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Adaptive Variational Model for Contrast Enhancement of Low-Light Images\ast 
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Abstract. Contrast enhancement plays an important role in image/video processing and computer vision ap-
plications. Its main purpose is to adjust the image intensity to enhance the quality and features of
the image. In this paper, we propose a simple and efficient adaptive variational model for contrast
enhancement for partially shaded low-light images. The key idea of this adaptive approach is to
employ the maximum image of the RGB color channels as a classifier to divide the image domain
into the relatively bright and dim parts, and then use different fitting terms for each part such that
the bright pixels are preserved as close as possible to the original ones while the dim pixels are
boosted with brightness and contrast-level parameters to adjust the degree of the strength. With
this adaptivity, one can find that the proposed model considerably improves upon the existing vari-
ational models in the literature. In this paper, the existence and uniqueness of the minimizer for the
variational minimization problem is established. The split Bregman method is used to accomplish
an efficient numerical implementation of the adaptive variational model. Moreover, a number of
numerical experiments and comparisons with other popular enhancement methods are conducted to
demonstrate the high performance of the newly proposed method.

Key words. contrast enhancement, image enhancement, adaptive variational model, nonuniform illumination,
low-light images
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1. Introduction. As is well known, nonuniform illumination during the image acquisition
process, e.g., shadows, night time scenes, and other inadequate lighting conditions, highly
affects the dynamic range of captured digital images and usually results in images with very
low contrast regions. Low contrast not only leads to unpleasing or unclear images for human
vision but can also further lead to poor detection or understanding for machine vision. As
a result, contrast enhancement is a fundamental and very important step for most of the
tasks in image/video processing and computer vision applications. The main goal of contrast
enhancement is to improve image quality by making hidden image details and features clearer
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2 PO-WEN HSIEH, PEI-CHIANG SHAO, AND SUH-YUH YANG

and more discernible for better human visual perception or machine vision identification. In
recent years, contrast enhancement has been widely used for many types of low-contrast images
in various fields, such as medical images (CT, MRI, X-ray, ultrasound, etc.), remote-sensing
images (ecology, geology, military, planning, etc.), electron microscopy images (biological,
chemical, material, etc.), and even everyday photography.

In the past few decades, many contrast enhancement methods have been developed, and
they can be classified into categories according to the taxonomy used. For example, enhance-
ment methods can be broadly classified into direct methods [6, 16] and indirect methods
[41, 47], depending on whether there exists a contrast measure [24] defined in the model.
However, most popular methods are in the second category, which can be further divided
into three groups [39]: spectral methods, histogram methods, and spatial methods. First,
spectral methods, also called transform-domain methods, mainly rely on Fourier or wavelet
transforms. The input image is first decomposed into several subbands or scales, and then the
enhancement is performed by applying some nonlinear operators to the transform coefficients
in the appropriate subbands or scales [28].

Second, histogram methods use predefined transfer functions to adjust the image his-
togram by stretching or redistributing pixel values in the intensity range of the processed
image. The most representative and widely used histogram method is the so-called histogram
equalization (HE) [26, 27, 51]. Because of its simplicity and satisfactory performance, HE
becomes the most commonly used method for contrast enhancement. Using the cumulative
distribution function of the intensity of input pixels as the transform function, HE achieves
a uniform distributed histogram, which implies maximum transfer of information [14, 17].
According to the way the image histogram is modified, histogram methods can further be
categorized into two types: global methods and local methods [1, 3, 25]. Generally speaking,
global methods use the histogram information of the entire input image to do the transforma-
tion, which is often insufficient to achieve good contrast enhancement since it fails to adapt
with the intensity changes of local image features. On the other hand, in order to adapt the
global methods to small-scale details, local histogram methods are proposed [12, 13, 40, 48, 50],
which modify image intensities using a local histogram obtained from pixels in a prescribed
small window. The local adaptivity is usually much better at improving the contrast. How-
ever, the computational cost for local methods is also high, and overenhancement and artifacts
are sometimes presented in the processed image.

Methods in the third group are the spatial methods, where image intensities are directly
modified to enhance the image according to some spatial constraints or hypothesis about the
human visual system. In [9], Boccignone and Picariello exploited a nonlinear scale-space rep-
resentation of the anisotropic diffusion of Perona--Malik type [36] in a multiscale framework.
In a series of works by Gatta, Rizzi, and Marini [21, 45, 46], they proposed and studied an
effective method, called automatic color equalization (ACE), based on modeling the mecha-
nism of the human visual system such that the enhancement process is consistent with human
perception. Later, Bertalm\'{\i}o et al. [8] linked the previous ACE approach with variational
techniques so that the properties and behavior of the ACE can be studied via the associated
energy functional. Furthermore, Getreuer [22] gave fast approximation and implementation
of the ACE method. On the other hand, in a series of works by Caselles, Provenzi, and their
coauthors [7, 35, 42], they proposed a perceptually inspired variational framework for color
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VARIATIONAL MODEL FOR CONTRAST ENHANCEMENT 3

image enhancement and studied its relation with the retinex theory [29, 43]. In [39], Pierre
et al. employed the average local contrast measure to enhance images and approximately
preserve the hue for color images within a variational framework.

In the recent work of Morel, Petro, and Sbert [34], they proposed a simple variational
model, composed of a data fidelity term and a regularization term, to alleviate the effect caused
by nonuniform illumination and preserve image details at the same time. More specifically,
their model can be written as

(1.1) min
u

1

2

\int 
\Omega 
| \nabla u - \nabla f | 2 d\bfitx +

\lambda 

2

\int 
\Omega 
(u - \=u)2 d\bfitx ,

where \Omega represents the image domain, \nabla the gradient operator, f the input image, u the
desired image, and \=u := 1

| \Omega | 
\int 
\Omega u d\bfitx the mean value of u over \Omega . The first term in the

variational minimization problem (1.1) acts as the data fidelity term, forcing u to preserve the
image gradient, while the second term acts as the regularization term, reducing the variance of
u to eliminate the effect of nonuniform illumination. In addition, \lambda > 0 is a constant parameter
which balances between detail preservation and variance reduction. Generally speaking, if \lambda 
tends to zero, then the desired image u coincides with the original image f . Conversely, if \lambda is
sufficiently large, then the desired image u approaches the constant \=u. In [34], the authors also
showed that when \lambda gets large the model acts as a high-pass filter (edge detector). Interested
readers are referred to Figure 11 in [34] for the enhanced results with \lambda = 0.0001, 0.0005,
0.001, and 0.005. Later, the data term is then modified in [38] and applied in [4] using
the L1 norm instead of the L2 norm to deal with discontinuities and obtain sharper edges.
Although reasonable numerical results for nonuniform medical images and hazy images have
been obtained in [4, 34, 38], there is still plenty of room for improvement.

