
+ γ (b, e − d ) D 

+ 

γ

2 

(
‖ 

√ 

t (e − d) ‖ 

2 
D + 2(e − d, d − ∇u ) D 

)
≥ 0 . (4.13)

Taking t → 0 + , we have (4.6) . The inequality (4.7) can be proved

in a similar way. �

We remark that with the above Lemmas 4.1,4.2,4.3 and

Theorem 4.1 given in [39] , one can show that problem (4.5) is

equivalent to the following saddle-point problem: Find ( u , d ,

b ) ∈ U × D × D such that 

 L p, 2 (u, d, c) ≤ ˜ L p, 2 (u, d, b) ≤ ˜ L p, 2 (v , e, b) , (4.14)

for all (v , e, c) ∈ U × D × D, where the augmented Lagrangian func-

tional ̃  L p, 2 : U × D × D → R is defined by 

 L p, 2 (v , e, c) := 

1 

2 

‖ 

√ 

αp, 2 e ‖ 

2 
D + 

λ

2 

‖ v − f‖ 

2 
U + γ (c, e − ∇v ) D 

+ 

γ

2 

‖ e − ∇v ‖ 

2 
D . (4.15)

In the following theorem, we show that the sequence generated by

the proposed split Bregman-type algorithm (3.8) converges to the

solution of (4.14) . 

Theorem 4.1. Let ( u , d , b ) be the saddle point of the functional
 L p, 2 defined by (4.14) . Then the sequence ( u n , d n , b n ) generated by

(3.8) satisfies lim 

n →∞ 

u n = u and lim 

n →∞ 

d n = d. 

Proof. We follow the techniques given in [39] . Define ̃  u n := u n − u,˜ d n := d n − d, and ̃

 b n := b n − b, then we have ̃  b n +1 = ̃

 b n + ̃

 d n +1 −
∇ ̃

 u n +1 and 

‖ ̃

 b n ‖ 

2 
D − ‖ ̃

 b n +1 ‖ 

2 
D = −2( ̃  b n , ̃  d n +1 − ∇ ̃

 u 

n +1 ) D − ‖ ̃

 d n +1 − ∇ ̃

 u 

n +1 ‖ 

2 
D . 

(4.16)

From Lemma 4.3 , we have 

1 

2 

‖ 

√ 

αp, 2 d 
n +1 ‖ 

2 
D −

1 

2 

‖ 

√ 

αp, 2 d ‖ 

2 
D + γ (b, d n +1 − d ) D 

+ γ (d − ∇u, d n +1 − d) D ≥ 0 (4.17)

and 
λ

2 

‖ u 

n +1 − f‖ 

2 
U −

λ

2 

‖ u − f‖ 

2 
U + γ ( div b, u 

n +1 − u ) U 

+ γ
(
div (d − ∇u ) , u 

n +1 − u 

)
U 

≥ 0 . (4.18)

n the other hand, since (u n +1 , d n +1 ) is the minimizer at each

teration of (3.8) , we have 

1 

2 

‖ 

√ 

αp, 2 d‖ 

2 
D −

1 

2 

‖ 

√ 

αp, 2 d 
n +1 ‖ 

2 
D + γ (b n , d − d n +1 ) D 

+ γ (d n +1 − ∇u 

n +1 , d − d n +1 ) D ≥ 0 (4.19)

nd 

λ

2 

‖ u − f‖ 

2 
U −

λ

2 

‖ u 

n +1 − f‖ 

2 
U + γ ( div b n , u − u 

n +1 ) U 

+ γ
(
div (d n − ∇u 

n +1 ) , u − u 

n +1 
)

U 
≥ 0 . (4.20)

dding (4.17) –(4.20) together and using the integration by parts,

e obtain 

( ̃  b n , ̃  d n +1 − ∇ ̃

 u 

n +1 ) D + ‖ ̃

 d n +1 − ∇ ̃

 u 

n +1 ‖ 

2 
D 

+ (∇ ̃

 u 

n +1 , ̃  d n +1 − ˜ d n ) D ≤ 0 . (4.21)

t then follows from (4.16) and (4.21) that 

 ̃

 b n ‖ 

2 
D − ‖ ̃

 b n +1 ‖ 

2 
D ≥ ‖ ̃

 d n +1 − ∇ ̃

 u 

n +1 ‖ 

2 
D + 2(∇ ̃

 u 

n +1 , ̃  d n +1 − ˜ d n ) D . 

