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Image processing and computational mathematics

Tony F. Chan: Image processing and computational mathematics,
Davis Centre, University of Waterloo, October 7th, 2015.

https://www.youtube.com/watch?v=zZN_L8ntO9I

Image processing has emerged not only as an application
domain where computational mathematics provides ideas and
solutions but also in spurring new research directions,
“new Computational Fluid Dynamics!”

We briefly introduce two different mathematical approaches to
2-D image processing:
(1) Variational method/energy functional minimization
(2) Sparse representation and dictionary learning
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Total variation

Let u : [a, b]→ R. Let Pn = {x0 = a, x1, · · · , xn = b} be an arbitrary
partition of Ω := [a, b] and ∆xi = xi − xi−1. The total variation of u is

‖u‖TV(Ω) := sup
Pn

n

∑
i=1
|u(xi)− u(xi−1)| = sup

Pn

n

∑
i=1

∣∣∣∣u(xi)− u(xi−1)

∆xi

∣∣∣∣∆xi

=
∫

Ω
|u′(x)| dx, if u is smooth.

Denoising is the problem of removing noise from an image:

minimize
(∫

Ω |u
′(x)| dx + some data fidelity term

)
.
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Figure 3.2. A signal (left image) and its noisy version (right image).
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Figure 3.3. Four reconstructions of a noisy signal by RLS solutions.

smooth enough and is very close to the noisy signal b. For λ = 10 the RLS solution is a
rather good estimate of the original vector x. For λ= 100 we get a smoother RLS signal,
but evidently it is less accurate than xRLS(10), especially near the boundaries. The RLS
solution for λ= 1000 is very smooth, but it is a rather poor estimate of the original signal.
In any case, it is evident that the parameter λ is chosen via a trade off between data fidelity
(closeness of x to b) and smoothness (size of Lx). The four plots where produced by the
MATLAB commands

L=zeros(299,300);
for i=1:299

L(i,i)=1;
L(i,i+1)=-1;

end

x_rls=(eye(300)+1*L’*L)\b;
x_rls=[x_rls,(eye(300)+10*L’*L)\b];
x_rls=[x_rls,(eye(300)+100*L’*L)\b];
x_rls=[x_rls,(eye(300)+1000*L’*L)\b];
figure(2)
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Figure 3.2. A signal (left image) and its noisy version (right image).
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1-D example
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ROF total-variation model vs. adaptive diffusivity model

Let f : Ω ⊂ R2 → R be a given noisy image. Rudin-Osher-Fatemi
(1992) proposed the model:

min
u∈V

(∫
Ω
|∇u|+ λ

2
(u− f )2 dx

)
, λ > 0.

Hsieh-Shao-Yang (2018) proposed an adaptive model to alleviate
the staircasing effect:

min
u∈V

(∫
Ω

1
2

ϕ(|∇u∗|)|∇u|2 + λ

2
(u− f )2 dx

)
, λ > 0.

(a) (b) (c) (d)

(e) (f) (g) (h)
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A variational model for image contrast enhancement

Hsieh-Shao-Yang (2020): for every f ∈ {fR, fG, fB}, we solve

min
u∈V

(∫
Ω
|∇u−∇hc| dx +

λ

2

∫
Ω
(u− gc)

2 dx
)

,

where the adaptive functions gc and hc are defined as

gc(x) :=
{

αf , x ∈ Ωd,
f (x), x ∈ Ωb,

hc(x) :=
{

βf (x), x ∈ Ωd,
f (x), x ∈ Ωb.

Numerical methods: (i) Euler-Lagrange equation + solving IBVP; (ii)
direct discretization + split Bregman iterations.

Numerical results by the split Bregman iterations
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Chan-Vese segmenation model: nonconvex minimization

Chan-Vese (1999) modified Mumford-Shah model (1989): two-phase

min
c1,c2,C

(
µ
∣∣C∣∣+ ν

∣∣Ωin
∣∣+ λ1

∫
Ωin

(
f (x)− c1

)2
+ λ2

∫
Ωout

(
f (x)− c2

)2
)

.

In terms of H, δ, and the level set function φ, we have

min
c1,c2,φ

(
µ
∫

Ω
δ(φ(x))|∇φ(x)|+ ν

∫
Ω

H(φ(x)) + λ1

∫
Ω

(
f (x)− c1

)2H(φ(x))

+λ2

∫
Ω

(
f (x)− c2

)2(1−H(φ(x))
))

.

Numerical method: an alternating iterative scheme (region averages +
solving IBVP of the Euler-Lagrange equation)

Numerical results by an alternating iterative scheme
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Adaptive model for intensity inhomogeneous images

Liao-Yang-You (2022) proposed an entropy-weighted local intensity
clustering-based model starting from the bias field model: f = bI + n:

min
C,b,c

(
µ
∣∣C∣∣+ ∫

Ω
Er(y)

n

∑
i=1

∫
Ωi

K(y− x)
(
f (x)− b(y)ci

)2 dx dy
)

.

Numerical method: a new alternating iterative scheme, called iterative
convolution-thresholding (ICT) scheme.

initial contour, segmented result, bias field b, and corrected image f /b
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Sparse representation and dictionary learning

SR problem: Given a signal vector x ∈ Rm and a dictionary matrix
D ∈ Rm×n, n� m, we seek a coefficient vector z∗ ∈ Rn such that

z∗ = arg min
z

(1
2
‖x−Dz‖2

2 + λ ‖z‖1

)
, λ > 0.

SDL problem: Let {xi}N
i=1 ⊂ Rm be a given dataset of signals. We seek a

dictionary matrix D = [d1, d2, · · · , dn] ∈ Rm×n together with the sparse
coefficient vectors {zi}N

i=1 ⊂ Rn that solve the minimization problem:

min
D,{zi}

(1
2

N

∑
i=1
‖xi −Dzi‖2

2 + λ
N

∑
i=1
‖zi‖1

)
subject to ‖dk‖2 ≤ 1, ∀ 1 ≤ k ≤ n, λ > 0.

Numerical method: alternating direction method of multipliers (ADMM).
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Some applications in image processing

Single image inpainting: we use the complete patches to train the
dictionary, recover the incomplete patches by the sparse representation.

Other applications: single image super-resolution, image fusion, ...
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Concluding remarks

Still, there are some other mathematical approaches and important
techniques in image processing that need to be further studied, e.g.,

Robust PCA (SVD), sparse and low-rank representation, ...

Fast and efficient global registration, convex relaxation techniques, ...

Image stitching

Thank you for your attention!
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