In this paper, we will revisit the variational model (1.1) for contrast enhancement of low-
light images. In fact, we will propose a novel adaptive variational model. The key idea of the
proposed model is to employ the maximum image of the RGB color channels as a classifier
to divide the image domain into the relatively bright and dim parts, and then use different
fitting terms for each part such that the bright pixels are preserved as close as possible to the
original ones while the dim pixels are boosted with brightness and contrast-level parameters to
adjust the degree of the strength. With this adaptivity, one can find that the newly proposed
model significantly improves the existing variational models in the literature. In this paper,
the existence and uniqueness of the minimizer for the variational minimization problem will
be established. The split Bregman method will be used to accomplish an efficient numerical
implementation of the adaptive variational model. In addition, numerical comparisons with
some other popular enhancement methods will be provided.

The remainder of this paper is organized as follows. In section 2, we introduce the adap-
tive contrast enhancement model and give the mathematical analysis on the existence and
uniqueness of the minimizer. In section 3, we show that the adaptive variational model can
be solved efficiently using the split Bregman iterative scheme. Numerical experiments are
conducted in section 4 to demonstrate the high performance of the newly proposed model.
Finally, some concluding remarks are given in section 5.

2. The adaptive variational model. In this section, we first propose an adaptive varia-
tional model for the enhancement of grayscale images; this is then generalized to the enhance-
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4 PO-WEN HSIEH, PEI-CHIANG SHAO, AND SUH-YUH YANG

ment of RGB color images. We can find that the regularization parameter and the brightness
and contrast-level parameters of the model are intuitive and easy to tune. Also, the unique
solvability of the variational minimization problem will be theoretically guaranteed in this
section.

2.1. Enhancement of grayscale images. Given a low-contrast input image f , the goal
of contrast enhancement is to find a desired image u whose gradient is close to that of f but
with reduced variance to balance inhomogeneous illumination. Extended from model (1.1),
let us first consider the following variational model for image contrast enhancement:

(2.1) min
u

1

q

\int 
\Omega 
| \nabla u - \nabla f | q d\bfitx +

\lambda 

2

\int 
\Omega 
(u - \=u)2 d\bfitx ,

where q = 1 or 2. As is well known in variational image processing, \nabla u, \nabla f , and \nabla u  - \nabla f
are all sparse in most situations, and q = 1 ensures more sparsity than q = 2. Generally
speaking, an enhanced image obtained from (2.1) with q = 2 will be much smoother, and one
obtained from (2.1) with q = 1 will tend to preserve image structures. From another viewpoint,
q = 2 comes from the assumption that \nabla u  - \nabla f is Gaussian distributed, while q = 1 comes
from the assumption that \nabla u  - \nabla f is Laplacian distributed. As is experimented in [31],
\nabla u - \nabla f matches Laplacian distribution better than Gaussian distribution. Consequently, it
is generally more reasonable to use q = 1 in model (2.1) than q = 2.

Since the Euler--Lagrange equation of model (2.1) is highly nonlinear and difficult to solve,
[34] linearizes it (for the case q = 2) by assuming that the mean value of u coincides with the
mean value of f . Therefore, the following variational minimization problem can be considered
instead:

(2.2) min
u

1

q

\int 
\Omega 
| \nabla u - \nabla f | q d\bfitx +

\lambda 

2

\int 
\Omega 
(u - \=f)2 d\bfitx ,

where the mean value of f over \Omega , \=f := 1
| \Omega | 

\int 
\Omega f d\bfitx , replaces the \=u used in model (2.1).

This model is much simpler and more computationally tractable. Numerical results showing
acceptable performance can be found in [4, 34, 38].

Despite its simplicity and effectiveness, model (2.2) still has room for improvement. First,
requiring the desired image u to be close to a pixel-independent \=f seems unreasonable, which
highly contradicts the requirement of \nabla u being close to \nabla f and restrains parameter \lambda to
being very small. Second, the lack of contrast-level parameters to adjust the strength of
enhancement makes model (2.2) less flexible.

With enhancing low-light images as the goal, we propose two adaptive (pixel-dependent)
functions g and h to replace the pixel-independent constant \=f and the original input image f
in (2.2), respectively. The model reads as

(2.3) min
u

1

q

\int 
\Omega 
| \nabla u - \nabla h| q d\bfitx +

\lambda 

2

\int 
\Omega 
(u - g)2 d\bfitx + \chi S(u),

where the adaptive functions g, h and the characteristic function \chi S with S := [0, 255] (cf.
Remark 2.3 below) are defined respectively as follows:

(2.4) g(\bfitx ) :=

\Biggl\{ 
\alpha \=f, \bfitx \in \Omega d := \{ \bfitx \in \Omega : f(\bfitx ) \leq \=f\} ,
f(\bfitx ), \bfitx \in \Omega b := \{ \bfitx \in \Omega : f(\bfitx ) > \=f\} ,
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VARIATIONAL MODEL FOR CONTRAST ENHANCEMENT 5

with a brightness parameter \alpha > 0,

(2.5) h(\bfitx ) :=

\Biggl\{ 
\beta f(\bfitx ), \bfitx \in \Omega d := \{ \bfitx \in \Omega : f(\bfitx ) \leq \=f\} ,
f(\bfitx ), \bfitx \in \Omega b := \{ \bfitx \in \Omega : f(\bfitx ) > \=f\} ,

a contrast-level parameter \beta > 1, and

(2.6) \chi S(u) :=

\Biggl\{ 
0, range(u) \subseteq S,

+\infty otherwise.

We call \Omega d the dim part and \Omega b the bright part of the image domain \Omega . It is worth pointing
out that the second term in the newly proposed model (2.3) acts not only as a regularization
term but partially as a data fidelity term as well, since the adaptive function g in (2.4) is
defined as the original image value f(\bfitx ) for \bfitx in the bright part \Omega b.

To complete this subsection, we further give the following three remarks on g, h, and \chi S ,
which explain the motivation derived behind the adaptive enhancement model (2.3).

Remark 2.1. For nonuniformly illuminated low-light image f , we divide the image domain
\Omega into dim part \Omega d and bright part \Omega b such that \Omega = \Omega d \cup \Omega b and \Omega d \cap \Omega b = \emptyset , using \=f ,
the mean intensity of f , as the division baseline. For \bfitx \in \Omega d, dim elements are supposed to
be boosted by requiring the desired image u to be close to \alpha \=f , where larger \alpha makes hidden
image details and features clearer and more discernible, and the contrast-level parameter \beta is
employed to enhance the local gradient in the dim area \Omega d. For \bfitx \in \Omega b, bright elements are
supposed to be retained by requiring the desired image u to be close to their already visible
level f(\bfitx ).