(4.22)

he inner product (∇ ̃

 u n +1 , ̃  d n +1 − ˜ d n ) D in (4.22) can be further

xpressed as 

(∇ ̃

 u 

n +1 , ̃  d n +1 − ˜ d n ) D = (∇ ̃

 u 

n +1 − ∇ ̃

 u 

n , ̃  d n +1 − ˜ d n ) D 

+(∇ ̃

 u 

n − ˜ d n , ̃  d n +1 − ˜ d n ) D 

+( ̃  d n , ̃  d n +1 − ˜ d n ) D . (4.23)

sing the construction of d n and d n +1 , it follows that 

1 

2 

‖ 

√ 

αp, 2 d 
n +1 ‖ 

2 
D −

1 

2 

‖ 

√ 

αp, 2 d 
n ‖ 

2 
D + γ (b n −1 , d n +1 − d n ) D 

+ γ (d n − ∇u 

n , d n +1 − d n ) D ≥ 0 (4.24)

nd 

1 

2 

‖ 

√ 

αp, 2 d 
n ‖ 

2 
D −

1 

2 

‖ 

√ 

αp, 2 d 
n +1 ‖ 

2 
D + γ (b n , d n − d n +1 ) D 

+ γ (d n +1 − ∇u 

n +1 , d n − d n +1 ) D ≥ 0 . (4.25)

dding (4.24) and (4.25) , we obtain 

‖ ̃

 d n +1 − ˜ d n ‖ 

2 
D + ( ̃  d n +1 − ˜ d n , ̃  b n −˜ b n −1 ) D 

−( ̃  d n +1 − ˜ d n , ∇ ̃

 u 

n +1 − ∇ ̃

 u 

n ) D ≤ 0 . (4.26)

eplacing ̃  b n −˜ b n −1 in (4.26) with 

˜ d n − ∇ ̃

 u n , we have 

( ̃  d n +1 − ˜ d n , ∇ ̃

 u 

n +1 − ∇ ̃

 u 

n ) D 

+( ̃  d n +1 − ˜ d n , ∇ ̃

 u 

n − ˜ d n ) D ≥ ‖ ̃

 d n +1 − ˜ d n ‖ 

2 
D . (4.27)

ombining (4.23), (4.27) , and the identity 

( ̃  d n , ̃  d n +1 − ˜ d n ) D = 

1 

2 

(‖ ̃

 d n +1 ‖ 

2 
D − ‖ ̃

 d n ‖ 

2 
D − ‖ ̃

 d n +1 − ˜ d n ‖ 

2 
D 

)
ives 

(∇ ̃

 u 

n +1 , ̃  d n +1 − ˜ d n ) D ≥ 1 

2 

(‖ ̃

 d n +1 ‖ 

2 
D − ‖ ̃

 d n ‖ 

2 
D + ‖ ̃

 d n +1 − ˜ d n ‖ 

2 
D 

)
. 

(4.28)

rom (4.22) and (4.28) , it follows that 

‖ ̃

 b n ‖ 

2 
D + ‖ ̃

 d n ‖ 

2 
D −

(‖ ̃

 b n +1 ‖ 

2 
D + ‖ ̃

 d n +1 ‖ 

2 
D 

)
≥ ‖ ̃

 d n +1 − ∇ ̃

 u 

n +1 ‖ 

2 
D + ‖ ̃

 d n +1 − ˜ d n ‖ 

2 
D , (4.29)

hich indicates that 

lim 

 →∞ 

‖ ̃

 d n − ∇ ̃

 u 

n ‖ D = lim 

n →∞ 

‖ d n +1 − d n ‖ D = 0 . 
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Blonde Cameraman Lena Mandril

Pirate Checkerboard Phantom Two−dots

Fig. 1. Test images used in this paper: “Blonde”, “Cameraman”, “Lena”, “Mandril”, and “Pirate” are natural images, while “Checkerboard”, “Phantom”, and “Two-dots” are 

synthetic images. All these test images are of size 512 × 512 except that the image “Two-dots” is only of size 300 × 300. 

