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Governing equations

Let Ω be an open bounded domain in Rd (d = 2, 3) and [0, T] be the
time interval. The time-dependent, incompressible Stokes problem can
be posed as: find u and p with

∫
Ω pdV = 0, so that

∂u
∂t
− ν∇2u +∇p = f in Ω× (0, T],

∇ · u = 0 in Ω× (0, T],
u = 0 on ∂Ω× [0, T],
u = u0 in Ω× {t = 0}.

• u is the velocity field, p the pressure (divided by a constant
density ρ), ν the kinematic viscosity, and f the body force.
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Helmholtz-Hodge decomposition
(Chorin & Marsden)

A smooth vector field w defined on Ω can be uniquely decomposed
orthogonally in the form:

w = u +∇ϕ,
where u has zero divergence, ∇ · u = 0 in Ω, and u · n = 0 on ∂Ω.

gradient fields


vector fields that are 
divergence free and 
parallel to the boundary


∇ϕ w


u


Remarks:
• Orthogonality means

∫
Ω u · ∇ϕdV = 0 (L2-inner product).

• The HHD describes the decomposition of a flow field w into its
divergence-free component u and curl-free component ∇ϕ, since
∇ · u = 0 and ∇× (∇ϕ) = 0 in Ω.
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Time-discretization of the incompressible Stokes eqns

First, we discretize the time variable of the Stokes problem, with the
spatial variable being left continuous. Consider the qth-order
backward difference formula (BDFq):

1
∆t

(
βqun+1 −

q−1

∑
j=0

βjun−j
)
− ν∇2un+1 +∇pn+1 = f n+1 in Ω,

∇ · un+1 = 0 in Ω,
un+1 = 0 on ∂Ω,

where ti := i∆t for i = 0, 1, · · · , K = T
∆t , · · · , ∆t > 0 is the time step

length, and gn denotes an approximate (or exact) value of g(tn) at the
time level n.
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A general pressure-correction projection methods
Step 1: Solve for the intermediate velocity field ũ,




1
∆t

(
βqũn+1 −

q−1

∑
j=0

βjun−j
)
− ν∇2ũn+1 +∇p?,n+1 = f n+1 in Ω,

ũ = 0 on ∂Ω,

where p?,n+1 = ∑r−1
j=0 γjpn−j is the rth order extrapolation of pn+1.

Step 2: Determine un+1 and φn+1 by solving




βq

∆t
(un+1 − ũn+1) +∇φn+1 = 0 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = 0 on ∂Ω.

Step 3: Update the pressure, pn+1 = p?,n+1 + φn+1 − χν∇ · ũn+1, χ is a
user-defined coefficient that may be equal to 0 or 1.
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A general pressure-correction projection methods

• (q, r) = (1, 0) and χ = 0

⇒ non-incremental pressure-correction scheme (Chorin).
• (q, r) = (2, 1) and χ = 0

⇒ standard pressure-correction scheme.
• (q, r) = (2, 1) and χ = 1

⇒ rotational pressure-correction scheme.

Remark: If one chooses r = q, then the formal consistency errors for
the velocity in H1-norm and the pressure in L2-norm are both of the
same order. However, stability and convergence are only available for
q = r = 1.
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Velocity-correction schemes

• These schemes have been introduced in a somewhat different
(although equivalent) form by Orszag et al. (1986) and
Karniadakis et al. (1991).

• The main idea is to switch the role of the velocity and the pressure
in the pressure-correction schemes, i.e., the viscous term is treated
explicitly or ignored in the first substep and the velocity is
corrected accordingly in the second substep.
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Non-incremental velocity-correction scheme

Set ũ0 = u0, and for n ≥ 0 find (ũn+1, un+1, pn+1) by the following
algorithm:

Step 1: Determine un+1 and pn+1 by solving




1
∆t

(un+1 − ũn) +∇pn+1 = f n+1 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = 0 on ∂Ω.