Remark 2.2. To ensure the differentiability of h in (2.3), in practice we smooth the coef-
ficients in (2.5) and redefine the adaptive function h as

(2.7) h(\bfitx ) = G \ast 
\bigl( 
\beta 1\Omega d

(\bfitx ) + 1\Omega b
(\bfitx )

\bigr) 
f(\bfitx ), \bfitx \in \Omega ,

where the indicator function 1A(\bfitx ) = 1 if x \in A, otherwise 1A(\bfitx ) = 0, and G\ast represents
suitable Gaussian convolution such that \nabla h is well-defined.

Remark 2.3. The characteristic function \chi S(u) is zero if the intensity values of u are all
within the closed bounded interval S and +\infty outside. Adding \chi S(u) to the energy functional
is equivalent to constraining the minimization of the energy functional over some suitable
function space with image range being equal to S. In practice, two reasonable choices of S are
[inf f(\bfitx ), sup f(\bfitx )] and [0, 255]. For simplicity, we take S = [0, 255] throughout this paper.

2.2. Enhancement of color images. The enhancement model (2.3) with the adaptive
functions g and h is designed for grayscale low-light images. Now, we need to generalize the
previous domain-division procedure for a color image, with which we can then process RGB
color images channelwise. By bright part, we mean pixels defined in \Omega that are already clearly
visible (e.g., the sky and the river in Figure 1(a)), while by dim part, we mean pixels that are
low-lighted and ambiguously invisible (e.g., the house and the pathway in Figure 1(a)). The
goal is to classify pixels in \Omega into these two groups and enhance the dim one. There may be
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6 PO-WEN HSIEH, PEI-CHIANG SHAO, AND SUH-YUH YANG

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1. Several low-light images and the corresponding domain divisions: (a), (d), (g), and (j) are test
images used in Example 4.3 below; (b), (e), (h), and (k) are the results of domain division by the proposed
maximum image max\{ fR, fG, fB\} ; (c), (f), (i), and (l) are the results of domain division by the grayscale image
0.299fR + 0.587fG + 0.114fB.
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VARIATIONAL MODEL FOR CONTRAST ENHANCEMENT 7

many possible ways to achieve this goal; any one that leads to a reasonable domain division
is acceptable.

Here we propose a simple way to address the domain-division problem. Denoting by
(fR, fG, fB) the given color image to be enhanced, we first define the maximum image as

(2.8) f\mathrm{m}\mathrm{a}\mathrm{x}(\bfitx ) := max\{ fR(\bfitx ), fG(\bfitx ), fB(\bfitx )\} ,

where the max operator is performed pointwisely on each \bfitx \in \Omega . Let \=f\mathrm{m}\mathrm{a}\mathrm{x} := 1
| \Omega | 

\int 
\Omega f\mathrm{m}\mathrm{a}\mathrm{x} d\bfitx .

Then we divide the image domain \Omega into two parts,

\Omega d := \{ \bfitx \in \Omega : f\mathrm{m}\mathrm{a}\mathrm{x}(\bfitx ) \leq \=f\mathrm{m}\mathrm{a}\mathrm{x}\} ,(2.9)

\Omega b := \{ \bfitx \in \Omega : f\mathrm{m}\mathrm{a}\mathrm{x}(\bfitx ) > \=f\mathrm{m}\mathrm{a}\mathrm{x}\} .(2.10)

The domain-division results of several low-light images given in Figures 1(a), 1(d), 1(g), and
1(j) using (2.9)--(2.10) are depicted in Figures 1(b), 1(e), 1(h), and 1(k), respectively. Regions
of \Omega d and \Omega b are presented visually by blue and yellow, respectively. The division results are
apparently acceptable, and the blue regions (\Omega d) need to be enhanced.

We find empirically that using the maximum image as the classifier will give reasonable
divisions. This result is not surprising since the maximum image is proportional to the value
channel of the HSV representation, where V := max\{ fR, fG, fB\} /255 = f\mathrm{m}\mathrm{a}\mathrm{x}/255. Therefore,
f\mathrm{m}\mathrm{a}\mathrm{x} and V will give the same correct division result. However, other classifiers may lead to
erroneous division. For example, Figures 1(c), 1(f), 1(i), and 1(l) are the division results using
the grayscale image f\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{y} := 0.299fR+0.587fG+0.114fB as classifier. One can find that there
are some pixels misclassified by f\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{y}. Specifically, in Figure 1(c), the river around the bike is
classified into dim parts, and in Figure 1(i), the life jackets, which are visually clear, are also
misclassified into dim parts.

Another possibility is to perform domain division channelwise. However, this approach
will result in a hue-preservation problem. As an example, consider an element \bfitx  \star \in \Omega with
color intensities (fR(\bfitx 

 \star ), fG(\bfitx 
 \star ), fB(\bfitx 

 \star )) = (10, 10, 200); then f\mathrm{m}\mathrm{a}\mathrm{x}(\bfitx 
 \star ) = fB(\bfitx 

 \star ) = 200, a
large value. Employing f\mathrm{m}\mathrm{a}\mathrm{x} (or equivalently the V channel) as classifier, \bfitx  \star will be classified
into \Omega b as a bright element, as desired. As a result, (fR(\bfitx 

 \star ), fG(\bfitx 
 \star ), fB(\bfitx 

 \star )) will be preserved
as close as possible to (10, 10, 200) by the model, and the hue will be preserved at \bfitx  \star . However,
if we perform the domain division channelwise, then pixel \bfitx  \star will be classified into \Omega d in the
R and G channels and be classified into \Omega b in the B channel. As a result, fB(\bfitx 

 \star ) will be
preserved as close as possible to 200, while fR(\bfitx 

 \star ) and fG(\bfitx 
 \star ) will be enhanced to, say, 60.

Therefore, the hue will not be preserved at \bfitx  \star , leading to unnatural images. In view of this,
we do not consider channelwise domain division in this paper.

With the help of the maximum image f\mathrm{m}\mathrm{a}\mathrm{x}, we can now process color images channelwise.
For every f \in \{ fR, fG, fB\} , we solve

(2.11) min
u

1

q

\int 
\Omega 
| \nabla u - \nabla hc| q d\bfitx +

\lambda 

2

\int 
\Omega 
(u - gc)

2 d\bfitx + \chi S(u),

where the adaptive functions gc and hc are defined by

(2.12) gc(\bfitx ) :=

\Biggl\{ 
\alpha \=f, \bfitx \in \Omega d,

f(\bfitx ), \bfitx \in \Omega b,
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8 PO-WEN HSIEH, PEI-CHIANG SHAO, AND SUH-YUH YANG

(2.13) hc(\bfitx ) :=

\Biggl\{ 
\beta f(\bfitx ), \bfitx \in \Omega d,

f(\bfitx ), \bfitx \in \Omega b,

with \Omega d and \Omega b defined in (2.9) and (2.10), respectively.
We complete this subsection by remarking that the regularization parameter \lambda , the bright-

ness parameter \alpha , and the contrast-level parameter \beta are all fixed across channels. At this
stage, there is no evidence shown that choosing different \lambda , \alpha , and \beta for each channel sepa-
rately has a specific benefit. Therefore, we fix \lambda , \alpha , and \beta across channels in this paper.