Table 1 

Index values of present algorithm with (p, q ) = (1 , 2) and TV-SB ( p = 1 ) for Example 5.1 . 

Image σ λ SNR SNR SSIM SSIM # Iter. # Iter. 

TV-SB Present TV-SB Present TV-SB Present 

Lena 15 0.085 17.80 17.82 0.9697 0.9693 13 14 

0.070 17.55 17.73 0.9684 0.9696 14 14 

0.055 16.95 17.27 0.9642 0.9670 16 15 

0.040 15.85 16.24 0.9554 0.9593 19 17 

0.025 14.14 14.46 0.9396 0.9430 25 23 

Lena 20 0.060 16.50 16.53 0.9615 0.9613 15 16 

0.050 16.28 16.44 0.9601 0.9616 17 17 

0.040 15.66 15.93 0.9546 0.9575 19 18 

0.030 14.71 15.02 0.9455 0.9490 23 21 

0.020 13.29 13.61 0.9314 0.9344 29 26 

Lena 25 0.045 15.55 15.60 0.9541 0.9544 17 18 

0.040 15.37 15.50 0.9528 0.9542 19 19 

0.035 15.09 15.29 0.9501 0.9525 20 20 

0.030 14.61 14.86 0.9450 0.9480 23 21 

0.025 14.07 14.34 0.9393 0.9423 26 24 

Blonde 20 0.050 13.67 13.80 0.9424 0.9443 16 16 

Cameraman 20 0.050 19.06 19.19 0.9690 0.9702 16 17 

Mandril 20 0.050 10.03 10.25 0.8943 0.9008 16 17 

Pirate 20 0.050 14.44 14.61 0.9366 0.9396 17 18 
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Fig. 2. Convergence plots for the test image “Lena” with σ = 15 and λ = 0 . 085 , 

where NSDE is calculated at each iteration. With the same error tolerance 10 −6 , 

present algorithm stops after 14 iterations and TV-SB stops after 13 iterations. 
hen using the fact that ̃  L p, 2 (u, d, c) ≤ ˜ L p, 2 (u, d, b) for all c ∈ U im-

lies d = ∇u and we have lim 

n →∞ 

‖ d n − ∇u n ‖ D = 0 . The remainder

f the proof is similar to that of Theorem 4.3 and Theorem 4.4

n [39] . Thus, we can prove that lim 

n →∞ 

u n = u and lim 

n →∞ 

d n = d. This

ompletes the proof. �

. Numerical experiments 

In this section, we will give some numerical examples to

emonstrate the effective performance of the newly proposed ap-

roach. We first introduce two commonly used indices to measure

he quality of images and to evaluate the denoising performance.

et u , ˜ u and u denote the processed image, the clean image, and

he mean intensity of the clean image, respectively. Let 

SE (v , w ) := 

1 

N 

2 

N ∑ 

i =1 

N ∑ 

j=1 

(v i, j − w i, j ) 
2 
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3. Numerical results of Example 5.1 (“Lena”), where the noise level is σ = 15 and the best denoising parameter is λ = 0 . 085 for both TV-SB and present algorithm. (a), 

(e), and (i) are the global, local, and contour plot of the original “Lena” image; (b), (f), and (j) correspond to the noisy version; (c), (g), and (k) are the denoising results by 

TV-SB; (d), (h), and (l) are the denoising results by present algorithm with (p, q ) = (1 , 2) . The corresponding SNR, SSIM, iteration number are (17.80, 0.9697, 13) for TV-SB 

and (17.82, 0.9693, 14) for present algorithm. 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4. Numerical results of Example 5.1 (“Lena”), where the noise level is σ = 15 and the denoising parameter is λ = 0 . 040 for both TV-SB and present algorithm. (a), 

(e), and (i) are the global, local, and contour plot of the original “Lena” image; (b), (f), and (j) correspond to the noisy version; (c), (g), and (k) are the denoising results by 

TV-SB; (d), (h), and (l) are the denoising results by present algorithm with (p, q ) = (1 , 2) . The corresponding SNR, SSIM, iteration number are (15.85, 0.9554, 19) for TV-SB 

and (16.24, 0.9593, 17) for present algorithm. 



