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Governing equations

Let Q be an open bounded domain in R? (d = 2, 3) and [0, T] be the
time interval. The time-dependent, incompressible Stokes problem can
be posed as: find u and p with [ pdV = 0, so that

ou

o vW u+Vp = f inQx(0,T],

V-ou = 0 inQx(0,7T],
u = 0 onoQx][0,T],
u = wuy inQx{t=0}

e uis the velocity field, p the pressure (divided by a constant
density p), v the kinematic viscosity, and f the body force.
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Helmholtz-Hodge decomposition
(Chorin & Marsden)

A smooth vector field w defined on Q) can be uniquely decomposed
orthogonally in the form:
w=u+ Ve,

where u has zero divergence, V- u = 0in (), and # - n = 0 on 9().

gradient fields

Ve

w

vector fields that are
divergence free and
parallel to the boundary

Remarks:
e Orthogonality means [ u-V@dV = 0 (L*inner product).
e The HHD describes the decomposition of a flow field w into its

divergence-free component # and curl-free component V¢, since
V-u=0and V x (V¢) =0in Q.
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Time-discretization of the incompressible Stokes eqns

First, we discretize the time variable of the Stokes problem, with the
spatial variable being left continuous. Consider the gth-order
backward difference formula (BDEq):

1 q-1 ‘
At (’BqunH B 2 ﬁju”_]) — vV vttt = fﬂ+1 inQ,
=0

V-utl = 0 inQ,
"t = 0 onaQ,

where t; := iAt fori =0,1,--- , K= L,.--, At > 0is the time ste
Af P

length, and g" denotes an approximate (or exact) value of g(t,) at the
time level n.
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A general pressure-correction projection methods

Step 1: Solve for the intermediate velocity field #,

1y i _
E <ﬁqun+l _ Z ﬁjunﬁ) . 1/VZMH—H + Vp*,n+1 — fn+1 in O,
j=0
u = 0 onodQ),
where p*" 1 = Z};& ~jp" 7 is the rth order extrapolation of p"*1.

Step 2: Determine #" ™! and ¢! by solving

i’i(u"“ —#") + V" = 0 inQ,
V-u"tl = 0 inQ,
W n = 0 onoQ.

Step 3: Update the pressure, p"*! = p*"+1 £ "+l — yyV - %" xisa
user-defined coefficient that may be equal to 0 or 1.
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A general pressure-correction projection methods

° (g,r)=(1,0)and x =0

= non-incremental pressure-correction scheme (Chorin).
° (g,r)=(2,1)and x =0

= standard pressure-correction scheme.
e (g,r)=(2,1)and x =1

= rotational pressure-correction scheme. ©

Remark: If one chooses r = ¢, then the formal consistency errors for
the velocity in H'-norm and the pressure in L?>-norm are both of the
same order. However, stability and convergence are only available for
g=r=1
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Velocity-correction schemes

e These schemes have been introduced in a somewhat different
(although equivalent) form by Orszag et al. (1986) and
Karniadakis et al. (1991).

¢ The main idea is to switch the role of the velocity and the pressure
in the pressure-correction schemes, i.e., the viscous term is treated
explicitly or ignored in the first substep and the velocity is
corrected accordingly in the second substep.
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Non-incremental velocity-correction scheme

Set #1° = uy, and for n > 0 find (ﬁ”“, w1, p"*1) by the following
algorithm:

Step 1: Determine »" ! and p"*! by solving

1 -

E(u”“—u")—FVp"H = 1 inQ,
V-t = 0 inQ,
Wn = 0 onoQ.

Step 2: Solve for the intermediate velocity field #" ",
i(ﬁn-&-l _ un+1) _ szﬁn+l

Al = 0 inQ,

T = 0 ondQ.
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Non-incremental velocity-correction scheme

Theorem (Rannacher (1991), Guermond & Shen (2003))

Assuming that (u¢, p°), solving the Stokes equations, is sufficiently smooth,
the solution of above projection method, satisfies the following error estimates:

e — matll e 2oy + 4ar — Baell o ey < e, p°, T)AL,

IPhe — Patlles g2y + 11985 — Bt e ygey < (@, p°, )AL,

Note: We denote that g, = {¢°, ¢!, - -, X} be some sequence of
functions in a Hilbert space E and defme the following discrete norm:

X k2 172
loasllae = (AL NFIE) ) loarllee) = max 19l
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Standard velocity-correction scheme

Using the BDFq to approximate the time derivative, the standard
velocity-correction scheme reads as follows:

n—+1

Step 1: Determine »" ! and p"*! by solving

1 q-1 L N
At ('Bqunﬂ - ﬁj”n_]) — VI L vptt = 1 inQ,
j=0
V~u”+1 — 0 in Q,

~% n+1 n+1

where % 0 y 7ji" 7 be a rth order extrapolation of @

Step 2: Solve for the intermediate velocity field %",
i{i(ﬁ;ﬂ_l _ un+1) VVZ( n+1 ~*,n+l) = 0 inQ,
#"t = 0 onoQ.