2.3. Mathematical analysis. In this subsection, we will prove the existence and unique-
ness of the minimizers of the variational minimization problems (2.3) and (2.11) in some
suitable function space. We first discuss the case q = 1 for model (2.3). To begin with, we
present some basic results for the bounded variation space BV (\Omega ) as below, and more details
can be found in, e.g., [2, 10].

Definition 2.4. Let \Omega be an open subset of \BbbR 2. The space of functions of bounded variation
BV (\Omega ) is defined as the space of real-valued function u \in L1(\Omega ) such that the total variation\int 

\Omega 
| Du| := sup

\Bigl\{ \int 
\Omega 
udiv\varphi d\bfitx : \varphi \in C1

c (\Omega ,\BbbR 2), \| \varphi \| L\infty (\Omega ) \leq 1
\Bigr\} 

is finite. Then BV (\Omega ) is a Banach space with the norm

\| u\| BV (\Omega ) := \| u\| L1(\Omega ) +

\int 
\Omega 
| Du| .

The next two lemmas characterize the sequential compactness and lower semicontinuity
properties of the bounded variation space BV (\Omega ) (cf. Theorem 3.23 and Proposition 3.6 in
[2] or Theorems 2.1.2 and 2.1.1 in [10], respectively).

Lemma 2.5. Suppose sequence \{ un\} \subset BV (\Omega ) satisfies sup \| un\| BV (\Omega ) < \infty . Then there
exist a subsequence \{ unk

\} and a function u \in BV (\Omega ) such that

unk
\rightarrow u in L1(\Omega ) as k \rightarrow \infty .

Lemma 2.6. Assume \{ un\} \subset BV (\Omega ) and un \rightarrow u in L1(\Omega ). Then\int 
\Omega 
| Du| \leq lim inf

n\rightarrow \infty 

\int 
\Omega 
| Dun| .

Now we are in a position to prove the existence and uniqueness of the minimizer of (2.3)
with q = 1, and then the same assertion holds for (2.11) immediately. The suitable solution
space for the variational minimization problem (2.3) should be BV (\Omega ) \cap L2(\Omega ).

Theorem 2.7. Let \Omega \subset \BbbR 2 be an open bounded domain with smooth C2 boundary, and let h
defined in (2.7) be in the space W 1,2(\Omega ). Then the variational minimization problem (2.3) with
q = 1 admits a unique minimizer in \Lambda := \{ u \in BV (\Omega ) \cap L2(\Omega ) : 0 \leq u(\bfitx ) \leq 255 a.e. in \Omega \} .
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VARIATIONAL MODEL FOR CONTRAST ENHANCEMENT 9

Proof. We will consider the variational minimization problem (2.3) with q = 1 over the
function space BV (\Omega ) \cap L2(\Omega ). Introducing the new variable w := u  - h \in BV (\Omega ) \cap L2(\Omega ),
then problem (2.3) with q = 1 can be written as

(2.14) min
w\in BV (\Omega )\cap L2(\Omega )

\int 
\Omega 
| Dw| + \lambda 

2

\int 
\Omega 

\bigl( 
w  - (g  - h)

\bigr) 2
d\bfitx + \chi S(w + h),

which is equivalent to

(2.15) min
w\in \Lambda  - h

\biggl\{ 
E(w) :=

\int 
\Omega 
| Dw| + \lambda 

2

\int 
\Omega 

\bigl( 
w  - (g  - h)

\bigr) 2
d\bfitx 

\biggr\} 
,

where w \in \Lambda  - h means that w + h \in \Lambda . We first show that there exists a minimizer to
problem (2.15). Note that w, g, and h are all in L2(\Omega ), so there exists w \in \Lambda  - h (e.g., w \equiv 0)
such that E(w) < \infty . In addition, we have E(w) \geq 0 for all w \in \Lambda  - h. These properties
ensure that  - \infty < infw\in \Lambda  - hE(w) < \infty . Therefore, we can assume a minimizing sequence
\{ wn\} \infty n=1 \subset \Lambda  - h for problem (2.15) with limn\rightarrow \infty E(wn) = infw\in \Lambda  - hE(w). Following the
property of the minimizing sequence stated above, there exists a constant K1 > 0 such that
E(wn) \leq K1, namely,

(2.16)

\int 
\Omega 
| Dwn| +

\lambda 

2

\int 
\Omega 

\bigl( 
wn  - (g  - h)

\bigr) 2
d\bfitx \leq K1,

which implies

(2.17)

\int 
\Omega 
| Dwn| \leq K1.

Furthermore, using 0 \leq wn(\bfitx )+h(\bfitx ) \leq 255 a.e. in \Omega and the inclusion W 1,2(\Omega ) \subset W 1,1(\Omega ) \subset 
L1(\Omega ), there exists a constant K2 > 0 such that

(2.18)

\int 
\Omega 
| wn| d\bfitx \leq 255| \Omega | +

\int 
\Omega 
| h| d\bfitx \leq K2 \forall n \geq 1,

i.e., \| wn\| L1(\Omega ) \leq K2 for all n \geq 1. Now, from (2.17) and (2.18) we obtain that \{ wn\} \infty n=1

is uniformly bounded in BV (\Omega ), i.e., sup \| wn\| BV (\Omega ) < \infty . By Lemma 2.5, we can deduce
that there exist a subsequence \{ wnk

\} \infty k=1 of \{ wn\} \infty n=1 and a function w\ast \in BV (\Omega ) such that
wnk
\rightarrow w\ast in L1(\Omega ). Thus, wnk

\rightarrow w\ast a.e. in \Omega and then the Lebesgue dominated convergence
theorem asserts that

(2.19)

\int 
\Omega 

\bigl( 
w\ast  - (g  - h)

\bigr) 2
d\bfitx = lim

k\rightarrow \infty 

\int 
\Omega 

\bigl( 
wnk
 - (g  - h)

\bigr) 2
d\bfitx .

On the other hand, applying Lemma 2.6, we obtain

(2.20)

\int 
\Omega 
| Dw\ast | \leq lim inf

k\rightarrow \infty 

\int 
\Omega 
| Dwnk

| .

Combining (2.19) with (2.20), we have

(2.21) E(w\ast ) \leq lim inf
k\rightarrow \infty 

E(wnk
) = inf

w\in \Lambda  - h
E(w).
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10 PO-WEN HSIEH, PEI-CHIANG SHAO, AND SUH-YUH YANG

Since 0 \leq wnk
(\bfitx )+h(\bfitx ) \leq 255 a.e. in \Omega , by taking the limit we have 0 \leq w\ast (\bfitx )+h(\bfitx ) \leq 255

a.e. in \Omega , which concludes that w\ast \in \Lambda  - h is a minimizer of problem (2.15). Since the total
variation defined in Definition 2.4 is convex and the L2 data term is strictly convex, the sum
of these two terms is also strictly convex. The uniqueness of the minimizer follows directly
from the strict convexity of the energy functional E given in (2.15) (cf. the proof of Lemma
3.1 in [15]). Finally, note that the unique minimizer for problem (2.3) should be u\ast := w\ast +h.
This completes the proof.