P.-W. Hsieh et al. / Signal Processing 149 (2018) 214–228 221 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 5. Numerical results of Example 5.1 , where the noise level is σ = 20 and the denoising parameter is fixed at λ = 0 . 050 for both TV-SB and present algorithm. (a), (e), 

(i), (m) are original images; (b), (f), (j), (n) correspond to the noisy version; (c), (g), (k), (o) are the denoising results by TV-SB; (d), (h), (l), (p) are the denoising results by 

present algorithm with (p, q ) = (1 , 2) . The corresponding SNR, SSIM, iteration number are summarized in Table 1 . 

d  

T  

[
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S  
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[  

i  

f  

J  

d  

a  

“  

w

i

t  
enote the mean squared error of any two images v and w .

he signal-to-noise ratio (SNR) and the structural similarity (SSIM)

36] are respectively defined as follows: 

NR := 10 log 10 

MSE ( ̃  u , u ) 

MSE ( ̃  u , u ) 
, (5.1) 

SIM := 

1 

M 

M ∑ 

m =1 

ssim ( ̃  u m 

, u m 

) , (5.2)

here M is the total window number, ˜ u m 

and u m 

are the restric-

ion of ̃  u and u to the m th window, with the local similarity index

sim defined by 

sim (v , w ) := 

(2 μv μw 

+ c 1 )(2 σv w 

+ c 2 ) 

(μ2 
v + μ2 

w 

+ c 1 )(σ 2 
v + σ 2 

w 

+ c 2 ) 
, (5.3)

here μv and μw 

are the mean intensity of v and w ; σv and σw 

are the variance, σv w 

is the covariance of v and w ; and c 1 and

 2 are two numbers to stabilize the division. To measure the con-

ergency, the so-called normalized step difference energy (NSDE)
s calculated at each iteration, 

SDE := 

‖ u 

n − u 

n −1 ‖ 

2 

‖ u 

n ‖ 

2 
, (5.4) 

here u n and u n −1 are the obtained image vectors at the n th and

(n − 1) th iterations, respectively. 

For all test problems, the intensity values of test images are in

0, 255]. We take the stopping tolerance tol = 10 −6 , two stabiliz-

ng numbers c 1 = c 2 = 0 . 05 , and consider windows of size 8 × 8

or SSIM. In each u -subproblem, only one simple iteration of the

acobi method is used to obtain an approximation of u n +1 . In each

 -subproblem, we adopt formulas given in Remark 3.1 . The test im-

ges are shown in Fig. 1 , where “Blonde”, “Cameraman”, “Lena”,

Mandril”, and “Pirate” are natural images downloaded from the

ebsite 

http://www.imageprocessingplace.com/root _ files _ V3/ 

mage _ databases.htm . 

while “Checkerboard”, “Phantom”, and “Two-dots” are syn- 

hetic images generated directly by Matlab . All test images are

http://www.imageprocessingplace.com/root_files_V3/image_databases.htm
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Numerical results of the “Lena” image (cf. Remark 5.1 ), where the noise level is σ = 15 and the best denoising parameter is λ = 0 . 085 for both the TV-SB and 

present algorithm. (a), (b), and (c) are the denoising results by TV-SB; (d), (e), and (f) are the denoising results by present algorithm using the exact gradient of the original 

image as the adaptive controller α1, 2 defined in (5.5) . The SNR, SSIM, iteration number are (17.76, 0.9694, 13) for TV-SB and (19.07, 0.9766, 10) for present algorithm. 
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of size 512 × 512 except that the image “Two-dots” is only of size

300 × 300. 

Example 5.1 (natural images) . In this example, we take (p, q ) =
(1 , 2) , γ = 5 / 255 and study the efficiency of the proposed algo-

rithm for natural images. The image “Lena” is contaminated with

three different levels of Gaussian noise ( σ = 15 , 20 , and 25), and

the others are corrupted with median level σ = 20 . We compare

the SNR, SSIM, and image quality with those generated by the TV

model using the split Bregman algorithm (abbreviated as TV-SB)

[16] . The indices for various images, noise levels, and denoising pa-

rameters are summarized in Table 1 , where the iteration numbers

are presented as well. The denoising results are shown in Figs. 3–5 .

