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Governing equations

Let Ω be an open bounded domain in Rd (d = 2, 3) and [0, T] be the
time interval. The time-dependent, incompressible Stokes problem can
be posed as: find u and p with

∫
Ω pdV = 0, so that

∂u
∂t
− ν∇2u +∇p = f in Ω× (0, T],

∇ · u = 0 in Ω× (0, T],
u = 0 on ∂Ω× [0, T],
u = u0 in Ω× {t = 0}.

• u is the velocity field, p the pressure (divided by a constant
density ρ), ν the kinematic viscosity, and f the body force.
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Time-discretization of the incompressible Stokes eqns

First, we discretize the time variable of the Stokes problem, with the spatial
variable being left continuous. Consider the implicit Euler
time-discretization:

un+1 − un

∆t
− ν∇2un+1 +∇pn+1 = f n+1 in Ω,

∇ · un+1 = 0 in Ω,
un+1 = 0 on ∂Ω,

where ti := i∆t for i = 0, 1, · · · , K = T
∆t , · · · , ∆t > 0 is the time step length,

and gn denotes an approximate (or exact) value of g(tn) at the time level n.

It is highly inefficient in solving this coupled system of Stokes equations
directly. This is precisely the reason for proposing the projection approach to
decouple the computation of (un+1, pn+1).
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Idea of projection method

1 This approach solves the equations of time-discretization of the
incompressible (Navier-)Stokes equations.

2 The underlying idea of projection method, first introduced by
Chorin (1968, 1969) and Temam (1969), is based on applying the
Helmholtz-Hodge decomposition (HHD) to the time-discretized
incompressible Navier-Stokes equations.

3 The feature of projection method is to compute velocity and
pressure fields separately through the computation of an
intermediate velocity ũ, and then project it onto the space of
divergence-free vector fields.
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Helmholtz-Hodge decomposition
(Chorin & Marsden)

A smooth vector field w defined on Ω can be uniquely decomposed
orthogonally in the form:

w = u +∇ϕ,

where u has zero divergence, ∇ · u = 0 in Ω, and u · n = 0 on ∂Ω.

gradient fields


vector fields that are 
divergence free and 
parallel to the boundary


∇ϕ w


u


Remarks:
• Orthogonality means

∫
Ω u · ∇ϕdV = 0 (L2-inner product).

• The HHD describes the decomposition of a flow field w into its
divergence-free component u and curl-free component ∇ϕ, since
∇ · u = 0 and ∇× (∇ϕ) = 0 in Ω.
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Proof of HHD Theorem
Existence: Given a smooth vector field w, let ϕ be defined as the solution to
the Neumann problem {

∇2 ϕ = ∇ ·w in Ω,
∇ϕ · n = w · n on ∂Ω.

It is known that the solution ϕ of this problem exists and is defined up to an
arbitrary additive constant, see the Remark below. Define u := w−∇ϕ, then
it is obvious that ∇ · u = 0 and u · n = 0 on ∂Ω.

Remark: Consider the Neumann problem on a smooth domain D,{
∇2ψ = f in D,
∇ψ · n = g on ∂D.

The problem has a unique solution up to a constant if and only if the
following compatibility condition holds:∫

D
fdV =

∫
D
∇ · ∇ψdV =

∫
∂D
∇ψ · ndA =

∫
∂D

gdA.
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Proof of HHD Theorem (cont.)
Orthogonality of u and ∇ϕ: First, note that

∇ · (ϕu) = (∇ · u)ϕ + u · ∇ϕ.

Then by ∇ · u = 0 in Ω, Divergence Theorem, and u · n = 0 on ∂Ω,∫
Ω

u · ∇ϕdV =
∫

Ω
∇ · (ϕu)dV =

∫
∂Ω

(ϕu) · ndA =
∫

∂Ω
ϕ(u · n)dA = 0. (♣)

Uniqueness: Suppose w = ui +∇ϕi, ∇ · ui = 0 in Ω and ui · n = 0 on ∂Ω for
i = 1, 2. Then

(u1 − u2) +∇(ϕ1 − ϕ2) = 0 in Ω.