Step 2: Solve for the intermediate velocity field ũn+1,




1
∆t

(ũn+1 − un+1)− ν∇2ũn+1 = 0 in Ω,

ũn+1 = 0 on ∂Ω.
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Non-incremental velocity-correction scheme

Theorem (Rannacher (1991), Guermond & Shen (2003))
Assuming that (ue, pe), solving the Stokes equations, is sufficiently smooth,
the solution of above projection method, satisfies the following error estimates:

‖ue
∆t − u∆t‖`∞([L2(Ω)]d) + ‖ue

∆t − ũ∆t‖`∞([L2(Ω)]d) ≤ c(ue, pe, T)∆t,

‖pe
∆t − p∆t‖`∞(L2(Ω)) + ‖ue

∆t − ũ∆t‖`∞([H1(Ω)]d) ≤ c(ue, pe, T)∆t1/2.

Note: We denote that ϕ∆t = {ϕ0, ϕ1, · · · , ϕK} be some sequence of
functions in a Hilbert space E and define the following discrete norm:

‖ϕ∆t‖`2(E) =
(

∆t
K

∑
k=1
‖ϕk‖2

E

)1/2
, ‖ϕ∆t‖`∞(E) = max

0≤k≤K
‖ϕk‖E.
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Standard velocity-correction scheme

Using the BDFq to approximate the time derivative, the standard
velocity-correction scheme reads as follows:

Step 1: Determine un+1 and pn+1 by solving




1
∆t

(
βqun+1 −

q−1

∑
j=0

βjũ
n−j
)
− ν∇2ũ?,n+1 +∇pn+1 = f n+1 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = 0 on ∂Ω.

where ũ?,n+1 = ∑r−1
j=0 γjũ

n−j be a rth order extrapolation of ũn+1.

Step 2: Solve for the intermediate velocity field ũn+1,




βq

∆t
(ũn+1 − un+1)− ν∇2(ũn+1 − ũ?,n+1) = 0 in Ω,

ũn+1 = 0 on ∂Ω.
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Standard velocity-correction scheme
Hypothesis

ũ1 is computed such that the following estimates holds:

‖ue(∆t)− ũ1‖0 ≤ c∆t2,
‖ue(∆t)− ũ1‖1 ≤ c∆t3/2,
‖ue(∆t)− ũ1‖2 ≤ c∆t.

Theorem (Guermond & Shen (2003))
Under the hypothesis , if the (ue, pe), solving the Stokes equations, is smooth
enough in space and time, the solution of above projection method with
(q, r) = (2, 1) satisfies the following error estimates:

‖ue
∆t − u∆t‖`2([L2(Ω)]d) + ‖ue

∆t − ũ∆t‖`2([L2(Ω)]d) ≤ c(ue, pe, T)∆t2,

‖ue
∆t − u∆t‖`∞([L∈(Ω)]d) + ‖ue

∆t − ũ∆t‖`∞([L2(Ω)]d) ≤ c(ue, pe, T)∆t
3
2 ,

‖ue
∆t − ũ∆t‖`∞([H1(Ω)]d) + ‖pe

∆t − p∆t‖`∞(L2(Ω)) ≤ c(ue, pe, T)∆t.
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Rotational form of the velocity-correction scheme

In order to obtain a better approximation of the pressure, Guermond and
Shen (2001, 2003) propose to replace ∇2ũ?,n+1 by −∇×∇× ũ?,n+1:

Step 1: Determine un+1 and pn+1 by solving





1
∆t

(
βqun+1 −

q−1

∑
j=0

βjũ
n−j
)
+ ν∇×∇× ũ?,n+1 +∇pn+1 = f n+1 in Ω,

∇ · un+1 = 0 in Ω,
un+1 · n = 0 on ∂Ω.

Step 2: Solve for the intermediate velocity field ũn+1,





βq

∆t
(ũn+1 − un+1)− ν∇2ũn+1 − ν∇×∇× ũ?,n+1 = 0 in Ω,

ũn+1 = 0 on ∂Ω.