From the numerical results presented in Table 1 and Figs. 2–4 , we

can conclude the followings: 

• The SNR and SSIM of the present algorithm are generally

slightly greater than those of the TV-SB, which means that our

algorithm shows at least comparable performance to the TV-SB

(see Table 1 and Fig. 3 ). 
• Though these two methods have very similar indices, they have

rather different image quality. Because the proposed model is

like the H 

1 model, we can expect the proposed model to ex-

hibit more smoothing characteristics. Indeed, numerical results

show that present algorithm always puts extra smoothness into

flat regions so that some artifacts are prevented and the im-

age looks more natural. In addition, it can still retain the edge-

preserving property similar to TV-SB, no matter how we de-

crease the parameter λ, see Fig. 4 (g) and (h). We note that the

density of the contour plots was used in [3,22] to identify the

smoothness of images. 
• The NSDE normalized to [0, 1] is shown in Fig. 2 , which shows

that present algorithm has a similar convergence behavior to

the TV-SB. 

The good performance shows that our model may be more suit-

able for practical use, since the best denoising parameter λ for TV-

SB seems not easy to estimate. 

Remark 5.1. It is worth mentioning that if we take 

αp, 2 (|∇u 

∗| ) := |∇u e | p−2 , (5.5)
here ∇u e represents the gradient of the original image, the nu-

erical simulation shows that our model has potential to produce

 wonderful result, see Fig. 6 . It not only gives higher index values,

NR = 19 . 07 and SSIM = 0 . 9766 , but also captures the character-

stics of natural images very well. 

xample 5.2. (ordered pair( p , q )). In this example, we discuss the

ole that the ordered pair ( p , q ) plays in the model (2.1) by show-

ng the performances of various ( p , q ) for the “Lena” image with

= 15 . We first consider q = 2 and compare the image quality

f different p values, namely, p = 0 . 4 , p = 0 . 6 and p = 1 . The

and γ parameters for these three cases are individually tuned

o achieve SNR value being close to 17.1. The results are depicted

n Figs. 7 (a)–(f). In a similar fashion, we also consider q = 1 with

p = 0 . 4 , p = 0 . 6 , and p = 0 . 8 , where the parameters are tuned to

ave SNR value close to 16.2. The results are shown in Fig. 7 (g)–(l).

e have the following findings: 

• Comparing Fig. 7 (b) and (c), and their corresponding contour

plots Fig. 7 (e) and (f), one can find that for q = 2 (i.e., the adap-

tive H 

1 model) with a fixed SNR level, the case p = 0 . 6 results

in a little smoother image quality than that of p = 1 so that the

staircasing effect is more likely to be reduced. Similarly, p = 0 . 4

seems has more smoothing property than p = 0 . 6 and the re-

sulting effect may be a little bit over-smoothed, cf. Fig. 7 (a) and

(d). 
• On the other hand, for q = 1 (i.e., the adaptive TV model) with

a fixed SNR level, a smaller p exhibits a more severe staircasing

effect but the contrast of the resulting image is high (compar-

ing Fig. 7 (g) with (h) and (i), and their contour plots as well).

We can also find that a smaller p tends to falsely retain noises

in the image. Consequently, taking q = 1 seems not to be fa-

vorable in natural image denoising. 

To sum up briefly, with a careful choice of 0 < p ≤ 1, q = 1 

eems more suitable for dealing with the synthetic image denois-

ng, while q = 2 may be more favorable for the natural image de-

oising. This observation will be further verified in the next two

xamples. 
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 7. Numerical results of Example 5.2 , where σ = 15 , and the parameters λ and γ are individually tuned to have the same SNR for each ordered pair ( p , q ) with 

(p, q ) = (0 . 4 , 2) in (a) and (d), (p, q ) = (0 . 6 , 2) in (b) and (e), (p, q ) = (1 , 2) in (c) and (f), (p, q ) = (0 . 4 , 1) in (g) and (j), (p, q ) = (0 . 6 , 1) in (h) and (k), and (p, q ) = (0 . 8 , 1) 

in (i) and (l). 
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xample 5.3 (natural images) . In this example, we are going to

how that our approach can increase more smoothness for flat re-

ions without losing a large value of SNR. We consider two differ-

nt ways to achieve the goal as follows: 

