Mathematical Approaches to 2-D Image Processing: A Preliminary Exploration

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 32001, Taiwan

July 24, 2022

TWSIAM 2022: Image and Signal Processing

Image processing and computational mathematics

• Tony F. Chan: *Image processing and computational mathematics,* Davis Centre, University of Waterloo, October 7th, 2015.

https://www.youtube.com/watch?v=zZN_L8nt09I

Image processing has emerged not only as an application domain where computational mathematics provides ideas and solutions but also in spurring new research directions,

"new Computational Fluid Dynamics!"

- We briefly introduce two different mathematical approaches to 2-D image processing:
 - (1) Variational method/energy functional minimization
 - (2) Sparse representation and dictionary learning

Total variation

Let $u : [a, b] \to \mathbb{R}$. Let $\mathcal{P}_n = \{x_0 = a, x_1, \dots, x_n = b\}$ be an arbitrary partition of $\overline{\Omega} := [a, b]$ and $\Delta x_i = x_i - x_{i-1}$. The total variation of u is

$$\begin{aligned} \|u\|_{TV(\Omega)} &:= \sup_{\mathcal{P}_n} \sum_{i=1}^n |u(x_i) - u(x_{i-1})| = \sup_{\mathcal{P}_n} \sum_{i=1}^n \left| \frac{u(x_i) - u(x_{i-1})}{\Delta x_i} \right| \Delta x_i \\ &= \int_{\Omega} |u'(x)| \, dx, \quad \text{if } u \text{ is smooth.} \end{aligned}$$

Denoising is the problem of removing noise from an image: minimize $\left(\int_{\Omega} |u'(x)| dx + \text{ some data fidelity term}\right)$.

ROF total-variation model vs. adaptive diffusivity model

Let $f : \overline{\Omega} \subset \mathbb{R}^2 \to \mathbb{R}$ be a given noisy image. Rudin-Osher-Fatemi (1992) proposed the model:

$$\min_{u\in\mathcal{V}}\Big(\int_{\Omega}|\nabla u|+\frac{\lambda}{2}(u-f)^2\,dx\Big),\quad \lambda>0.$$

Hsieh-Shao-Yang (2018) proposed an adaptive model to alleviate *the staircasing effect:*

 $\min_{u\in\mathcal{V}}\Big(\int_{\Omega}\frac{1}{2}\varphi(|\nabla u^*|)|\nabla u|^2+\frac{\lambda}{2}(u-f)^2\,dx\Big),\quad \lambda>0.$

A variational model for image contrast enhancement

Hsieh-Shao-Yang (2020): for every $f \in \{f_R, f_G, f_B\}$, we solve

$$\min_{u\in\mathcal{V}}\left(\int_{\Omega}|\nabla u-\nabla h_{c}|\,d\mathbf{x}+\frac{\lambda}{2}\int_{\Omega}(u-g_{c})^{2}\,d\mathbf{x}\right),$$

where the adaptive functions g_c and h_c are defined as

$$g_c(\mathbf{x}) := \begin{cases} \alpha \bar{f}, & \mathbf{x} \in \Omega_d, \\ f(\mathbf{x}), & \mathbf{x} \in \Omega_b, \end{cases} \quad h_c(\mathbf{x}) := \begin{cases} \beta f(\mathbf{x}), & \mathbf{x} \in \Omega_d, \\ f(\mathbf{x}), & \mathbf{x} \in \Omega_b. \end{cases}$$

Numerical methods: *(i) Euler-Lagrange equation + solving IBVP; (ii) direct discretization + split Bregman iterations.*

Numerical results by the split Bregman iterations

・ロト ・四ト ・ヨト ・ヨト

Chan-Vese segmenation model: nonconvex minimization

Chan-Vese (1999) modified Mumford-Shah model (1989): two-phase

$$\min_{c_1,c_2,\mathcal{C}} \left(\mu |\mathcal{C}| + \nu |\Omega_{\rm in}| + \lambda_1 \int_{\Omega_{\rm in}} (f(\mathbf{x}) - c_1)^2 + \lambda_2 \int_{\Omega_{\rm out}} (f(\mathbf{x}) - c_2)^2 \right).$$