Taking the inner product with u1 − u2, we have

0 =
∫

Ω(u1 − u2) · (u1 − u2) + (u1 − u2) · ∇(ϕ1 − ϕ2)dV
=

∫
Ω(u1 − u2) · (u1 − u2) + 0 dV. (using (♣) again)

It follows that u1 = u2 and ∇ϕ1 = ∇ϕ2.
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Non-incremental pressure-correction scheme

The simplest pressure-correction scheme has originally been proposed
by Chorin (1968 & 1969). The algorithm is as follows:

Step 1: Solve for the intermediate velocity field ũn+1, ũn+1 − un

∆t
− ν∇2ũn+1 = f n+1 in Ω,

ũn+1 = 0 on ∂Ω.

Step 2: Determine un+1 and pn+1 by solving
un+1 − ũn+1

∆t
+∇pn+1 = 0 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = 0 on ∂Ω.
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Non-incremental pressure-correction scheme

• Step 2 is equivalent to solving the following pressure-Poisson
equation with the homogeneous Neumann boundary condition:{

∇2pn+1 =
1

∆t
∇ · ũn+1 in Ω,

∇pn+1 · n = 0 on ∂Ω,

and then define the velocity field by un+1 = ũn+1 − ∆t∇pn+1.
• The second step is usually referred to as the projection step.

ũn+1 = un+1 + ∆t∇pn+1 = un+1 +∇(∆tpn+1).

This is indeed the standard HHD of ũn+1.
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Non-incremental pressure-correction scheme

• We observe that the boundary condition ∇pn+1 · n = 0 in step 2 is
enforce on the pressure. Rannacher (1991) showed that this
artificial Neumann boundary condition induces a numerical
boundary layer on the pressure.

Theorem (Prohl (1997), Rannacher (1991), Shen (1992))
Assuming that (ue, pe), solving the Stokes equations, is sufficiently smooth,
the solution of above projection method, satisfies the following error estimates:

‖ue
∆t − u∆t‖`∞([L2(Ω)]d) + ‖ue

∆t − ũ∆t‖`∞([L2(Ω)]d) ≤ c(ue, pe, T)∆t,

‖pe
∆t − p∆t‖`∞(L2(Ω)) + ‖ue

∆t − ũ∆t‖`∞([H1(Ω)]d) ≤ c(ue, pe, T)∆t1/2.

Note: We denote that ϕ∆t = {ϕ0, ϕ1, · · · , ϕK} be some sequence of
functions in a Hilbert space E and define the following discrete norm:

‖ϕ∆t‖`2(E) =
(

∆t
K

∑
k=1
‖ϕk‖2

E

)1/2
, ‖ϕ∆t‖`∞(E) = max

0≤k≤K
‖ϕk‖E.
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Standard incremental pressure-correction schemes

• Goda (1979) observed (probably first) that the pressure gradient is
obviously missing in first step. He introduced an old value of the
pressure gradient ∇pn in the first step:

Step 1: Solve for the intermediate velocity field ũn+1, ũn+1 − un

∆t
− ν∇2ũn+1 +∇pn = f n+1 in Ω,

ũn+1 = 0 on ∂Ω.

Step 2: Determine un+1 and pn+1 by solving
un+1 − ũn+1

∆t
+∇pn+1 = 0 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = 0 on ∂Ω.

• This idea was made popular by Van Kan (1986) who proposed a
second-order incremental pressure-correction scheme.
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Standard incremental pressure-correction schemes

Using the BDF of second-order to approximate the time derivative, the
incremental pressure-correction scheme reads as follows:

Step 1: Solve for the intermediate velocity field ũn+1, 3ũn+1 − 4un + un−1

2∆t
− ν∇2ũn+1 +∇pn = f n+1 in Ω,

ũn+1 = 0 on ∂Ω.

