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Governing equations

Let Q be an open bounded domain in R? (d = 2, 3) and [0, T] be the
time interval. The time-dependent, incompressible Stokes problem can
be posed as: find u and p with [ pdV = 0, so that

ou

o vW u+Vp = f inQx(0,T],

V-ou = 0 inQx(0,7T],
u = 0 onoQx][0,T],
u = wuy inQx{t=0}

e uis the velocity field, p the pressure (divided by a constant
density p), v the kinematic viscosity, and f the body force.
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Time-discretization of the incompressible Stokes eqns

First, we discretize the time variable of the Stokes problem, with the spatial
variable being left continuous. Consider the implicit Euler
time-discretization:

un+1_un
T_VVZun+1+Vpn+l _ fn+l inQ,
V"l = 0 inQ,
W= 0 onoQ,

where t; ;= iAtfori=10,1,--- ,K = %, - -+, At > 0is the time step length,
and g" denotes an approximate (or exact) value of g(t,) at the time level .

It is highly inefficient in solving this coupled system of Stokes equations
directly. This is precisely the reason for proposing the projection approach to
decouple the computation of (u"+1,p"+1).
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Idea of projection method

© This approach solves the equations of time-discretization of the
incompressible (Navier-)Stokes equations.

® The underlying idea of projection method, first introduced by
Chorin (1968, 1969) and Temam (1969), is based on applying the
Helmholtz-Hodge decomposition (HHD) to the time-discretized
incompressible Navier-Stokes equations.

® The feature of projection method is to compute velocity and
pressure fields separately through the computation of an
intermediate velocity 1, and then project it onto the space of
divergence-free vector fields.
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Helmholtz-Hodge decomposition
(Chorin & Marsden)

A smooth vector field w defined on () can be uniquely decomposed
orthogonally in the form:

w=u+ Ve,
where u has zero divergence, V- u = 0in (3, and # - n = 0 on 9().

gradient fields

Ve

w

vector fields that are
divergence free and
parallel to the boundary

Remarks:
¢ Orthogonality means [, u - V@dV =0 (L2-inner product).

e The HHD describes the decomposition of a flow field w into its
divergence-free component u and curl-free component V¢, since
V-u=0and V x (V) =0in Q.
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Proof of HHD Theorem

Existence: Given a smooth vector field w, let ¢ be defined as the solution to
the Neumann problem

V¢ = V-w inQ,
Vo-n = w-n ondQ.

It is known that the solution ¢ of this problem exists and is defined up to an
arbitrary additive constant, see the Remark below. Define u := w — V¢, then
itis obvious that V-u = 0and u - n = 0 on 0Q).

Remark: Consider the Neumann problem on a smooth domain D,

V2¢ = f inD,
Vy-n = g onaD.

The problem has a unique solution up to a constant if and only if the
following compatibility condition holds:

/Dde:/DV-VzchV:/aDng-ndA:/angA.
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Proof of HHD Theorem (cont.)
Orthogonality of # and V ¢: First, note that
V-(pu)=(V-u)p+u-Vo.

Then by V - u = 0in ), Divergence Theorem, and # - n = 0 on d(),

/Qu-VgodV:/QV~(qou)dV:/aQ(gou)-ndA:/aQ(p(u-n)dAzo. (&)

Uniqueness: Suppose w = u; + V¢;, V- u; = 0in Q and u; - n = 0 on 0Q) for
i=1,2. Then

(uy —up) +V(p1 —¢2) =0 inQ.

Taking the inner product with uy — uy, we have

0 = [olm—m) (w1 —u2)+ (w1 —u2) - V(g1 — ¢2)dV
= Jo(ur —up) - (ug —uz) +0dV. (using () again)

It follows that u; = up and V1 = Vg,.
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Non-incremental pressure-correction scheme

The simplest pressure-correction scheme has originally been proposed

by Chorin (1968 & 1969). The algorithm is as follows:

Step 1: Solve for the intermediate velocity field ik
ﬁ?’l—‘-l . un B )
T o VvZuTl+1 — fn-i-l in Q,
71 = 0 onoQ.

n+1

Step 2: Determine #" ™! and p"*! by solving

un+1 o ﬁ”'H

Az +Vp" = 0 inQ,

V"' = 0 inQ,
W"n = 0 onoQ.
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Non-incremental pressure—correction scheme

e Step 2 is equivalent to solving the following pressure-Poisson
equation with the homogeneous Neumann boundary condition:

{ V2l = Aitv-ﬁ"“ inQ,
Vp"tl.n = 0 onaQ,

and then define the velocity field by u" ! = #""! — AtVp"*1.