To conclude this subsection, we remark that the other case, q = 2, for the variational
minimization problems (2.3) and (2.11) can be done in a similar way in the function space
W 1,2(\Omega ).

3. The alternating minimization algorithm. Advantageously, the newly proposed models
(2.3) and (2.11) can be solved very efficiently by the popular split Bregman method [11, 23].
In this subsection, we will derive the numerical algorithm for solving (2.3) in detail, and the
algorithm for (2.11) is almost the same.

Without loss of generality, we first discretize the image domain as a regular Cartesian grid
of size N \times N , i.e., \Omega = \{ (i, j) : i = 1, 2, . . . , N, j = 1, 2, . . . , N\} , where (i, j) denotes a pixel of
the image. Then grayscale images are considered as N \times N matrices. Introducing the discrete
gradient operator as (\nabla u)i,j = ((\nabla +

x u)i,j , (\nabla +
y u)i,j) with

(\nabla +
x u)i,j :=

\biggl\{ 
ui,j+1  - ui,j , 1 \leq j \leq N  - 1,
0, j = N,

(\nabla +
y u)i,j :=

\biggl\{ 
ui+1,j  - ui,j , 1 \leq i \leq N  - 1,
0, i = N,

the model (2.3) can be discretized as

(3.1) min
u

\sum 
i,j

\biggl( 
1

q

\bigm| \bigm| (\nabla u)i,j  - (\nabla h)i,j
\bigm| \bigm| q + \lambda 

2
(ui,j  - gi,j)

2

\biggr) 
+ \chi S(u).

Applying the operator splitting technique [23] to (3.1), we obtain the following equivalent
minimization problem:

(3.2) min
u,d,v

\sum 
i,j

\biggl( 
1

q

\bigm| \bigm| di,j\bigm| \bigm| q + \lambda 

2
(ui,j  - gi,j)

2

\biggr) 
+ \chi S(v), subject to d = \nabla u - \nabla h and v = u.

The splitting problem (3.2) can be solved by using the Bregman iteration. Introducing two
penalty parameters, \gamma > 0 and \delta > 0, we arrive at the following unconstrained minimization
problem:

min
u,d,v

\sum 
i,j

\biggl( 
1

q

\bigm| \bigm| di,j\bigm| \bigm| q + \lambda 

2
(ui,j  - gi,j)

2 +
\gamma 

2

\bigm| \bigm| di,j  - (\nabla u)i,j + (\nabla h)i,j  - bi,j
\bigm| \bigm| 2(3.3)

+
\delta 

2
(vi,j  - ui,j  - ci,j)

2

\biggr) 
+ \chi S(v),

where b and c are variables related to the Bregman iteration algorithm. Furthermore, (3.3)
can be solved by alternating the search directions of u, d, and v as follows:
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\bullet \bfitu -subproblem:

un+1 = argmin
u

\sum 
i,j

\biggl( 
\lambda 

2
(ui,j  - gi,j)

2 +
\gamma 

2

\bigm| \bigm| dni,j  - (\nabla u)i,j + (\nabla h)i,j  - bni,j
\bigm| \bigm| 2(3.4)

+
\delta 

2
(vni,j  - ui,j  - cni,j)

2

\biggr) 
;

\bullet \bfitd -subproblem:

(3.5) dn+1 = argmin
d

\sum 
i,j

\biggl( 
1

q

\bigm| \bigm| di,j\bigm| \bigm| q + \gamma 

2

\bigm| \bigm| di,j  - (\nabla un+1)i,j + (\nabla h)i,j  - bni,j
\bigm| \bigm| 2\biggr) ;

\bullet \bfitv -subproblem:

(3.6) vn+1 = argmin
v

\sum 
i,j

\biggl( 
\delta 

2
(vi,j  - un+1

i,j  - cni,j)
2

\biggr) 
+ \chi S(v).

Note that Bregman variables b and c are updated by bn+1 = bn + \nabla un  - \nabla h  - dn+1 and
cn+1 = cn + un+1  - vn+1, respectively.

In what follows, we give more details about these subproblems. For the u-subproblem,
differentiating the objective function given in (3.4) and then setting it to zero, we obtain the
discrete screened Poisson equation:

(3.7) (\lambda + \delta )un+1
i,j  - \gamma (\Delta un+1)i,j = \lambda gi,j  - \gamma 

\bigl( 
div(dn +\nabla h - bn)

\bigr) 
i,j

+ \delta (vni,j  - cni,j).

The discrete operators div and \Delta are defined as follows [49]: given p = (p1, p2) with p1,
p2 \in \BbbR N\times N , we define

(divp)i,j := (\nabla  - 
x p

1)i,j + (\nabla  - 
y p

2)i,j := (p1i,j  - p1i,j - 1) + (p2i,j  - p2i - 1,j),

where\nabla  - 
x and\nabla  - 

y are backward difference operators with Neumann boundary conditions. The
discrete Laplacian is then defined as the composite of \nabla and div as \Delta u := div(\nabla u). Since
(3.7) produces a symmetric and diagonally dominant linear system, some iterative solvers such
as the Jacobi method or Gauss--Seidel method can be employed for efficiently solving u.

For the d-subproblem, the objective function given in (3.5) is strictly convex and has the
following closed-form solution:

dn+1
i,j =

(\nabla un+1)i,j  - (\nabla h)i,j + bni,j\bigm| \bigm| (\nabla un+1)i,j  - (\nabla h)i,j + bni,j
\bigm| \bigm| (3.8)

\times max

\biggl\{ \bigm| \bigm| (\nabla un+1)i,j  - (\nabla h)i,j + bni,j
\bigm| \bigm|  - 1

\gamma 
, 0

\biggr\} 
for q = 1

and

(3.9) dn+1
i,j =

\gamma 

1 + \gamma 

\Bigl( 
(\nabla un+1)i,j  - (\nabla h)i,j + bni,j

\Bigr) 
for q = 2.
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12 PO-WEN HSIEH, PEI-CHIANG SHAO, AND SUH-YUH YANG

Finally, for the v-subproblem, (3.6) can be solved by pixelwise orthogonal projection of
u+ c onto the predefined interval S := [s1, s2]:

(3.10) vi,j = min
\Bigl\{ 
max

\bigl\{ 
ui,j + ci,j , s1

\bigr\} 
, s2

\Bigr\} 
.

Note that we take S = [s1, s2] := [0, 255] throughout this paper.
To sum up, the split Bregman algorithm is described in Algorithm 3.1.