Step 2: Determine un+1 and pn+1 by solving
3un+1 − 3ũn+1

2∆t
+∇(pn+1 − pn) = 0 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = 0 on ∂Ω.
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Standard incremental pressure-correction schemes
The scheme needs to be initialized with (ũ1, u1, p1) and we make the
following hypothesis:

(ũ1, u1, p1) is computed such that the following estimates holds:

‖ue(∆t)− ũ1‖0 ≤ c∆t2

‖ue(∆t)− ũ1‖1 ≤ c∆t3/2

‖pe(∆t)− p1‖0 ≤ c∆t

Theorem (Shen (1996), E and Liu (1995), Guermond (1999))
Under the hypothesis , if the (ue, pe), solving the Stokes equations, is smooth enough
in space and time, the solution of above projection method satisfies the following error
estimates:

‖ue
∆t − u∆t‖`2([L2(Ω)]d) + ‖u

e
∆t − ũ∆t‖`2([L2(Ω)]d) ≤ c(ue, pe, T)∆t2,

‖pe
∆t − p∆t‖`∞(L2(Ω)) + ‖ue

∆t − ũ∆t‖`∞([H1(Ω)]d) ≤ c(ue, pe, T)∆t.
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Rotational incremental pressure-correction schemes

• It can observe that ∇(pn+1 − pn) · n = 0 on ∂Ω which implies that

∇pn+1 · n = ∇pn · n = · · · = ∇p0 · n on ∂Ω.

It is non-physical Neumann boundary condition enforced on the
pressure that introduces the numerical boundary layer referred to
above and consequently limits the accuracy of the scheme.

• To overcome the difficulty caused by the artificial pressure
Neumann boundary condition, Timmermans, Minev and Van De
Vosse (1996) slightly modify this algorithm which is referred as
the incremental pressure-correction scheme in rotational form.
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Rotational incremental pressure-correction schemes
Step 1: Solve for the intermediate velocity field ũn+1, 3ũn+1 − 4un + un−1

2∆t
− ν∇2ũn+1 +∇pn = f n+1 in Ω,

ũn+1 = 0 on ∂Ω.

Step 2: Determine un+1 and φn+1 by solving
3un+1 − 3ũn+1

2∆t
+∇φn+1 = 0 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = 0 on ∂Ω.

Step 3: Update pn+1 by

pn+1 = pn + φn+1 − ν∇ · ũn+1.
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Rotational incremental pressure-correction schemes

• Summing all equations of above step 1 to 3, we have

3un+1 − 4un + un−1

2∆t
+ ν∇×∇× un+1 +∇pn+1 = f n+1 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = 0 on ∂Ω,

by the facts that ∇2ũn+1 = ∇(∇ · ũn+1)−∇×∇× ũn+1 and
∇×∇× ũn+1 = ∇×∇× un+1.

• We observe that

∇pn+1 · n = (f n+1 − ν∇×∇× un+1) · n

is a consistent pressure boundary condition.
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Rotational incremental pressure-correction schemes

Theorem (Guermond and Shen (2004))
Assume that the initialization hypothesis holds. Provided the (ue, pe), solving the
Stokes equations, is smooth enough in space and time, the solution of above method
satisfies the estimates

‖ue
∆t − u∆t‖`2([L2(Ω)]d) + ‖u

e
∆t − ũ∆t‖`2([L2(Ω)]d) ≤ c(ue, pe, T)∆t2,

‖ue
∆t − u∆t‖`2([H1(Ω)]d) + ‖u

e
∆t − ũ∆t‖`2([H1(Ω)]d) + ‖p

e
∆t − p∆t‖`2(L2(Ω))

≤ c(ue, pe, T)∆t3/2.
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Relation with other schemes
Kim and Moin (1985) propose to apply ũn+1 = un+1 + 2∆t

3 ∇φn to the
boundary conditions of ũn+1, in order to obtain second-order accuracy in the
velocity. The scheme can be written as follows:

Step 1: Solve for the intermediate velocity field ũn+1,
3ũn+1 − 4un + un−1

2∆t
− ν∇2ũn+1 = f n+1 in Ω,

ũn+1 · n = 0 & ũn+1 · τ =
2∆t

3
∇φn · τ on ∂Ω.

Step 2: Determine un+1 and pn+1 by solving
3un+1 − 3ũn+1

2∆t
+∇φn+1 = 0 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = 0 on ∂Ω.

Step 3: Update the pressure, pn+1 = φn+1 − ν∇ · ũn+1
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Kim-Moin and rotational form of the
pressure-correction methods are “equivalent!”