¢ The second step is usually referred to as the projection step.
att — gt + Atvpn-H — 1 + V(Atpn+l).

This is indeed the standard HHD of #" .
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Non-incremental pressure-correction scheme

o We observe that the boundary condition Vp"*!-n = 0 in step 2 is
enforce on the pressure. Rannacher (1991) showed that this
artificial Neumann boundary condition induces a numerical
boundary layer on the pressure.

Theorem (Prohl (1997), Rannacher (1991), Shen (1992))

Assuming that (u, p®), solving the Stokes equations, is sufficiently smooth,
the solution of above projection method, satisfies the following error estimates:

e — matll e 2oy + 4ar — el ooy < e, p%, T)AL,

e — Patlles g2y + 118 — Bt ll i (e ygey < (@, p°, T) AL,

Note: We denote that g5 = {¢°, @1, - -, ¥} be some sequence of
functions in a Hilbert space E and deflne the following discrete norm:

K 1/2
Ioallae) = (AL N0F1R) s loarlleme) = max 19l

0<k<K
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Standard incremental pressure-correction schemes

e Goda (1979) observed (probably first) that the pressure gradient is
obviously missing in first step. He introduced an old value of the
pressure gradient Vp" in the first step:

Step 1: Solve for the intermediate velocity field #" ',

gy
N _ Vv2’ii1’l+1 + Vpn — fn+1 in Q,
Wt = 0 onoQ.
Step 2: Determine u" ! and p"*! by solving

un-i—l o ﬁnJrl

A7 +Vp"tt = 0 inQ,

V- = 0 inQ,
Wn = 0 onoQ.

¢ This idea was made popular by Van Kan (1986) who proposed a
second-order incremental pressure-correction scheme.
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Standard incremental pressure-correction schemes

Using the BDF of second-order to approximate the time derivative, the

incremental pressure-correction scheme reads as follows:
Step 1: Solve for the intermediate velocity field ik

3ﬁ”+1 — 4y + unfl
2At

_Vv2ﬁn+1+vpn — fn+l in Q,
7 = 0 onoQ.

Step 2: Determine #" ™! and p"*! by solving

3un+1 _ 3ﬁn+1

sap— FVETI =P = 0 inQ,
V-u"™h = 0 inQ,
Wn = 0 onoQ.
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Standard incremental pressure-correction schemes

The scheme needs to be initialized with (%!, 4", p!) and we make the
following hypothesis:

(i, ul,p1) is computed such that the following estimates holds:

€ (AF) — 7 [|g < cAR
[ (AF) — ][y < cAP/?
I (At) —plo < cAt

Theorem (Shen (1996), E and Liu (1995), Guermond (1999))

Under the hypothesis , if the (u°, p°), solving the Stokes equations, is smooth enough
in space and time, the solution of above projection method satisfies the following error
estimates:

[ = mall 2z ey + 15 — Baell ey < e, 0%, T)AE,
1Pae = Patllem 2y + Nuar — Baell oo ey < e, 0%, T)AL.

v
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Rotational incremental pressure-correction schemes

o It can observe that V(p"™! — p") - n = 0 on 9Q which implies that
VPl n=Vp' - n=---=Vp’-n onoQ.

It is non-physical Neumann boundary condition enforced on the
pressure that introduces the numerical boundary layer referred to
above and consequently limits the accuracy of the scheme.

¢ To overcome the difficulty caused by the artificial pressure
Neumann boundary condition, Timmermans, Minev and Van De
Vosse (1996) slightly modify this algorithm which is referred as
the incremental pressure-correction scheme in rotational form.
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Rotational incremental pressure-correction schemes

Step 1: Solve for the intermediate velocity field 't

3" — 4yt 4yl

A7 o szﬁn+1 + vpn _ fn-‘rl in Q,

1 = 0 onoQ.

