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A single Hindmarsh-Rose neuron

The Hindmarsh-Rose equations for a single neuron:
x ′(t) = y − x3 + 3x2 − z + I,
y ′(t) = 1− 5x2 − y ,
z ′(t) = 0.005(4(x + 1.6)− z),

where

x is the membrane potential;

y is associated with the fast current, for example Na+ or K+;

z is associated with the slow current, for example Ca2+;

I is the external current input.
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Time evolution of a single HR neuron with I = 3.0
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Watts-Strogatz-type small-world networks

Duncan J. Watts and Steven H. Strogatz, Collective dynamics of
’small-world’ networks, Nature, 393 (1998), pp. 440-442.
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/,grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................

Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes ,90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ) Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv 2 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

Small-world property: Highly clustered as regular networks and small
distance as random networks.
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A coupled dynamical network with community structure

i
( ) ( ( )) coupling effecti ix t F x t′ = +
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Hindmarsh-Rose neural network

Linearly coupled dynamical network of Hindmarsh-Rose neurons:

x′i (t) = F (xi (t))−c
m∑
j=1

`ijΓxj(t), i = 1, 2, · · · ,m, (1)

where

m is the total number of neurons in the network;
xi (t) = (xi (t), yi (t), zi (t))> is the state variable of neuron i ;
F (xi ) describes the intrinsic dynamics of neuron i , that is,

F (xi ) =

 yi + 3x2
i − x3

i − zi + 3.0
1− 5x2

i − yi
0.005(4(xi + 1.6)− zi )

 ;

c > 0 is the coupling strength;
Γ = diag{1, 0, 0} is the inner-coupling matrix which determines the
coupled components of the neurons.
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Laplacian matrix

Assume that the network is undirected and does not contain self loops.
The adjacency matrix A = (aij)m×m of the given network is a real
symmetric matrix with

aii = 0, for all i ,
aij = aji = 1, if the pair of nodes (i , j) is connected by a link,
aij = aji = 0, otherwise.

The matrix L = (`ij)m×m is the Laplacian matrix, that is, L = D −A, here
the matrix D = diag{d1, d2, · · · , dm} is the degree matrix with
di =

∑m
j=1 aij for i = 1, 2, · · · ,m.
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Properties of the Laplacian matrix

L is a symmetric matrix with zero row sums and `ij ≤ 0 for all i 6= j .

The zero row sums condition implies that there exists a completely
synchronized state

x1(t) = x2(t) = · · · = xm(t) = s(t),

where ṡ(t) = F (s(t)).

All the eigenvalues of L are nonnegative;

L always has at least one zero eigenvalue, say λ1 = 0;

There is only one zero eigenvalue if the network is connected.

Assume the network is connected =⇒ 0 = λ1 < λ2 ≤ · · · ≤ λm.
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Synchronization analysis based on master stability function method

Louis M. Pecora and Thomas L. Carroll, Master stability functions for
synchronized coupled systems, Physical Review Letters, 80 (1998), pp.
2109-2112.

Idea: Consider perturbations around the completely synchronized state.
=⇒ We need to know whether the perturbations grow or decay in time.
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Linear stability

Let δxi (t) = xi (t)− s(t), for i = 1, 2, · · · ,m, be the time evolution of the
set of infinitesimal perturbation about s(t).

The variational equation of (1) is given by

d

dt
δxi = DF (s)δxi − c

m∑
j=1

`ijΓδxi , i = 1, 2, · · · ,m. (2)

Let δyi = Q−1δxi for i = 1, 2, · · · ,m, we have

d

dt
δyi = [DF (s)− cλiΓ]δyi , i = 1, 2, · · · ,m. (3)

For λ1 = 0, we have d
dt
δy1 = DF (s)δy1 which corresponds the

perturbation parallel to the synchronized state.

The other m − 1 systems correspond to transverse directions and should
be damped out to have a sychronized state.

Chun-Hsien Li (李俊憲), Math. Dept., NKNU, Taiwan (R.O.C.) Failure tolerance of synch in complex networks – 10/26



Master stability function

Observation: Each system of (3) has the same form with only the
parameter αi = cλi being different.