Algorithm 3.1 Split Bregman algorithm for solving (2.3).

initialize u = h, v = h, d = 0, b = 0, c = 0
while \| u - uprev\| 2/\| u\| 2 > tol do
Solve the u-subproblem defined in (3.4) using (3.7)
Solve the d-subproblem defined in (3.5) using (3.8) or (3.9)
Solve the v-subproblem defined in (3.6) using (3.10)
b\leftarrow b+\nabla u - \nabla h - d
c\leftarrow c+ u - v

end while

The convergence of Algorithm 3.1 can be guaranteed via the convergence of the ADMM
[18], which we conclude as the following theorem.

Theorem 3.1. For the minimization problem (3.2), let the initials u0, d0, v0, b0, and c0 be
arbitrary, and let \gamma , \delta > 0. Then the sequence \{ un, dn, vn, bn, cn\} generated by Algorithm 3.1
converges to \{ u\ast , d\ast , v\ast , b\ast , c\ast \} , where (u\ast , d\ast , v\ast ) is the minimizer of problem (3.2).

4. Numerical experiments. In this section, we will give some numerical examples to
demonstrate the high performance of the proposed adaptive contrast enhancement model.
For all test problems, the intensity values of images are in S = [0, 255]. We take the stopping
tolerance tol = 10 - 4 in Algorithm 3.1, set the two penalty parameters \gamma = \delta = 5/255, and
choose the standard deviation of Gaussian kernel as 5 in (2.7) for all examples. The test
images were downloaded from the following websites:

\bullet Kodak Lossless True Color Image [19]: http://r0k.us/graphics/kodak/.
\bullet Contrast Enhancement Evaluation Database CEED2016 [44]: http://data.mendeley.
com/datasets/3hfzp6vwkm/3.
\bullet Low Dynamic Range Test Images [30]: http://mcl.korea.ac.kr/projects/LDR/.
\bullet Image Processing On Line [34]: http://demo.ipol.im/demo/84/.
\bullet Image Processing On Line [37]: http://demo.ipol.im/demo/107/.
\bullet Image Processing On Line [22]: http://demo.ipol.im/demo/g ace/.

Throughout this section, we denote by f the original low-light image, by u1 the solution
of model (2.2) with q = 1, by u2 the solution of model (2.2) with q = 2, by u1a the solution
of model (2.3) (or (2.11) for color images) with q = 1, and by u2a the solution of model (2.3)
(or (2.11) for color images) with q = 2, where the subscript ``a"" means ``adaptive model."" In
practice, the enhanced image by solving variational minimization problems like (1.1) is further
processed by a simplest color balance (SCB) [32] with an s\% of saturation. Usually, a small
s like 0.1 can make the image more natural [34]. We also denote the postprocessed results
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by u1s, u2s, u1as, and u2as, respectively, where the subscript ``s"" represents ``saturation."" We
will show the results of SCB postprocessing in Figures 11--12.

Example 4.1 (grayscale image enhancement). In this example, we first consider the syn-
thetic image shown in Figure 2(a) to exhibit the innate characters of the minimizers obtained
by solving the variational minimization problems (2.2) and (2.3) with q = 1 and q = 2. For
simplicity, the contrast-level parameter \beta here is exceptionally set to be 1; i.e., there is no ad-
ditional enhancement in structure. Conceptually, the original image f can be thought of as an
image being nonuniformly illuminated with underexposure at pixels except for the left-central
part on the image domain. The minimizers of (2.2) and (2.3) with q = 1 and q = 2 using this
f as the input image are denoted by u1, u2, u1a, and u2a, respectively. The model parameters
are \lambda = 0.0005 for both u1 and u1a and \lambda = 0.001 for both u2 and u2a. The enhanced results
are displayed in Figure 2.

We can see from Figures 2(b) and 2(c) that although u1 and u2 elevate the dim area very
well, the original bright area is also suppressed to gray, which is usually undesired in practice.
The difference between u1 and u2 is that u2 is much smoother and u1 better preserves the orig-
inal structure. Figures 2(d)--2(f) show the adaptive results of u1a with brightness parameter \alpha 
given as 0.8, 1.0, and 1.2, respectively. It can be observed that, unlike u1 and u2, u1a preserves
the original bright area very well, and the dim area becomes much brighter as \alpha increases.
Similar results can be found in Figures 2(g)--2(i) for u2a. The characters between u1a and u2a
are apparent and quite similar to the characters between u1 and u2 just discussed above.

Now, we use the second grayscale image displayed in Figure 3(a) to further demonstrate
the given statement for the innate characters of the four minimizers. The parameter settings
are the same as those used in Figure 2, except that here we set \beta = 3\alpha > 1; i.e., the contrast-
level parameter is set to be three times the brightness parameter (cf. Remark 4.2 below). We
can see again, from Figures 3(b) and 3(c), that both u1 and u2 destroy the sky by suppressing
it to gray, which is apparently undesired. Figures 3(d)--3(i) show the adaptive results of u1a
and u2a with different brightness parameters. The preserved bright sky and the enhanced iris
on the table exhibit the high performance of the newly proposed method.

In the computational aspect, both models (2.2) and (2.3) are implemented by the popular
split Bregman algorithm as introduced in section 3. The iteration numbers are 1269 for u1,
610 for u2, (833, 862, 860) for u1a with \alpha = (0.8, 1.0, 1.2), respectively, and (415, 416, 388) for
u2a with \alpha = (0.8, 1.0, 1.2), respectively. As a result, the adaptive model (2.3) is much more
computationally efficient than its nonadaptive counterpart for both q = 1 and q = 2.

Remark 4.1. For a fair comparison of u1 and u2 with u1a and u2a, we have implemented an
additional \chi S(u) term with S = [0, 255] for model (2.2) in Example 4.1. In the next example,
we will also add this term for model (2.2).

Remark 4.2. Note that although a larger \alpha value makes the intensity of dim pixels brighter,
it also makes them flatter. Intuitively, in this case, larger \beta should be taken to enhance the
image structure. Empirically, we find that \beta = 3\alpha > 1 gives satisfactory results, and we will
keep this fixed for all the remaining experiments in this paper.

Example 4.2 (color image enhancement). In this example, we study the effectiveness of our
method for RGB color images. The general settings are the same as Example 4.1. The only
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(a) f (b) u1 (c) u2

(d) u1a (\alpha = 0.8) (e) u1a (\alpha = 1.0) (f) u1a (\alpha = 1.2)

(g) u2a (\alpha = 0.8) (h) u2a (\alpha = 1.0) (i) u2a (\alpha = 1.2)

Figure 2. Numerical results of Example 4.1: (a) the original nonuniformly illuminated image; (b) the
minimizer of (2.2) with q = 1; (c) the minimizer of (2.2) with q = 2; (d)--(f) the minimizer of (2.3) with q = 1
and various \alpha ; (g)--(i) the minimizer of (2.3) with q = 2 and various \alpha . The model parameters are \lambda = 0.0005
for u1 and u1a, \lambda = 0.001 for u2 and u2a, and \beta = 1 for u1a and u2a.

difference that should be noticed is that models (2.2) and (2.11) are employed channelwise
to the RGB channels of the input color images. The first test image is shown in Figure 4(a),
and the enhancement results are depicted in Figures 4(b)--4(i). Similar to the grayscale case
in Figure 3, u1 and u2 suppress the sky to be much darker, which is undesired. On the other
hand, u1a and u2a successfully preserve the original color in f and simultaneously recover the
front of the sports car. As \alpha gets bigger, the front becomes more discernible.