Cheng-Shu You (NCU, Taiwan) An overview of projection methods for viscous incompressible flow (II) 10/28



Standard velocity-correction scheme
Hypothesis

it is computed such that the following estimates holds:
|uf(At) — @ |o < cAP?,
|uf(At) — i ||y < cAtP?,
|uf(At) — @2 < cAt.

| \

Theorem (Guermond & Shen (2003))

Under the hypothesis , if the (u°, p°), solving the Stokes equations, is smooth
enough in space and time, the solution of above projection method with
(g,7) = (2,1) satisfies the following error estimates:

[y — aell ez ey + lae — Baell ey < o, 0%, T)AL,

@ 2 -~ 2 (2 3
[6ar — el o (e ey + 19ae — Batll o2y < c(u,p, T)AL2,
[t6ar — Batll o (e () + [1Par — Patlle= 2y < e, p°, T)AL.

v
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Rotational form of the velocity-correction scheme

In order to obtain a better approximation of the pressure, Guermond and
Shen (2001, 2003) propose to replace V2u*" 1 by —V x V x a1

Step 1: Determine #"*! and p"*! by solving

q-1 ,
i (B! = ¥ jil" ) + vV x Vx4 vpt = 1 inQ,
j=0

V-u' = 0 inQ,
W"ln = 0 onoQ.
Step 2: Solve for the intermediate velocity field %",
%(ﬁn-&-l o un+1) . szﬁn-&-l — UV X V % ﬁ*,n-&-l — 0 in Q,
"l = 0 onoQ.

This scheme is referred to as the rotational form of the velocity-correction
algorithm.
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Rotational form of the velocity-correction scheme

Theorem (Guermond & Shen (2003))

Under the hypothesis , if the (u¢, p°), solving the Stokes equations, is smooth
enough in space and time, the solution of above projection method with
(g,7) = (2,1) satisfies the following error estimates:

[ — watll 22y + 1#ae — Barlleagaye < e, p, T)AE,

~ 3
[4as — Hatll 2 ey + [1Pae — Pall ez )y < oo, p°, T)AL2.
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Consistent splitting schemes

¢ Guermond and Shen (2003) proposed the so-called consistent split
scheme.

¢ The schemes are based on a weak form of the pressure Poisson
equation and, at each time step, only require to solve a set of
Helmholtz-type equations for the velocity and a Poisson equation
(in the weak form) for the pressure.
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The key idea

By taking the L-inner product of the momentum equation of Stokes
equaitons with Vg, we obtain

/Vp-qu/(f+uV2u)-Vq, Vg € H'(Q).
0 0

Assume u is known, then above equation is simply the weak form of a
Poisson equation for the pressure.

The principle of the consistent splitting scheme is to compute the
velocity and the pressure in two consecutive steps:
@ Compute the velocity by treating the pressure explicitly;

® Update the pressure using above equation.
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Standard splitting scheme

Denote D := Bu"t! — Z;Col Bju"J. Forn > q— 1, find u"*! and p"*!
such that

%un—&-l . VVZun—H + vp*,n—H :fn—i-l, un—§—1|aQ =0,

(Vp™1,Vq) = (f*" + V21, V), Vg€ H(Q).

Note that V24" may not be well defined in a finite element
discretization. Taking the inner product of the first step with Vg and
subtract the result from the second step, we obtain the following
equivalent formulation:

D
Bun-&-l _ szun—H + vp*,n—H :fn—i-l, un-&-l|aQ =0,
D n
(V(ptt = pt1), V) = ("', Vg), Vqe H(Q).
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Consistent splitting scheme

Theorem (Guermond & Shen (2003))

Provided that the solutions (u,, p%,) of Stokes problem is smooth enough in
time and space, the solution (uas, par) of consistent splitting scheme is
unconditionally bounded and satisfies the following error estimates:

[ — #all 2 rayey S AF,

[tar — el (e () + 11Par — Patll =2y S At
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Consistent splitting scheme

By Replacing VZu" ™1 by —V x V x u"*!, leading to the following
algorithm:

%un—&-l . VVZun—H + Vp*,n—H :fnJrl, un—&—l‘aQ =0,

(Vpn—i-l, Vq) _ (fn—i-l — UV X V X un-i-l, Vﬂl)/ Vq S H! (Q)

Again, to avoid computing —V x V x u"" 1. Taking the inner product
of the first step with Vg and subtract the result from the second step:

%un-i—l _ 1/v2un+l + vp*,n-i-l :fn+l, un-&-1|aQ — O,
(V(pn—H . p*,n—H YA VAR un+1)’ VCI) — (%un—&—l, VC]), VC] c Hl(ﬂ)