Step 2: Determine #"*! and ¢"*! by solving

3un+1 _ 3ﬁ”+1

AT + V" = 0 inQ,

V-t = 0 inQ,
W"ln = 0 ondQ.

Step 3: Update p"*! by
pn-i-l —_ pn + (Pn-i-l — vV - fﬁn+1'
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Rotational incremental pressure-correction schemes

e Summing all equations of above step 1 to 3, we have

3un+1 — 4y" + un—l
2At

UV x Vx a4+ vp = 1 inQ,

V-u"™h = 0 inQ,
Wn = 0 onoQ,

by the facts that V2" = V(V - #"*1) - V x V x #"*! and
VXVXﬁn+1ZVXVXun+1‘

e We observe that
vpn+l n = (}ci’l+1 — 1V X V X un+1) ‘n

is a consistent pressure boundary condition.
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Rotational incremental pressure-correction schemes

Theorem (Guermond and Shen (2004))

Assume that the initialization hypothesis holds. Provided the (u°,p°), solving the
Stokes equations, is smooth enough in space and time, the solution of above method
satisfies the estimates

e — naell 2 uzgayey + 14— Bael e qaiyey < e, p, T)AL,
([ — uatll 2 en ey + 1#ar — Batll 2 e ey + 172 = Patlle 2y
<c(u’,p", T)Atg’/z.
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Relation with other schemes
Kim and Moin (1985) propose to apply #" ™ = "1 4 2" to the
boundary conditions of #" !, in order to obtain second-order accuracy in the
velocity. The scheme can be written as follows:

Step 1: Solve for the intermediate velocity field %",

3ﬁn+l 4y 4 un—l
2At
" n=0 & " T =

_ UvZﬁn+l :fi’l+1 in Q,
20t

3 V¢" -t  ondQ.

Step 2: Determine #"*! and p"*! by solving

3un+l _ 3ﬁn+1

AT +V¢" = 0 inQ,
V-ul = 0 inQ,
.y = 0 onoQ.

Step 3: Update the pressure, p" ! = ¢! — vV . 7"

Cheng-Shu You (NCU, Taiwan) An overview of projection methods for viscous incompressible flow (I) 18/24



Kim-Moin and rotational form of the
pressure-correction methods are “equivalent!”
Staring with the Kim-Moin method and changing the variables,

. ~ 20t
u = u——3 V(p”-r, 1/]”1——4)”1—(])”,
3vAt _ _ 31/At
pn+l (PnJrl 5 vZ(Pn+1 pn 1 (pn 1_ VZ(Pn 1

we can find that solution (#"*1, p"*1) of the Kim-Moin method also solves
the rotational form of the pressure-correction methods and vice versa:

* _ Ayl n—1
St —dwt vt vWir 4 Vp"t = 1 inQ,

At * 0 00}
al o ut = on 9Q).
% + le”H = 0 in Q,
V-u"l = 0 inQ,
Wy = 0 onoQy
Pl — g 3V2Atvztp”+1
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Numerical tests

Example 1: A comparison between the standard and the rotational forms of
the projection methods.

R ’ R

Fig. 1. Pressure error field at time 7 =1 in a square: (left) standard form; (right) rotational form.

This test suggests that the rotational form successfully improves the
numerical boundary layer issue.
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Numerical tests

Example 2: A comparison between the standard and the rotational forms of
the projection methods in a periodic channel. The channel is periodic in the x
direction.

Fig. 2. Error field on pressure at time 7= 1 in a channel: (left) standard form; (right) rotational form.

It maybe can be conjectured that the large errors occurring at the corners of
the square domain are due to the lack of smoothness of the domain.

Cheng-Shu You (NCU, Taiwan) An overview of projection methods for viscous incompressible flow (I) 21/24



Numerical tests

Example 3: Convergence tests using P, /P1 finite element for rotational forms
of the projection methods.
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Fig. 3. Error field on pressure in a rectangular domain (left) and on a circular domain (right).

The pressure field on the circular domain is free of numerical boundary layer,
whereas large errors are still present at the corners of the domain.
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Numerical tests
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Fig. 4. Comparison of convergence rates on pressure in L>-norm at 7= 2: (M) for the circular domain; (+) for the square.
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Thank you for your attention!
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