Staring with the Kim-Moin method and changing the variables,

u∗ = ũ− 2∆t
3
∇φn · τ, ψn+1 = φn+1 − φn,

pn+1 = φn+1 − 3ν∆t
2
∇2 ϕn+1, pn−1 = φn−1 − 3ν∆t

2
∇2φn−1,

we can find that solution (un+1, pn+1) of the Kim-Moin method also solves
the rotational form of the pressure-correction methods and vice versa: 3u∗ − 4un + un−1

2∆t
− ν∇2u∗ +∇pn = f n+1 in Ω,

u∗ = 0 on ∂Ω.
3un+1 − 3u∗

2∆t
+∇ψn+1 = 0 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = 0 on ∂Ω;

pn+1 = pn−1 + ψn+1 − 3ν∆t
2
∇2ψn+1.
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Numerical tests

Example 1: A comparison between the standard and the rotational forms of
the projection methods.

exact solution (u,p) as that given above, and we use a Fourier–Legendre spectral approximation with 48 · 49 modes guar-
anteeing that the spatial discretization errors are negligible compared with the time discretization errors.

In Fig. 2, we show the pressure error field at T = 1 for a typical time step. The main difference between the problem set in
the square domain and that set in the periodic channel is that the former has corner singularities while the latter does not.
Thus, it can be conjectured that the large errors occurring at the corners of the square domain are due to the lack of
smoothness of the domain. This conclusion is confirmed by the numerical experiments using mixed finite elements reported
in the next subsection.

3.7.2. Numerical results with P2=P1 finite elements

To further assess the influence of the smoothness of the domain boundary on the accuracy of the BDF2 rotational pres-
sure-correction method, we have performed convergence tests using P2=P1 finite elements. The tests are performed using
the following analytical solution

u ¼ ðsinðxþ tÞ sinðy þ tÞ; cosðxþ tÞ cosðy þ tÞÞ; p ¼ sinðx� y þ tÞ; ð3:31Þ
in the square domain ]0,1[2 and in the circular domain fðx; yÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
6 0:5g.

We show in Fig. 3 the error fields on the pressure at time T = 1 for the square and the circular domains. The mesh-size is
h = 1/40 and Dt = 0.00625. The two fields are represented using the same vertical scale. The pressure field on the circular
domain is free of numerical boundary layer, whereas large errors are still present at the corners of the domain for both
formulations.

In Fig. 4 we show the L1-norm of the error on the pressure as a function of Dt. The error is measured at T = 2. One
series of computation is made on the square and the other on the circle. The mesh-size in both computations is h = 1/80. It
is clear that the errors calculated on the circular domain are OðDt2Þ, whereas those calculated on the square are only
OðDt1:6Þ. This result, seems to confirm that the 3

2
convergence rate that we established for the pressure approximation in

Fig. 1. Pressure error field at time t = 1 in a square: (left) standard form; (right) rotational form.

Fig. 2. Error field on pressure at time t = 1 in a channel: (left) standard form; (right) rotational form.

J.L. Guermond et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 6011–6045 6019

This test suggests that the rotational form successfully improves the
numerical boundary layer issue.
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Numerical tests

Example 2: A comparison between the standard and the rotational forms of
the projection methods in a periodic channel. The channel is periodic in the x
direction.

exact solution (u,p) as that given above, and we use a Fourier–Legendre spectral approximation with 48 · 49 modes guar-
anteeing that the spatial discretization errors are negligible compared with the time discretization errors.

In Fig. 2, we show the pressure error field at T = 1 for a typical time step. The main difference between the problem set in
the square domain and that set in the periodic channel is that the former has corner singularities while the latter does not.
Thus, it can be conjectured that the large errors occurring at the corners of the square domain are due to the lack of
smoothness of the domain. This conclusion is confirmed by the numerical experiments using mixed finite elements reported
in the next subsection.

3.7.2. Numerical results with P2=P1 finite elements

To further assess the influence of the smoothness of the domain boundary on the accuracy of the BDF2 rotational pres-
sure-correction method, we have performed convergence tests using P2=P1 finite elements. The tests are performed using
the following analytical solution

u ¼ ðsinðxþ tÞ sinðy þ tÞ; cosðxþ tÞ cosðy þ tÞÞ; p ¼ sinðx� y þ tÞ; ð3:31Þ
in the square domain ]0,1[2 and in the circular domain fðx; yÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
6 0:5g.