This leads to the master stability equation

y′ = [DF (s)− αΓ]y. (4)

Calculate the largest Lyapunov exponent Λ(α), which is called the master
stability function (MSF).

For large t, ‖y(t)‖ ≈ ‖y(0)‖ exp(Λ(α)t) and y→ 0 if Λ(α) < 0.

Note that the MSF being negative is a necessary but not sufficient
condition for synchronization to actually occur.
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The MSF for Hindmarsh-Rose neuron

The MSF for Hindmarsh-Rose neuron:
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Λ(α) is negative on the interval (α1,∞), where α1 ≈ 0.9250.

The condition for synchronization becomes cλ2 > α1.

λ2 can be used as an indicator of the synchronizability of the network.

Question: How the network structures affect the synchronizability?
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Centrality measure – degree centrality

Centrality: Which are the most important or central node in a network?

Degree centrality: CD(ni ) =
∑m

j=1 aij .

An important node is involved in large number of interactions.
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5

2( ) 3DC n 
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Centrality measure – eigenvector centrality

Eigenvector centrality:

Let µ be the largest eigenvalue of A with corresponding eigenvector
V = (v1, v2, · · · , vm)>, that is, AV = µV .
V is the eigenvector centrality.

Specifically, CE (ni ) = vi = µ−1 ∑m
j=1 aijvj .

Perron-Frobenius theorem =⇒ µ > 0 and vi > 0, ∀i
An important node is connected to important neighbors.
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Centrality measure – closeness centrality

Closeness centrality:

pij = the length of the shortest path from node i to node j .
The mean distance from node i to other nodes is pi = 1

m

∑m
j=1 pij .

CC (ni ) = 1
pi

.

An important node is typically ”close” to, and can communicate quickly
with, the other nodes in the network.
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Centrality measure – betweenness centrality

Betweenness centrality:
σuv = total number of shortest paths from node u to node v .
σuv (ni ) = the number of shortest paths from node u to node v that pass
through node i .

CB(ni ) =
∑

u 6=ni 6=v
σuv (ni )
σuv

.

An important node will lie on a high proportion of paths between other
nodes in the network.
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Component failure

Netwroks may undergo failures in one or more of their components, i.e.,
nodes and/or edges.

The failures are of two types in general:

Random failure ⇔ errors, or
Systematic failure ⇔ attacks.

Objective: We will discuss how random and systematic failures in the
nodes of a network influence its synchronizability.
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Strategies

To choose candidate nodes for removal, five strategies were considered:

1 Random failure
2 Systematic failure based on degree centrality
3 Systematic failure based on eigenvector centrality
4 Systematic failure based on closeness centrality
5 Systematic failure based on betweenness centrality
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Connection networks

We considered artificially constructed model networks:

Total number of nodes m = 400.
The number of clusters is M = 20 and each of which is a WS-type
network with intra-connection probability Pintra.
The M clusters are arranged on a ring and the inter-connections
between different clusters exist randomly with the probability Pinter.

Intra-connection

Inter-connection
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An example

Here, we choose a network with eigenvalue λ2(A) = 0.0727.

Let c = 13 =⇒ cλ2(A) ∈ (α1,∞).

The waveforms of Err(t) = maxi<j ‖xi (t)− xj(t)‖∞ is depicted as follows:
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An example (continued)

Based on different systematic failure strategies, we removed one node and
observed the location of cλ2.
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An example (continued)
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Inter-connection probability Pinter = 0.05
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All data points are averaged over 20 network realizations
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Intra-connection probability Pintra = 0.1
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All data points are averaged over 20 network realizations
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Concluding remarks

We have studied how random and systematic failures in the nodes of a
network influence its synchronizability.

Failures based on the betweenness centrality, that is, removing the nodes
with high values of the betweenness centrality, has the significant effect
on the network synchronizability.

The synchronizability of the constructed networks is robust against
random removal of nodes.
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Thank you for your attention!

Chun-Hsien Li (李俊憲)

Department of Mathematics, National Kaohsiung Normal University
Yanchao District, Kaohsiung City 82446, Taiwan (R.O.C.)

Email: chli@nknucc.nknu.edu.tw
Website: http://teach.nknu.edu.tw/chli/
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