• The first way is to consider an originally adaptive regularization

model. As we have mentioned in Remark 2.3 , our algorithm

can also be applied to implement adaptive regularization mod-

els easily. For example, we consider the difference curvature D

proposed in [11] as the detector for determining suitable model

order, 

p(D ) := 2 −
√ 

D , D := 

D 

D max 
and D := 

∣∣| u NN | − | u T T | 
∣∣, 

where 
u NN = 

u 

2 
x u xx + 2 u x u y u xy + u 

2 
y u yy 

u 

2 
x + u 

2 
y 

and 

u T T = 

u 

2 
y u xx − 2 u x u y u xy + u 

2 
x u yy 

u 

2 
x + u 

2 
y 

represent the second derivatives in the direction of N and T ,

respectively. The energy functional of the originally adaptive

model is given by 

E AT V := 

∫ 
�

(
|∇u | p(D ) + 

λ

2 

(u − f ) 2 
)

dx. (5.6)

We can apply the proposed new model (2.1) with q = 2 to the

above energy functional. This implies that 

d n +1 
i, j 

= 

γ | (∇u 

n +1 ) i, j | 2 −p(D ) 

1 + γ | (∇u 

n +1 ) i, j | 2 −p(D ) 
(∇u 

n +1 − b n ) i, j 

in the split Bregman-type algorithm (3.8) . 



224 P.-W. Hsieh et al. / Signal Processing 149 (2018) 214–228 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. Numerical results of Example 5.3 (“Lena”), where the noise level is σ = 15 . The best denoising parameter is λ = 0 . 085 for TV-SB, λ = 0 . 45 , γ = 5 / 255 for the 

adaptive p ( D ), and λ = 0 . 015 , γ = 0 . 5 / 255 for (p, q ) = (0 . 6 , 2) in our model. The denoising results are: (a), (b), (c) for TV-SB, (d), (e), (f) for the adaptive p ( D ), and (g), (h), 

(i) for (p, q ) = (0 . 6 , 2) . The corresponding SNR, SSIM and iteration number are (17.78, 0.9696, 13) for TV-SB, (17.02, 0.9627, 21) for adaptive p ( D ), and (17.13, 0.9660, 21) for 

our model, respectively. 

Table 2 

Index values of present algorithm with various ( p , q ) and TV-SB ( p = 1 ) for Example 5.4 . 

Image σ Order SNR SNR SSIM SSIM # Iter. # Iter. 

( p , q ) TV-SB Present TV-SB Present TV-SB Present 

Two-dots 15 (0.6, 1) 15.16 19.68 0.9988 0.9994 90 106 

(0.6, 2) 19.82 0.9994 103 

(0.4, 1) 19.92 0.9993 108 

(0.4, 2) 20.19 0.9993 108 

20 (0.4, 2) 13.02 18.37 0.9983 0.9989 94 177 

25 (0.4, 2) 11.79 17.76 0.9984 0.9988 102 224 

Checkerboard 15 (0.6, 1) 31.28 37.32 0.9961 0.9988 14 26 

(0.6, 2) 36.80 0.9987 24 

(0.4, 1) 37.08 0.9988 32 

(0.4, 2) 36.62 0.9988 29 

20 (0.6, 1) 29.27 35.20 0.9948 0.9982 17 35 

25 (0.6, 1) 27.86 33.39 0.9934 0.9969 20 47 

Phantom 15 (0.6, 1) 26.26 31.96 0.9964 0.9988 19 34 

(0.6, 2) 31.46 0.9987 31 

(0.4, 1) 32.85 0.9990 50 

(0.4, 2) 32.45 0.9990 45 

20 (0.4, 1) 24.40 29.54 0.9954 0.9980 22 76 

25 (0.4, 1) 22.98 27.88 0.9943 0.9972 26 89 
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• As we have observed in Example 5.2 , a possible way to enhance

the smoothness of flat regions in a natural image is to consider

0 < p < 1 and q = 2 . Compared with the first way, we don’t need

to design a function p varying with pixels, but have to choose a

suitable parameter γ . We find that for flat regions, the smaller

p , the smoother the restoration. In this example, we take
p = 0 . 6 . n  
The test image is “Lena”, which is contaminated with Gaussian

oise ( σ = 15 ). The denoising parameter for best SNR value is λ =
 . 45 and γ = 5 / 255 for adaptive p ( D ), and λ = 0 . 015 and γ =
 . 5 / 255 for (p, q ) = (0 . 6 , 2) in the proposed model. The denoising

esult is shown in Fig. 8 . It can be seen that the staircasing effect

s significantly reduced by both models, making the image more

atural; however, the SNR, SSIM will drop a little bit compared to
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 9. Numerical results of Example 5.3 (“Lena”), where the experimental setting is the same as that in Fig. 8 . The denoising results are: (a), (b), (c) for TGV, (d), (e), (f) for 