We show in Fig. 3 the error fields on the pressure at time T = 1 for the square and the circular domains. The mesh-size is
h = 1/40 and Dt = 0.00625. The two fields are represented using the same vertical scale. The pressure field on the circular
domain is free of numerical boundary layer, whereas large errors are still present at the corners of the domain for both
formulations.

In Fig. 4 we show the L1-norm of the error on the pressure as a function of Dt. The error is measured at T = 2. One
series of computation is made on the square and the other on the circle. The mesh-size in both computations is h = 1/80. It
is clear that the errors calculated on the circular domain are OðDt2Þ, whereas those calculated on the square are only
OðDt1:6Þ. This result, seems to confirm that the 3

2
convergence rate that we established for the pressure approximation in

Fig. 1. Pressure error field at time t = 1 in a square: (left) standard form; (right) rotational form.

Fig. 2. Error field on pressure at time t = 1 in a channel: (left) standard form; (right) rotational form.

J.L. Guermond et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 6011–6045 6019

It maybe can be conjectured that the large errors occurring at the corners of
the square domain are due to the lack of smoothness of the domain.
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Numerical tests

Example 3: Convergence tests using P2/P1 finite element for rotational forms
of the projection methods.

rotational form is the best possible for general domains. However, why the corner singularity affects the convergence rate
for a smooth solution is still not well understood.

4. The velocity-correction schemes

We review in this section a class of schemes which are referred to as velocity-correction schemes in [25,27]. These schemes
have been introduced in a somewhat different (although equivalent) form by Orszag et al. [39] and Karniadakis et al. [31].
The main idea is to switch the role of the velocity and the pressure in the pressure-correction schemes, i.e., the viscous term
is treated explicitly or ignored in the first substep and the velocity is corrected accordingly in the second substep.

4.1. The non-incremental velocity-correction scheme

Set ~u0 ¼ u0, and for k P 0 compute ð~ukþ1; ukþ1; pkþ1Þ by solving

1

Dt
ðukþ1 � ~ukÞ þ rpkþ1 ¼ f ðtkþ1Þ;

r � ukþ1 ¼ 0; ukþ1 � njC ¼ 0;

8<
: ð4:1Þ

1

Dt
ð~ukþ1 � ukþ1Þ � mr2~ukþ1 ¼ 0; ~ukþ1jC ¼ 0. ð4:2Þ

Fig. 4. Comparison of convergence rates on pressure in L1-norm at T = 2: (j) for the circular domain; (+) for the square.

Fig. 3. Error field on pressure in a rectangular domain (left) and on a circular domain (right).

6020 J.L. Guermond et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 6011–6045

The pressure field on the circular domain is free of numerical boundary layer,
whereas large errors are still present at the corners of the domain.
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Numerical tests

rotational form is the best possible for general domains. However, why the corner singularity affects the convergence rate
for a smooth solution is still not well understood.

4. The velocity-correction schemes

We review in this section a class of schemes which are referred to as velocity-correction schemes in [25,27]. These schemes
have been introduced in a somewhat different (although equivalent) form by Orszag et al. [39] and Karniadakis et al. [31].
The main idea is to switch the role of the velocity and the pressure in the pressure-correction schemes, i.e., the viscous term
is treated explicitly or ignored in the first substep and the velocity is corrected accordingly in the second substep.

4.1. The non-incremental velocity-correction scheme

Set ~u0 ¼ u0, and for k P 0 compute ð~ukþ1; ukþ1; pkþ1Þ by solving

1

Dt
ðukþ1 � ~ukÞ þ rpkþ1 ¼ f ðtkþ1Þ;

r � ukþ1 ¼ 0; ukþ1 � njC ¼ 0;

8<
: ð4:1Þ

1

Dt
ð~ukþ1 � ukþ1Þ � mr2~ukþ1 ¼ 0; ~ukþ1jC ¼ 0. ð4:2Þ

Fig. 4. Comparison of convergence rates on pressure in L1-norm at T = 2: (j) for the circular domain; (+) for the square.

Fig. 3. Error field on pressure in a rectangular domain (left) and on a circular domain (right).

6020 J.L. Guermond et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 6011–6045
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Thank you for your attention!
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