The difference between u1a and u2a in Figure 4 is not that significant, so we use another
test image depicted in Figure 5(a) to demonstrate their difference. Comparing Figure 5(f) with
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(a) f (b) u1 (c) u2

(d) u1a (\alpha = 0.8) (e) u1a (\alpha = 1.0) (f) u1a (\alpha = 1.2)

(g) u2a (\alpha = 0.8) (h) u2a (\alpha = 1.0) (i) u2a (\alpha = 1.2)

Figure 3. Numerical results of Example 4.1: (a) the original low-light image; (b) the minimizer of (2.2)
with q = 1; (c) the minimizer of (2.2) with q = 2; (d)--(f) the minimizer of (2.3) with q = 1 and various \alpha ;
(g)--(i) the minimizer of (2.3) with q = 2 and various \alpha . The model parameters are \lambda = 0.0005 for u1 and u1a,
\lambda = 0.001 for u2 and u2a, and \beta = 3\alpha > 1 for u1a and u2a.

Figure 5(i), one can observe that u1a has much clearer edges while u2a has some blurred edges.
In the computational aspect, the adaptive model (2.11) is still much more computationally
efficient than its nonadaptive counterpart for both q = 1 and q = 2. For Figure 4, the average
iteration numbers across RGB channels are 1161 for u1, 601 for u2, (824, 841, 859) for u1a with
\alpha = (0.8, 1.0, 1.2), respectively, and (447, 473, 491) for u2a with \alpha = (0.8, 1.0, 1.2), respectively.
For Figure 5, the average iteration numbers across RGB channels are 1316 for u1, 628 for u2,
(955, 924, 930) for u1a with \alpha = (0.8, 1.0, 1.2), respectively, and (376, 394, 401) for u2a with
\alpha = (0.8, 1.0, 1.2), respectively.
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16 PO-WEN HSIEH, PEI-CHIANG SHAO, AND SUH-YUH YANG

(a) f (b) u1 (c) u2

(d) u1a (\alpha = 0.8) (e) u1a (\alpha = 1.0) (f) u1a (\alpha = 1.2)

(g) u2a (\alpha = 0.8) (h) u2a (\alpha = 1.0) (i) u2a (\alpha = 1.2)

Figure 4. Numerical results of Example 4.2: (a) the original low-light image; (b) the minimizer of (2.2)
with q = 1; (c) the minimizer of (2.2) with q = 2; (d)--(f) the minimizer of (2.11) with q = 1 and various \alpha ;
(g)--(i) the minimizer of (2.11) with q = 2 and various \alpha ; the model parameters are \lambda = 0.0005 for u1 and u1a,
\lambda = 0.001 for u2 and u2a, and \beta = 3\alpha > 1 for u1a and u2a.

Example 4.3 (comparison with other methods). In this example, we compare the perfor-
mance of our adaptive method with the following popular enhancement methods:

\bullet (M1) The screened Poisson equation (SPE) method [34].
\bullet (M2) The histogram equalization (HE) method [22].
\bullet (M3) The automatic color enhancement (ACE) method [22].
\bullet (M4) The variational contrast enhancement (VCE) method [39].
\bullet (M5) The contrast-limited adaptive histogram equalization (CLAHE) method [33].
\bullet (M6) The morpho-local histogram equalization with controlled histogram equalization
(MLHE-HE) method [33].D
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(a) f (b) u1 (c) u2

(d) u1a (\alpha = 0.8) (e) u1a (\alpha = 1.0) (f) u1a (\alpha = 1.2)

(g) u2a (\alpha = 0.8) (h) u2a (\alpha = 1.0) (i) u2a (\alpha = 1.2)

Figure 5. Numerical results of Example 4.2: (a) the original low-light image; (b) the minimizer of (2.2)
with q = 1; (c) the minimizer of (2.2) with q = 2; (d)--(f) the minimizer of (2.11) with q = 1 and various \alpha ;
(g)--(i) the minimizer of (2.11) with q = 2 and various \alpha . The model parameters are \lambda = 0.0005 for u1 and
u1a, \lambda = 0.001 for u2 and u2a, and \beta = 3\alpha > 1 for u1a and u2a.

As mentioned at the beginning of this section, a saturation operation is usually performed
to make images look more natural. Therefore, (M1) employs a two-stage SCB [32], each with
an s\% saturation operation; (M3) employs the so-called slope function [22] with a contrast-
level parameter \widetilde \alpha \geq 1 to perform a saturation operation; (M2) can be viewed as the limit of
(M3) as \widetilde \alpha \rightarrow \infty ; and (M5), (M6) employ (M2) in their models. We also implement an s\%
SCB as a postprocessing to u1a and denote the result by u1as (see Figures 11 and 12). In this
example, we set the saturation parameter s = 0.1 and the model parameter \lambda = 0.0005 for
both (M1) and our method.
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We now investigate four low-light test images, and the enhanced results of (M1)--(M6)
and our method are shown in Figures 6--9. We discuss the results figure by figure. From
Figures 6(b), 7(b), and 9(b), one can observe that bright sky is severely suppressed by uSPE ;
however, the result in Figure 8(b) is quite acceptable but still looks a little unnatural. The
results by uHE in Figures 6(c), 7(c), and 9(c) are very clear, but the colors do not match
the original ones in f . The lower-left part in Figure 8(c) is relatively dark. For the results
of uV CE , the house remains dark in Figure 6(d); the scene outside the cave is enhanced, but
the bricks remain unclear in Figure 7(d); the lower-left part remains dark in Figure 8(d); the
mountain remains unclear in Figure 9(d). For the results of uCLAHE , the sky in Figures 6(e),
7(e), and 9(e) is polluted. The lower-left part in Figure 8(e) is relatively dark. For the results
of uMLHE - HE , images are overenhanced and the hue is not preserved in Figures 6(f) and
7(f). The lower-left part in Figure 8(f) is relatively dark. The color of the tree on the left side
mixes with the color of the sky in Figure 9(f). The results of uACE with various \alpha in Figures
6(g)--6(i) look much better than the results of uHE , but the colors have the same problem
of not being close to the original. The results in Figures 7(g)--7(i) are acceptable, but the
mountain becomes too light and unclear as \alpha gets bigger. The results in Figures 8(g)--8(i) are
also relatively dark in the lower-left parts. The sky in Figures 9(g)--9(i) looks gray.