In terms of *H*, δ , and the level set function ϕ , we have

$$\begin{split} \min_{c1,c2,\phi} \Big(\mu \int_{\Omega} \delta(\phi(\mathbf{x})) |\nabla \phi(\mathbf{x})| + \nu \int_{\Omega} H(\phi(\mathbf{x})) + \lambda_1 \int_{\Omega} (f(\mathbf{x}) - c_1)^2 H(\phi(\mathbf{x})) \\ + \lambda_2 \int_{\Omega} (f(\mathbf{x}) - c_2)^2 (1 - H(\phi(\mathbf{x}))) \Big). \end{split}$$

Numerical method: *an alternating iterative scheme (region averages + solving IBVP of the Euler-Lagrange equation)*

Numerical results by an alternating iterative scheme

Adaptive model for intensity inhomogeneous images

Liao-Yang-You (2022) proposed an entropy-weighted local intensity clustering-based model starting from *the bias field model*: f = bI + n:

$$\min_{\mathcal{C},b,c} \left(\mu \left| \mathcal{C} \right| + \int_{\Omega} E_r(\boldsymbol{y}) \sum_{i=1}^n \int_{\Omega_i} K(\boldsymbol{y}-\boldsymbol{x}) \left(f(\boldsymbol{x}) - b(\boldsymbol{y}) c_i \right)^2 d\boldsymbol{x} d\boldsymbol{y} \right).$$

Numerical method: *a new alternating iterative scheme, called iterative convolution-thresholding (ICT) scheme.*

initial contour, segmented result, bias field b, and corrected image f /

7/10

Sparse representation and dictionary learning

SR problem: Given a signal vector $x \in \mathbb{R}^m$ and a dictionary matrix $D \in \mathbb{R}^{m \times n}$, $n \gg m$, we seek a coefficient vector $z^* \in \mathbb{R}^n$ such that

$$oldsymbol{z}^* = rgmin_{oldsymbol{z}} \Big(rac{1}{2} \left\|oldsymbol{x} - oldsymbol{D}oldsymbol{z}
ight\|_2^2 + \lambda \left\|oldsymbol{z}
ight\|_1\Big), \qquad \lambda \ > 0.$$

SDL problem: Let $\{x_i\}_{i=1}^N \subset \mathbb{R}^m$ be a given dataset of signals. We seek a dictionary matrix $\mathbf{D} = [\mathbf{d}_1, \mathbf{d}_2, \cdots, \mathbf{d}_n] \in \mathbb{R}^{m \times n}$ together with the sparse coefficient vectors $\{z_i\}_{i=1}^N \subset \mathbb{R}^n$ that solve the minimization problem:

$$\min_{D_r\{z_i\}} \left(\frac{1}{2} \sum_{i=1}^N \|\mathbf{x}_i - \mathbf{D}\mathbf{z}_i\|_2^2 + \lambda \sum_{i=1}^N \|\mathbf{z}_i\|_1 \right)$$

subject to $\|\mathbf{d}_k\|_2 \le 1, \ \forall \ 1 \le k \le n, \qquad \lambda \ > 0.$

Numerical method: alternating direction method of multipliers (ADMM).

Some applications in image processing

Single image inpainting: *we use the complete patches to train the dictionary, recover the incomplete patches by the sparse representation.*

Other applications: single image super-resolution, image fusion, ...

イロト イポト イヨト イヨト 二日

Concluding remarks

Still, there are some other mathematical approaches and important techniques in image processing that need to be further studied, e.g.,

- Robust PCA (SVD), sparse and low-rank representation, ...
- Fast and efficient global registration, convex relaxation techniques, ...

Image stitching

Concluding remarks

Still, there are some other mathematical approaches and important techniques in image processing that need to be further studied, e.g.,

- Robust PCA (SVD), sparse and low-rank representation, ...
- Fast and efficient global registration, convex relaxation techniques, ...

Image stitching

Thank you for your attention!

イロト イ部ト イヨト イヨト