This scheme is referred to as the rotational form of the velocity-correction
algorithm.
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Rotational form of the velocity-correction scheme

Theorem (Guermond & Shen (2003))
Under the hypothesis , if the (ue, pe), solving the Stokes equations, is smooth
enough in space and time, the solution of above projection method with
(q, r) = (2, 1) satisfies the following error estimates:

‖ue
∆t − u∆t‖`2([L2(Ω)]d) + ‖ue

∆t − ũ∆t‖`2([L2(Ω)]d) ≤ c(ue, pe, T)∆t2,

‖ue
∆t − ũ∆t‖`2([H1(Ω)]d) + ‖pe

∆t − p∆t‖`2(L2(Ω)) ≤ c(ue, pe, T)∆t
3
2 .
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Consistent splitting schemes

• Guermond and Shen (2003) proposed the so-called consistent split
scheme.

• The schemes are based on a weak form of the pressure Poisson
equation and, at each time step, only require to solve a set of
Helmholtz-type equations for the velocity and a Poisson equation
(in the weak form) for the pressure.
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The key idea

By taking the L2-inner product of the momentum equation of Stokes
equaitons with ∇q, we obtain

∫

Ω
∇p · ∇q =

∫

Ω
(f + ν∇2u) · ∇q, ∀q ∈ H1(Ω).

Assume u is known, then above equation is simply the weak form of a
Poisson equation for the pressure.

The principle of the consistent splitting scheme is to compute the
velocity and the pressure in two consecutive steps:

1 Compute the velocity by treating the pressure explicitly;
2 Update the pressure using above equation.
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Standard splitting scheme
Denote D := βqun+1 −∑

q−1
j=0 βjun−j. For n ≥ q− 1, find un+1 and pn+1

such that

D
∆t

un+1 − ν∇2un+1 +∇p?,n+1 = f n+1, un+1|∂Ω = 0,

(∇pn+1,∇q) = (f n+1 + ν∇2un+1,∇q), ∀q ∈ H1(Ω).

Note that ∇2un+1 may not be well defined in a finite element
discretization. Taking the inner product of the first step with ∇q and
subtract the result from the second step, we obtain the following
equivalent formulation:

D
∆t

un+1 − ν∇2un+1 +∇p?,n+1 = f n+1, un+1|∂Ω = 0,

(∇(pn+1 − p?,n+1),∇q) = (
D
∆t

un+1,∇q), ∀q ∈ H1(Ω).
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Consistent splitting scheme

Theorem (Guermond & Shen (2003))
Provided that the solutions (ue

∆t, pe
∆t) of Stokes problem is smooth enough in

time and space, the solution (u∆t, p∆t) of consistent splitting scheme is
unconditionally bounded and satisfies the following error estimates:

‖ue
∆t − u∆t‖`2([L2(Ω)]d) . ∆t2,

‖ue
∆t − u∆t‖`∞([H1(Ω)]d) + ‖pe

∆t − p∆t‖`∞(L2(Ω)) . ∆t.
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Consistent splitting scheme
By Replacing ∇2un+1 by −∇×∇× un+1, leading to the following
algorithm:

D
∆t

un+1 − ν∇2un+1 +∇p?,n+1 = f n+1, un+1|∂Ω = 0,

(∇pn+1,∇q) = (f n+1 − ν∇×∇× un+1,∇q), ∀q ∈ H1(Ω).

Again, to avoid computing −∇×∇× un+1. Taking the inner product
of the first step with ∇q and subtract the result from the second step:

D
∆t

un+1 − ν∇2un+1 +∇p?,n+1 = f n+1, un+1|∂Ω = 0,

(
∇(pn+1 − p?,n+1 + ν∇ · un+1
︸ ︷︷ ︸

φ

),∇q
)
=
( D

∆t
un+1,∇q

)
, ∀q ∈ H1(Ω).
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Consistent splitting scheme

This leads to an equivalent alternative form:

D
∆t

un+1 − ν∇2un+1 +∇p?,n+1 = f n+1, un+1|∂Ω = 0,

(∇φn+1,∇q) = (
D
∆t

un+1,∇q), ∀q ∈ H1(Ω),

pn+1 = φn+1 + p?,n+1 − ν∇ · un+1.