On the other hand, the results of our method by u1a perform very satisfactorily. More
specifically, the colors are preserved as close as possible to f , and the house is bright in
Figures 6(j)--6(l); the mountain does not fade out as \alpha gets bigger, and the bricks are clear
in Figures 7(j)--7(l); the lower-left part is relatively clear in Figures 8(j)--8(l); the sky does
not turn gray and the cliff is conspicuous in Figures 9(j)--9(l). We further give a zoomed-in
observation of the red rectangle on Figure 9(a) to demonstrate that our method not only
elevates the intensities of dim pixels but also enhances their structures at the same time. The
results are shown in Figure 10. Overall, our method is excellent in preserving the original
color presented in f and boosting its dim pixels simultaneously.

Finally, we close this section by applying the newly proposed adaptive enhancement
method to several low-light color images. The enhancement results of u1a and u1as shown
in Figures 11 and 12 are satisfactory, and these show the high potential of the newly proposed
model.

5. Summary and conclusions. In this paper, we have proposed a simple and efficient
adaptive variational model for image contrast enhancement. This model is designed for en-
hancing low-light images by employing the maximum image of the RGB channels as a classifier
to divide the image domain into bright and dim parts. The existence and uniqueness of min-
imizers for the variational minimization problem is given, and the convergent split Bregman
algorithm is also provided. Numerical results obtained in this paper show the high perfor-
mance of the proposed method. The most distinguished feature of the adaptive variational
model is that the bright pixels are preserved as close as possible to the original ones, while
the dim pixels are boosted with brightness and contrast-level parameters to adjust the de-
gree of the strength. Extending the idea used in the proposed adaptive variational model for
other types of enhancement problems such as dehazing [20] and color correction [5] should be
interesting, and this deserves further study.
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(a) f (b) uSPE (c) uHE

(d) uV CE (e) uCLAHE (f) uMLHE - HE

(g) uACE (\alpha = 2.0) (h) uACE (\alpha = 4.0) (i) uACE (\alpha = 6.0)

(j) u1a (\alpha = 0.8) (k) u1a (\alpha = 1.0) (l) u1a (\alpha = 1.2)

Figure 6. Numerical results of Example 4.3: (a) the original low-light image; (b) the enhanced result of
SPE [34]; (c) the enhanced result of HE [22]; (d) the enhanced result of VCE [39]; (e) the enhanced result of
CLAHE [33]; (f) the enhanced result of MLHE-HE [33]; (g)--(i) the enhanced results of ACE [22] with various
\alpha ; (j)--(l) the enhanced results of our method with q = 1 and various \alpha . The model parameter \lambda = 0.0005 is
used for both uSPE and u1a.
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20 PO-WEN HSIEH, PEI-CHIANG SHAO, AND SUH-YUH YANG

(a) f (b) uSPE (c) uHE

(d) uV CE (e) uCLAHE (f) uMLHE - HE

(g) uACE (\alpha = 2.0) (h) uACE (\alpha = 4.0) (i) uACE (\alpha = 6.0)

(j) u1a (\alpha = 0.8) (k) u1a (\alpha = 1.0) (l) u1a (\alpha = 1.2)

Figure 7. Numerical results of Example 4.3: (a) the original low-light image; (b) the enhanced result of
SPE [34]; (c) the enhanced result of HE [22]; (d) the enhanced result of VCE [39]; (e) the enhanced result of
CLAHE [33]; (f) the enhanced result of MLHE-HE [33]; (g)--(i) the enhanced results of ACE [22] with various
\alpha ; (j)--(l) the enhanced results of our method with q = 1 and various \alpha . The model parameter \lambda = 0.0005 is
used for both uSPE and u1a.
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(a) f (b) uSPE (c) uHE

(d) uV CE (e) uCLAHE (f) uMLHE - HE

(g) uACE (\alpha = 2.0) (h) uACE (\alpha = 4.0) (i) uACE (\alpha = 6.0)

(j) u1a (\alpha = 0.8) (k) u1a (\alpha = 1.0) (l) u1a (\alpha = 1.2)

Figure 8. Numerical results of Example 4.3: (a) the original low-light image; (b) the enhanced result of
SPE [34]; (c) the enhanced result of HE [22]; (d) the enhanced result of VCE [39]; (e) the enhanced result of
CLAHE [33]; (f) the enhanced result of MLHE-HE [33]; (g)--(i) the enhanced results of ACE [22] with various
\alpha ; (j)--(l) the enhanced results of our method with q = 1 and various \alpha . The model parameter \lambda = 0.0005 is
used for both uSPE and u1a.
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(a) f (b) uSPE (c) uHE

(d) uV CE (e) uCLAHE (f) uMLHE - HE

(g) uACE (\alpha = 2.0) (h) uACE (\alpha = 4.0) (i) uACE (\alpha = 6.0)

(j) u1a (\alpha = 0.8) (k) u1a (\alpha = 1.0) (l) u1a (\alpha = 1.2)

Figure 9. Numerical results of Example 4.3: (a) the original low-light image; (b) the enhanced result of
SPE [34]; (c) the enhanced result of HE [22]; (d) the enhanced result of VCE [39]; (e) the enhanced result of
CLAHE [33]; (f) the enhanced result of MLHE-HE [33]; (g)--(i) the enhanced results of ACE [22] with various
\alpha ; (j)--(l) the enhanced results of our method with q = 1 and various \alpha . The model parameter \lambda = 0.0005 is
used for both uSPE and u1a.
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(a) f (b) uSPE (c) uHE

(d) uV CE (e) uCLAHE (f) uMLHE - HE

(g) uACE (\alpha = 2.0) (h) uACE (\alpha = 4.0) (i) uACE (\alpha = 6.0)

(j) u1a (\alpha = 0.8) (k) u1a (\alpha = 1.0) (l) u1a (\alpha = 1.2)

Figure 10. The locally zoomed-in results on the lower-right red rectangle of Figure 8(a): (a) the original
low-light image; (b) the enhanced result of SPE [34]; (c) the enhanced result of HE [22]; (d) the enhanced result
of VCE [39]; (e) the enhanced result of CLAHE [33]; (f) the enhanced result of MLHE-HE [33]; (g)--(i) the
enhanced results of ACE [22] with various \alpha ; (j)--(l) the enhanced results of our method with q = 1 and various
\alpha . The model parameter \lambda = 0.0005 is used for both uSPE and u1a.
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f u1a u1as

f u1a u1as

f u1a u1as

f u1a u1as

Figure 11. The enhancement results of u1a and u1as for several low-light color images.
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f u1a u1as

f u1a u1as

f u1a u1as

f u1a u1as

Figure 12. The enhancement results of u1a and u1as for several low-light color images.
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