BM3D, (g), (h), (i) for NLD, and (j), (k), (l) for LOT. The corresponding SNR and SSIM are (17.75, 0.9703) for TGV, (19.73, 0.9797) for BM3D, (18.66, 0.9745) for NLD, and (17.62, 

0.9689) for LOT. 

t  

 

a  

o

 

f  

B  

a  

t  

a  

f  

(  

b  

a  

s  

N  

p  

h  

a  

a  

t  

n  

n  

m  

h

E  

f  

p  

t  

0  

c

hose of the TV model. More specifically, we have (SNR, SSIM) =
(17 . 02 , 0 . 9627) in the first way, (17.13, 0.9660) in the second way,

nd (17.78, 0.9696) in the method of TV-SB. The iteration numbers

f the TV-SB and our algorithm are 13 and 21, respectively. 

In addition to the TV-SB method, we give some other methods

or the numerical comparison, namely, the TGV model in [35] , the

M3D approach in [14] , the NLD approach in [17] , and the vari-

nt [28] of LOT method [24] . Under the same experimental condi-

ion described above, the numerical results for the four methods

re shown in Fig. 9 . The indices (SNR, SSIM) are (17.75, 0.9703)

or TGV, (19.73, 0.9797) for BM3D, (18.66, 0.9745) for NLD, and

17.62, 0.9689) for LOT. All the indices are satisfactory, but it can

e seen from the zoomed-in face of “Lena” that the results of TGV

nd BM3D are over-smoothed, and the results of NLD and LOT

till have some unnatural artifacts. We remark that the BM3D and

LD are non-local methods while the TV-SB, TGV, LOT and the
resent methods are local ones. Non-local methods usually have

igher indices than local ones but their computational complexity

re also high. As a non-local method, BM3D has the highest indices

mong the all; however, the exact performance still depends on

he estimation of the noise level, which is directly set to the true

oise level in this paper for convenience. In contrast to the other

on-local methods discussed in this example, the newly proposed

ethod compromises between the indices and the smoothness to

ave a more natural image quality. 

xample 5.4 (synthetic images) . In this example, we study the ef-

ectiveness of our method for synthetic images. Here we fix the

enalty parameter γ = 5 / 255 , and the parameter λ is always

uned to have best SNR value. We consider four cases with p =
 . 6 , 0 . 4 and q = 1 , 2 for the three synthetic images. The numeri-

al results are reported in Table 2 . 
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. Numerical results of Example 5.4 (“Two-dots”), where the noise level is σ = 15 and the denoising parameter λ is tuned to have best SNR value. (a) the original 

image; (b) the locally zoomed-in; (c) the noisy version of locally zoomed-in; (d) the denoising result by TV-SB; (e), (f), (g), (h) are the denoising results by present algorithm 

with (p, q ) = (0 . 6 , 1) , (0.6, 2), (0.4, 1), (0.4, 2), respectively. The (SNR, SSIM) of (d)–(h) are (15.16, 0.9988), (19.68, 0.9994), (19.82, 0.9994), (19.92, 0.9993), and (20.19, 

0.9993), respectively. 