Remark: Neither standard splitting scheme nor consistent splitting is a
projection scheme, for the velocity approximtion un+1 is not
divergence-free.
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Consistent splitting scheme

Theorem (Guermond & Shen (2003))
Provided that the solutions (ue

∆t, pe
∆t) of Stokes problem is smooth enough in

time and space, the solution (u∆t, p∆t) of consistent splitting scheme with
q = 1 is unconditionally bounded and satisfies the following error estimates:

‖ue
∆t − u∆t‖`∞([H1(Ω)]d) + ‖pe

∆t − p∆t‖`∞(L2(Ω)) . ∆t

Conjecture
For q = 2 the following holds:

‖ue
∆t − u∆t‖`∞([H1(Ω)]d) + ‖pe

∆t − p∆t‖`∞(L2(Ω)) . ∆t2

The numerical tests seem to confirm the above conjecture.
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Numerical test (1/2)

Convergence tests using P2/P1 finite element for standard and
consistent splitting schemes.

Note that the complexity of the schemes (5.7), (5.8) and (5.9)–(5.11) is the same as that of (5.3), (5.4) or (5.5), (5.6). How-
ever, as ample numerical results indicate, the pressure approximation pk+1 is no longer plagued by an artificial Neumann
boundary condition and, consequently, these schemes provide truly qth order accuracy (at least for q = 1 and 2) for the
velocity, vorticity and pressure. Thus, (5.7), (5.8) and (5.9)–(5.11) are henceforth referred to as consistent splitting schemes.
We note that the scheme proposed in [37], where an intermediate divergence-free acceleration a :¼ ou

ot � mDu is introduced, is
quite similar to (5.9)–(5.11).

The analysis of the stability and the convergence of the consistent splitting scheme is more involved than that of the
standard form. For the time being, only optimal convergence results with q = 1 have been proved; see [26].

Theorem 5.2. Provided that the solution to (2.6) is smooth enough in time and space, the solution (uDt, pDt) of (5.9)–(5.11) with

q = 1 is unconditionally bounded and satisfies the following error estimates:

kuDt � uDtk‘1ð½H1ðXÞ�d Þ þ kpDt � pDtk‘1ðL2ðXÞÞK Dt.

Conjecture 5.1. For q = 2 the following holds:

kuDt � uDtk‘1ð½H1ðXÞ�d Þ þ kpDt � pDtk‘1ðL2ðXÞÞK Dt2.

Although numerical tests seems to confirm the above conjecture, its proof remains elusive.

5.4. Numerical experiments

To demonstrate the accuracy of the consistent splitting schemes, we perform convergence tests with respect to Dt using
mixed P2=P1 finite elements in space.

The analytical solution is that given in (3.30). The domain is X = ]0,1[2 and the meshsize is h � 1/80. We make the tests
on the range 5 · 10�4

6 Dt 6 10�1 so that the approximation error in space is far smaller than the time splitting error.
We have tested the algorithms (5.5), (5.6) and (5.9)–(5.11) using q = 2 to substantiate Conjecture 5.1.
The error on the velocity in the L2-norm and in the H1-norm at T = 1 is reported in Fig. 5. The error is shown as a

function of Dt. The results corresponding to the standard form of the algorithm are reported in the left panel of the figure,
and those corresponding to the rotational form are in the right panel. The standard form of the algorithm is second-order
accurate in the L2-norm, but the convergence rate in the H1-norm is roughly 3

2
. One clearly observes in the right panel of the

figure that the rotational form of the algorithm is second-order accurate both in the L2-norm and the H1-norm. Note that
the saturations observed for very small time steps is due to the approximation error in space which becomes dominant for
very small time steps.

We show in Fig. 6 the error on the pressure measured in the L1-norm for both versions of the algorithm. The results
clearly show that the pressure approximation in standard form is only first-order, whereas in the rotational formulation it is

Fig. 5. Convergence tests with BDF2 and finite elements. Error on the velocity in the L2-norm and in the H1-norm at T = 1.

