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A single Hindmarsh-Rose neuron

The Hindmarsh-Rose equations for a single neuron:

"t)y=y — X432 —z+1,
y(t): —5x*—y,
Z'(t) = 0.005(4(x + 1.6) — z),
where
@ x is the membrane potential;
@ y is associated with the fast current, for example Na™ or K™;
@ z is associated with the slow current, for example Ca*"

@ [ is the external current input.
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Time evolution of a single HR neuron with I = 3.0
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Watts-Strogatz-type small-world networks

@ Duncan J. Watts and Steven H. Strogatz, Collective dynamics of
'small-world" networks, Nature, 393 (1998), pp. 440-442.

o~

Regular Small-world Random

Increasing randomness

@ Small-world property: Highly clustered as regular networks and small
distance as random networks.
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A coupled dynamical network with community structure

X/ (t) = F(x;(t)) + coupling effect
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Hindmarsh-Rose neural network

@ Linearly coupled dynamical network of Hindmarsh-Rose neurons:

xi(t) = F(x;(t))—cZﬁ;jrxj(t), i=1,2,---,m, (1)
j=1
where

@ m is the total number of neurons in the network;
xi(t) = (xi(t), yi(t), z(t)) " is the state variable of neuron /;
e F(x;) describes the intrinsic dynamics of neuron i, that is,

Yi+3x2 —x} —z+3.0
F(xi) = 1—5x*—y; ;
0.005(4(X,' =+ 1.6) — Z,')
@ ¢ > 0 is the coupling strength;

I = diag{1, 0,0} is the inner-coupling matrix which determines the
coupled components of the neurons.
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Laplacian matrix

@ Assume that the network is undirected and does not contain self loops.
@ The adjacency matrix A = (aj)mxm of the given network is a real
symmetric matrix with

a; =0, foralli,
aj = aj =1, if the pair of nodes (/,) is connected by a link,
aj = aj =0, otherwise.

@ The matrix L = (£;)mxm is the Laplacian matrix, that is, L = D — A, here
the matrix D = diag{dy, d>, -, dm} is the degree matrix with
d=>" ajfori=12,--- m
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Properties of the Laplacian matrix

@ L is a symmetric matrix with zero row sums and ¢; < 0 for all i # j.

@ The zero row sums condition implies that there exists a completely
synchronized state
xa(t) = xa(t) = -+ = xm(t) = (1),
where §(t) = F(s(t)).
All the eigenvalues of L are nonnegative;

L always has at least one zero eigenvalue, say A\; = 0;

There is only one zero eigenvalue if the network is connected.

Assume the network is connected =— 0= X\1 < \p < -+ < Ap.
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Synchronization analysis based on master stability function method

@ Louis M. Pecora and Thomas L. Carroll, Master stability functions for

synchronized coupled systems, Physical Review Letters, 80 (1998), pp.
2109-2112.

@ ldea: Consider perturbations around the completely synchronized state.
—> We need to know whether the perturbations grow or decay in time.
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Linear stability

@ Let 0x;(t) = xi(t) —s(t), for i =1,2,--- , m, be the time evolution of the
set of infinitesimal perturbation about s(t).

@ The variational equation of (1) is given by

d - .
dei = DF(s)ox; — czéijrdx;, i=1,2,--- ,m. (2
=
@ Let §y; = Q16x; for i =1,2,--- , m, we have
%6%’ = [DF(s) — cAildyi, i=1,2,--- m. 3)

@ For \; =0, we have 4dy; = DF(s)dy: which corresponds the
perturbation parallel to the synchronized state.

@ The other m — 1 systems correspond to transverse directions and should
be damped out to have a sychronized state.
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Master stability function

Chun-Hsien L

Observation: Each system of (3) has the same form with only the
parameter a; = cA; being different.

This leads to the master stability equation

y' = [DF(s) — ally. (4)

Calculate the largest Lyapunov exponent A(a), which is called the master
stability function (MSF).

ly(2)]l = lly(0)[| exp(A(a)t) and y — 0 if A(a) < 0.

Note that the MSF being negative is a necessary but not sufficient
condition for synchronization to actually occur.

For large t,
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The MSF for Hindmarsh-Rose neuron

@ The MSF for Hindmarsh-Rose neuron:
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@ A(«) is negative on the interval (a1, 00), where a1 & 0.9250.
@ The condition for synchronization becomes c\> > .
@ )\, can be used as an indicator of the synchronizability of the network.

@ Question: How the network structures affect the synchronizability?
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Centrality measure — degree centrality

@ Centrality: Which are the most important or central node in a network?
@ Degree centrality: Cp(n;) => 7", aj.