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. Numerical results of Example 5.4 (“Checkerboard”), where the noise level is σ = 25 and the denoising parameter λ is tuned to have best SNR value. (a), (e) are 

the global, local part of the original image; (b), (f) correspond to the noisy version; (c), (g) are the denoising results by TV-SB; (d), (h) are the denoising results by present 

algorithm with (p, q ) = (0 . 6 , 1) . The corresponding SNR, SSIM, iteration number are (27.86, 0.9934, 20) for TV-SB and (33.39, 0.9969, 47) for present algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• From Table 2 , we can find that present algorithm exhibits

a good performance for denoising synthetic images. The SNR

value of the present approach is far greater than that of the

TV-SB, but with more iterations. We note that only the pair ( p ,

q ) of best performance for σ = 15 is employed for the cases

of σ = 20 , 25 , and other pairs have very similar results both

in performance indices and iteration numbers. We omit the de-

tails. 
• Consider the test image “Two-dots”, which is contaminated

with Gaussian noise ( σ = 15 ). The denoising result is shown in

Fig. 10 , where one can find that the performance of our method

is much better than that of TV-SB. Although, there are winners

and losers in the four cases, they all perfectly reconstruct the

two small dots. In general, q = 1 has better edge-preserving
ability than q = 2 since q = 1 amounts to the adaptive TV

model in (2.7) while q = 2 amounts to the adaptive H 

1 model.

However, for this specific image, q = 2 has larger SNR values

than q = 1 since there are few edges in the image, only around

the two small dots. 
• The setting of the test image “Checkerboard” is same with the

“Two-dots” image. The numerical result is shown in Fig. 11 .

Comparing Fig. 11 (g) and (h), one can find that our method

has distinguished edge-preserving ability than TV-SB, where

the borderline between any two areas of different intensity is

perfectly recovered by our method. 
• We also compare our method with the TGV, BM3D, NLD, and

LOT methods using the “Phantom” image. The numerical result
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 12. Numerical results of Example 5.4 (“Phantom”), where the experimental setting is the same as that in Fig. 10 . (a), (b) are the global, local part of the original image; 

(c), (d) correspond to the noisy version. The denoising results are: (e), (f) for TGV, (g), (h) for BM3D, (i), (j) for NLD, (k), (l) for LOT, (m), (n) for TV-SB, and (o), (p) for the 

present algorithm with (p, q ) = (0 . 4 , 1) . The corresponding SNR and SSIM are (25.37, 0.9960) for TGV, (30.62, 0.9983) for BM3D, (27.92, 0.9962) for NLD, (27.44, 0.9982) for 

LOT, (26.26, 0.9964) for TV-SB, and (32.85, 0.9990) for the present algorithm. 
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is shown in Fig. 12 . The present method seems to have both the

highest indices and the most satisfactory result. 

The better performance shows that our model seems more ef-

ective than many typical methods for restoring synthetic images. 

. Summary and conclusions 

In this paper, we have developed a simple regularization model

ith adaptive diffusivity for variational image denoising. The

odel is motivated by approximating the Euler-Lagrange equation

f the usual p th-order regularization with 0 < p ≤ 1. This model can

ntegrate all the usual lower-order models into a single unified

ramework through a regularization controller which is introduced

o adaptively adjust the diffusivity from pixel to pixel according

o the magnitude of image gradient. A split Bregman-type itera-

ive scheme is constructed for efficiently solving the new model.

oreover, a convergence analysis of the iterative scheme is estab-

ished. Numerical examples show that the proposed model and al-

orithm are able (i) to implement the usual adaptive regularization
odels with pixel-dependent power 1 ≤ p ≤ 2 for reducing staircas-

ng effect, (ii) to have a similar edge-preserving performance to TV

hen p = 1 while additionally putting more smoothness into flat

egions, (iii) to outperform TV when 0 < p < 1 for denoising syn-

hetic images, but with more iterations. Moreover, numerical re-

ults obtained in this paper also show that the performance of the

roposed model is comparable to several typical methods such as

he TGV, BM3D, NLD, and LOT for restoring natural images, and it

eems to be better than the others for restoring synthetic images. 

The most distinguished features of the proposed approach are

wofold. Firstly, one single algorithm can efficiently handle several

ypes of regularization models for different purposes. Secondly, in

ddition to the edge preserving ability just like the TV approach,

ur model puts extra smoothness into flat regions to enhance the

mage quality. On the other hand, the disadvantage of this ap-

roach may be that more iterations will be needed for the conver-

ence of the split Bregman-type iterative scheme when 0 < p < 1. 

We remark that the magnitude of image gradient in this pa-

er is considered in � 2 -norm, which leads to isotropic diffusions.
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[  
For anisotropic diffusions, this work may be generalized to the � 1 -

norm case for better performance. Finally, the proposed approach

can be employed for image deblurring as well. 
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