6026 J.L. Guermond et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 6011–6045

Error on the velocity in the L2-norm and in the H1-norm at T = 1
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Numerical test (2/2)

truly second-order. The poor convergence rate in the standard form can be attributed to the presence of numerical bound-
ary layers which are induced by the fact that the boundary condition enforced by the approximate pressure, namely
on(pk+1 � 2pk + pk�1)jC = 0, is not consistent.

5.5. Relation with the gauge method

In the gauge formulation [11] of the Navier–Stokes equations, the pressure is replaced by a so-called gauge variable n
and defining an auxiliary vector field m such that m = u + $n. Then, the Stokes problem can be reformulated as follows:

otm� mr2m ¼ f ; mjt¼0 ¼ m0; m � njC ¼ 0; ðm�rnÞ � njC ¼ 0;

r2n ¼ r � m; onnjC ¼ 0.

(
ð5:12Þ

The velocity and the pressure are recovered by

u ¼ m�rn; p ¼ otn� mr2n. ð5:13Þ
This type of formulation has been proposed originally to get rid of the pressure and the saddle-point structure it implies.
Unfortunately, this goal is not quite fulfilled since the boundary condition (m � $n) · njC = 0 implies a coupling between
the m and n variables that has exactly the same complexity as that between the velocity and the pressure in the Stokes
problem.

We now construct a decoupled time discretization of (5.12) using BDFq. Assuming that we have initialized properly
(mj)j=0,. . .,q�1, for k P q � 1 we compute mk+1 such that

D
Dt

mkþ1 � mr2mkþ1 ¼ f ðtkþ1Þ;

mkþ1 � njC ¼ 0; ðmkþ1 �rnH;kþ1Þ � njC ¼ 0;

8<
: ð5:14Þ

where nw,k+1 is an extrapolation for n(tk+1) such that $nw,k+1 Æ njC = 0. A natural choice is

nH;kþ1 ¼ nk if q ¼ 1;

2nk � nk�1 if q ¼ 2.

(
ð5:15Þ

Then, nk+1 is updated by

r2nkþ1 ¼ r � mkþ1; onn
kþ1jC ¼ 0. ð5:16Þ

The fact that the viscous step (5.14) involves the trace of a gradient as a Dirichlet boundary condition renders the
method quite inconvenient from both the theoretical and the practical point of view: a priori energy estimates are difficult
to obtain in this form, and the method cannot be used with H1-conforming finite element methods. In the following we
shall reformulate the scheme (5.14)–(5.16) by making a suitable change of variables to avoid this difficulty.

Fig. 6. Convergence tests with BDF2 and finite elements. Error on the pressure in the L1-norm at T = 1 with standard splitting and consistent splitting.

J.L. Guermond et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 6011–6045 6027

Error on the pressure in the L∞-norm at T = 1
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Relation with the gauge method

• The gauge method was introduced by E and Liu in 2003 to solve
an alternative incompressible Navier–Stokes equations.

• The idea is that the pressure is replaced by a so-called gauge
variable ξ and define an auxiliary vector field m such that
m = u +∇ξ. Then, the Stokes problem can be reformulated as
follows:

∂m
∂t
− ν∇2m = f , m · n|∂Ω = 0, (m−∇ξ)× n|∂Ω = 0,

∇2ξ = ∇ ·m, ∇ξ · n|∂Ω = 0.

The velocity and the pressure are recovered by

u = m−∇ξ, p =
∂ξ

∂t
− ν∇2ξ.
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Time discretization of the gauge method
For n ≥ q− 1, find mn+1 and ξn+1 by the following algorithm:

Step 1: Solve for an auxiliary vector field mn+1,

D
∆t

mn+1 − ν∇2mn+1 = f n+1,

mn+1 · n|∂Ω = 0, (mn+1 −∇ξ?,n+1)× n|∂Ω = 0.

where ξ?,n+1 is the rth order extrapolation for ξn+1 such that
∇ξ?,n+1 · n|∂Ω = 0.

Step 2: ξn+1 is updated by

∇2ξn+1 = ∇ ·mn+1, ∇ξn+1 · n|∂Ω = 0.