@ An important node is involved in large number of interactions.

CD (nz) =3
1 2 3 4
5
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Centrality measure — eigenvector centrality

@ Eigenvector centrality:
@ Let p be the largest eigenvalue of A with corresponding eigenvector
V= (v1,v, -, vm)T, that is, AV = uV.
@ V is the eigenvector centrality.
@ Specifically, Ce(ni) = v; = p~* Doy @y
@ Perron-Frobenius theorem —> 1 > 0 and v; > 0,Vi

@ An important node is connected to important neighbors.

0.2610)« C.(n,)
12 4 0.5573 |« C(n,)
V =| 0.4647 |« C.(n,)

0.4352 |« C.(n,)

5 0.4674 )« C.(n,)
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Centrality measure — closeness centrality

@ Closeness centrality:

@ pj = the length of the shortest path from node i to node j.
@ The mean distance from node i to other nodes is p; = # Z,,L Pij-
] Cc(n;) = ,L

P’
@ An important node is typically "close” to, and can communicate quickly
with, the other nodes in the network.

1 2 3 4
5
[ :%(pzf" Pa + Pog T Pos + pzs)
=t(1+0+1+2+1)
=1
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Centrality measure — betweenness centrality

@ Betweenness centrality:
@ o,y = total number of shortest paths from node u to node v.
@ ouv(n;) = the number of shortest paths from node u to node v that pass
through node i.
® Calm) = Fypp 20
@ An important node will lie on a high proportion of paths between other
nodes in the network.

1 2 3 4
5
n<n,:nn, =2 n, >N, :n,n;n,;n,n.n, =<
n, <> n;:nn,n, =1 n, <>n,:nn, =2
n, <N, nnnn;nnnn, =2 n,<n:nn, =2
n < ng:nn,n, =1 N, <> N :nyN,Ng;NyN,Ng = %
n, <n:nn, =2 n,<n;:nn, =2

Col)=2+}+E+1+8+ 34348 +3+9) =7
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Component failure

@ Netwroks may undergo failures in one or more of their components, i.e.,
nodes and/or edges.
@ The failures are of two types in general:

@ Random failure < errors, or
e Systematic failure < attacks.

@ Objective: We will discuss how random and systematic failures in the
nodes of a network influence its synchronizability.
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Strategies

@ To choose candidate nodes for removal, five strategies were considered:

@ Random failure

@ Systematic failure based on degree centrality

© Systematic failure based on eigenvector centrality
@ Systematic failure based on closeness centrality
@ Systematic failure based on betweenness centrality
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Connection networks

@ We considered artificially constructed model networks:
e Total number of nodes m = 400.
@ The number of clusters is M = 20 and each of which is a WS-type
network with intra-connection probability Pintra.
@ The M clusters are arranged on a ring and the inter-connections
between different clusters exist randomly with the probability Pinter.

Intra-connection

Inter-connection
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An example

@ Here, we choose a network with eigenvalue X\>(A) = 0.0727.
@ Let c =13 = cX2(A) € (a1, ).

@ The waveforms of Err(t) = max;<;||xi(t) — xj(t)]|« is depicted as follows:

Err(t)
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time t
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An example (continued)

@ Based on different systematic failure strategies, we removed one node and
observed the location of c)».

0.05 T T T T

0.04

0.03

0.02
-2

0.01

092 094 096 098

0

Ao)

-0.01

-0.02

-0.03

-0.04

-0.05 . . . .
0

Chun-Hsien Li #), Math. Dept., NKNU, Taiwan (R.O0.C.) Failure tolerance of synch in complex networks —



An example (continued)
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15|
1
05
T o
&
-05
-1
-15
0 500 1000 1500 2000
time t
max CC at node 67
15
1
05
£ o0
&
-05
-1
-15
0 500 1000 1500 2000
time t

an (R.0.C.)

max DC at node 315

2
15
1
05|
£ o
&
-05
-1
-15
) 500 1000 1500 2000
time t
max EC at node 357
15|
1
05|
£ o
&
-05
-1
-15
-2!
o 500 1000 1500 2000

time t

Failure tolerance of synch in complex networks



Inter-connection probability P, = 0.05

P
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All data points are averaged over 20 network realizations
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Intra-connection probability P, = 0.1
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Concluding remarks

@ We have studied how random and systematic failures in the nodes of a
network influence its synchronizability.

@ Failures based on the betweenness centrality, that is, removing the nodes
with high values of the betweenness centrality, has the significant effect
on the network synchronizability.

@ The synchronizability of the constructed networks is robust against
random removal of nodes.
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Thank you for your attention!
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