Step 3: un+1 and pn+1 are recovered by

un+1 = mn+1 −∇ξn+1, p =
D
∆t

ξn+1 − ν∇2ξn+1.
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Numerical test (E & Liu, 2003)

In this example, E and Liu consider the Navier-Stokes equation with
viscosity ν = 1. The finite difference method was used for the spatial
discretization and chooses ∆t = ∆x.

328 GAUGE METHOD FOR INCOMPRESSIBLE FLOWS

boundary condition u∗ = 0 (denoted by PM1.1) and the improved boundary condi-
tion u∗ ·n = 0, u∗ · τ = 4t∂τ p

n [8, 11, 18] (denoted by PM1.2) for the intermediate
velocity field. Two different formulations of the second order projection method are
chosen for this comparison, one based on the improved velocity boundary condition
[8, 11, 18] (denoted by PM2.1). This is same as PM1.2 except that backward Euler is
replaced by Crank-Nicolson, and Adams-Bashforth is used to compute the convective
term. The second one is based on the pressure increment form [16, 2] (denoted by
PM2.2):





u∗ − un

4t
+ (un+1/2 ·∇)un+1/2 + ∇pn−1/2 = ∆

u∗ + un

2
,

u∗ = 0 , on ∂Ω ,

u∗ = un+1 + 4t(∇pn+1/2 −∇pn−1/2) ,

∇·un+1 = 0 ,

un+1 ·n = 0 , on ∂Ω .

For the spatial discretization we used the two methods described earlier in Section
2.2

We choose the following exact solution of the Navier-Stokes equation:





u(x, y, t) = − cos(t) sin2(πx) sin(2πy)
v(x, y, t) = cos(t) sin(2πx) sin2(πy)
φ(x, y, t) = cos(t)(2 + cos(πx))(2 + cos(πy))/4

(3.34)

Appropriate forcing terms are added to ensure that (3.34) is an exact solution. We
set ν = 1 and 4t = 4x so that the time step size is set by the convective term.

Tables 1-6 summarize the results for the case when numerical values are defined at
the cell centers. Tables 7-12 summarizes the results for the second example in which
numerical values are defined at the grid points. In both cases, the gauge methods
achieve the expected accuracy. This is clearly not the case for the projection method.
In the worst cases, the accuracy is entirely lost in the maximum norm.

One curious but not well-understood point is that the projection methods do not
perform badly in keeping the velocity field approximately divergence-free. In fact, it
often outperforms the gauge method in this respect.

We should remark that the poor performance of the projection method docu-
mented here does not imply that projection method cannot be used. It only implies
that naive spatial discretization schemes for the PPE as the ones used here does not
work for the projection method.

GM1 L1 L2 L∞

322 642 1282 ord 322 642 1282 ord 322 642 1282 ord

div u 5.01E-3 1.37E-3 3.57E-4 1.91 6.37E-3 1.69E-3 4.37E-4 1.93 1.68E-2 4.98E-3 1.44E-3 1.77

u 1.25E-2 7.37E-3 3.99E-3 0.83 1.48E-2 8.57E-3 4.60E-3 0.85 4.10E-2 2.51E-2 1.39E-2 0.79

a 7.99E-2 4.33E-2 2.25E-2 0.92 8.89E-2 4.82E-2 2.50E-2 0.92 1.83E-1 1.01E-1 5.28E-2 0.90

φ 2.10E-2 1.14E-2 5.91E-3 0.92 2.59E-2 1.41E-2 7.32E-3 0.92 7.41E-2 4.09E-2 2.14E-2 0.90WEINAN E AND JIAN–GUO LIU 329

GM2 L1 L2 L∞

322 642 1282 ord 322 642 1282 ord 322 642 1282 ord

div u 5.00E-3 1.37E-3 3.57E-4 1.91 6.43E-3 1.71E-3 4.38E-4 1.94 1.87E-2 4.83E-3 1.22E-3 1.97

u 2.01E-3 5.25E-4 1.33E-4 1.96 2.34E-3 5.97E-4 1.50E-4 1.98 4.22E-3 1.07E-3 2.68E-4 1.99

a 2.57E-3 6.69E-4 1.69E-4 1.97 2.90E-3 7.57E-4 1.91E-4 1.97 7.44E-3 1.99E-3 5.11E-4 1.93

φ 8.24E-4 2.14E-4 5.40E-5 1.97 1.03E-3 2.66E-4 6.72E-5 1.97 2.95E-3 7.84E-4 1.99E-4 1.95

PM1.1 L1 L2 L∞

322 642 1282 ord 322 642 1282 ord 322 642 1282 ord

div u 2.12E-3 4.04E-4 6.87E-5 2.48 3.51E-3 7.32E-4 1.39E-4 2.33 1.87E-2 5.37E-3 1.52E-3 1.81

u 3.98E-2 2.80E-2 1.74E-2 0.60 4.85E-2 3.45E-2 2.19E-2 0.58 1.35E-1 1.13E-1 7.75E-2 0.40

p 8.00E-1 5.92E-1 3.82E-1 0.53 1.09E-0 8.08E-1 5.32E-1 0.52 3.73E-0 2.80E-0 1.92E-0 0.50

PM1.2 L1 L2 L∞

322 642 1282 ord 322 642 1282 ord 322 642 1282 ord

div u 1.07E-3 1.74E-4 2.53E-5 2.70 1.39E-3 2.25E-4 3.28E-5 2.70 3.86E-3 6.84E-4 1.22E-4 2.49

u 7.19E-3 3.50E-3 1.71E-3 1.04 8.52E-3 4.10E-3 2.00E-3 1.05 1.60E-2 7.52E-3 3.54E-3 1.09

p 3.95E-1 2.61E-1 1.53E-1 0.68 5.33E-1 3.46E-1 2.01E-1 0.70 1.61E-0 9.99E-1 5.70E-1 0.75

PM2.1 L1 L2 L∞

322 642 1282 ord 322 642 1282 ord 322 642 1282 ord

div u 1.32E-3 1.90E-4 2.55E-5 2.85 1.80E-3 2.54E-4 3.90E-5 2.77 6.00E-3 1.21E-3 1.01E-3 1.29

u 1.71E-3 1.09E-3 6.20E-4 0.73 2.85E-3 2.23E-3 1.66E-3 0.39 1.12E-2 1.21E-2 1.27E-2 -.09

p 2.21E-1 1.29E-1 6.75E-2 0.86 3.08E-1 1.75E-1 8.95E-2 0.89 9.67E-1 5.19E-1 2.56E-1 0.96

PM2.2 L1 L2 L∞

322 642 1282 ord 322 642 1282 ord 322 642 1282 ord

div u 1.71E-4 3.56E-5 8.12E-6 2.20 2.75E-4 8.69E-5 3.02E-5 1.59 1.91E-3 1.65E-3 1.14E-3 0.37

u 3.30E-3 1.42E-3 6.90E-4 1.13 4.36E-3 2.38E-3 1.62E-3 0.71 1.55E-2 1.29E-2 1.26E-2 0.15

p 1.22E-1 5.77E-2 3.53E-2 0.89 1.57E-1 7.36E-2 4.36E-2 0.92 6.34E-1 2.77E-1 1.40E-1 1.09

GM 1 L1 L2 L∞

322 642 1282 ord 322 642 1282 ord 322 642 1282 ord

div u 5.48E-3 1.45E-3 3.71E-4 1.94 6.88E-3 1.86E-3 4.88E-4 1.91 3.77E-2 3.12E-2 1.87E-2 1.51

u 2.34E-2 1.32E-2 7.01E-3 0.87 2.69E-2 1.50E-2 7.94E-3 0.88 6.41E-2 3.74E-2 2.03E-2 0.83

a 1.04E-1 5.49E-2 2.81E-2 0.94 1.11E-1 5.93E-2 3.06E-2 0.93 1.87E-1 1.02E-1 5.30E-2 0.91

φ 2.33E-2 1.20E-2 6.05E-3 0.97 2.79E-2 1.46E-2 7.44E-3 0.95 7.77E-2 4.18E-2 2.15E-2 0.93

In two tables, a := m and φ := ξ
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The gauge method and consistent splitting method
are “equivalent!”

Staring with the gauge method and changing the variables,

ũn+1 = mn+1 −∇ξ?,n+1, un+1 = mn+1 −∇ξn+1,

pn+1 =
D
∆t

ξn+1 − ν∇2ξn+1, p?,n+1 =
D
∆t

ξ?,n+1 − ν∇2ξ?,n+1,

we can prove that, up to an appropriate change of variables and when
the space is continuous, the gauge algorithm is equivalent to the
following:





Dũn+1

∆t
− ν∇2ũ +∇p?,n+1 = f n+1 in Ω,

ũ = 0 on ∂Ω.




∇2φn+1 = ∇ · Dũn+1

∆t
in Ω,

∇φn+1 · n = 0 on ∂Ω;

pn+1 − p?,n+1 + ν∇ · ũn+1 = φn+1.
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Summary

is between OðDtÞ and OðDt
3
2Þ. These rates are consistent with the error estimates in Theorem 10.1. The accuracy saturation

observed for small time steps comes from the spatial discretization error. The Legendre–Galerkin technique give similar
results; see [21].

11. Open questions and concluding remarks

11.1. Stability of third- and higher-order schemes: Dirichlet boundary conditions

A number of authors have claimed that the pressure-correction scheme (3.14)–(3.16) with (q, r) = (3, 2) is third-order
accurate (for the velocity) and unconditionally stable. However, although third-order accuracy for the velocity is observed
for the scheme with (q, r) = (3, 2) when Dt is not too small, there are ample numerical evidences indicating that it becomes
unstable when Dt is smaller than a critical time step Dtc 	 h2 for finite-element discretizations and Dt 	 N�3 for spectral
discretizations when applied to the linear problem (2.6) supplemented with Dirichlet boundary conditions (see Table 1).
Thus, when the scheme is applied to nonlinear Navier–Stokes equations with nonlinear terms treated explicitly, it some-
times becomes unconditionally unstable due to the two contradictory requirements: (i) Dt should be larger than Dtc,
and (ii) Dt should be sufficiently small to satisfy the usual CFL condition.

On the other hand, numerical tests performed on the linear problem (2.6) supplemented with Dirichlet boundary con-
ditions using finite elements showed that the velocity-correction scheme and the consistent splitting scheme (all of them in

Fig. 12. Rotational pressure-correction scheme: finite elements; errors at t = 1 vs. Dt (using h = 1/80). Velocity: (m) L2-norm; (+) H1-norm. Pressure: (,)
L2-norm; (j) L1-norm.

Table 1
Stability and convergence rates of rotational schemesa

B.C. q r Order Pressure-correction Velocity-correction Consistent splitting

Dirichlet B.C. 1 1 (1,1) Proved Proved Proved

2 1 2;
3

2

� �
Proved Proved Not applicable

2 2 (2,2)w FE: stable if ch2
6 Dtw FE: stablew FE: stablew

LG: stable if cN�3
6 Dtw LG: stablew LG: stablew

3 2 3;
5

2

� �H

FE: stable if ch2
6 Dtw FE: stable if ch2

6 Dtw Not applicable
LG: stable if cN�3

6 Dtw LG: stablew

Open B.C. 1 1
3þ s

4
;
3þ s

4

� �
Proved Numerical evidences only Numerical evidences only

2 1
5þ s

4
;
3þ s

4

� �
Proved Numerical evidences only Not applicable

2 2 Unusable FE: stable if c1h2
6 Dt 6 c2h2w FE: stable if c1h2

6 Dt 6 c2h2w FE: stable if c1h2
6 Dt 6 c2h2w

Inf–sup Needed Needed for (4.8) Needed for (5.10)
Can be avoidedw for (4.6) Can be avoidedw for (5.8)

a The first (resp. second) number in the parenthesis is the convergence rate for the velocity in the L2-norm (resp. the velocity in the H1-norm and the
pressure in the L2-norm); s is the regularity index of the Stokes operator; the symbol w means numerical evidences only.

6042 J.L. Guermond et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 6011–6045
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Thank you for your attention!
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