¢
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Consistent splitting scheme

This leads to an equivalent alternative form:

ABtun+1 _ VVZunJrl + vp*,nJrl :fnJrl/ un+1|aQ =0,
n D _,
(Vo' Vq) = (—u"",Vgq), VqeH(Q),

At
pn+1 — (PnJrl +p*,n+1 — V- un+1‘

Remark: Neither standard splitting scheme nor consistent splitting is a
projection scheme, for the velocity approximtion #" ! is not
divergence-free.
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Consistent splitting scheme

Theorem (Guermond & Shen (2003))

Provided that the solutions (u,, p%;) of Stokes problem is smooth enough in
time and space, the solution (uas, par) of consistent splitting scheme with
q = 1 is unconditionally bounded and satisfies the following error estimates:

s — watll e ey + 1Pae — Patllesr2(q)) S At

For q = 2 the following holds:

[ — watll g en gy + IPae — Paelles @2y S AP

The numerical tests seem to confirm the above conjecture.

Cheng-Shu You (NCU, Taiwan) An overview of projection methods for viscous incompressible flow (II) 20/28



Numerical test (1/2)

Convergence tests using P, /P1 finite element for standard and
consistent splitting schemes.

-1 -2
% L2, std., 2nd—order | : 3 [ L2, rot., 2nd—ord
o0 H, std., 2nd-order | o0 HI, rot., 2nd—order\
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L LT
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Standard splitting Consistent splitting

Error on the velocity in the L>-norm and in the H'-norm at T = 1
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Numerical test (2/2)

0 s s s s 5
=—= Linfty, std., 2nd—order
< Linfty, rot,, 2nd—order

-1
./
.
-2
_3 Slope 1]
-4
-5
6 Slope 2
-4 -3 -2 -1 0

Error on the pressure in the L-normat T =1

Cheng St You (NCU, Taiwar) | SESSREEE y



Relation with the gauge method

e The gauge method was introduced by E and Liu in 2003 to solve
an alternative incompressible Navier-Stokes equations.

e The idea is that the pressure is replaced by a so-called gauge
variable ¢ and define an auxiliary vector field m such that
m = u + V¢. Then, the Stokes problem can be reformulated as
follows:
om ’
g—vv m=f, m-nln=0 (m—V¢) xnlzn=0,
V% =V-m, V& nlyno=0.

The velocity and the pressure are recovered by

u=m-—Vg, p:gi{—vvzé‘.
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Time discretization of the gauge method

Forn > g — 1, find m"*! and ¢"*! by the following algorithm:

Step 1: Solve for an auxiliary vector field m"*!,

D

7mn+1 _ VVZmn+l :fnJrl’
At

mn+1 X n|8(_2 — 0’

where ¢*"1 is the rth order extrapolation for ¢"*1 such that

V(:*’n+1 : n|aQ =0.
Step 2: ¢"*1 is updated by
VA =V om™, VT afn = 0.

Step 3: ! and p"*! are recovered by

un-i—l — mn-i—l _ vgn—‘rl, p= %67’1—0—1 _ Vv2§n+1.
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In this example, E and Liu consider the Navier-Stokes equation with
viscosity v = 1. The finite difference method was used for the spatial

Numerical test (E & Liu, 2003)

discretization and chooses At = Ax.

GM1 Ly L Loo
322 642 1282 ||ord || 322 642 1282 || ord || 322 642 1282 || ord
div u|[5.01E-3|1.37E-3|3.57E-4(|1.91(|6.37E-3| 1.69E-3 | 4.37E-4 || 1.93 || 1.68E-2 [4.98E-3 | 1.44E-3 || 1.77
u ||1.25E-2|7.37E-3|3.99E-3||0.83||1.48E-2|8.57E-3 | 4.60E-3 || 0.85||4.10E-2|2.51E-2 | 1.39E-2|| 0.79
a ||7.99E-2|4.33E-2|2.25E-2(|0.92|8.89E-2 | 4.82E-2(2.50E-2|0.92|| 1.83E-1 | 1.01E-1|5.28E-2||0.90
¢ ||2.10E-2|1.14E-2|5.91E-3[0.92||2.59E-2 | 1.41E-2|7.32E-3|[0.92| 7.41E-2 | 4.09E-2| 2.14E-2 || 0.90
GM2 Ly Lo Loo
322 642 1282 ||ord || 322 642 1282 || ord || 322 642 1282 || ord
div w||5.00E-3|1.37E-3|3.57E-4|[1.91||6.43E-3 | 1.71E-3|4.38E-4 || 1.94|| 1.87E-2 | 4.83E-3| 1.22E-3 || 1.97
w  |[2.01E-3|5.25E-4|1.33E-4|[1.96|[2.34E-3|5.97E-4 | 1.50E-4 || 1.98 || 4.22E-3 | 1.07E-3| 2.68E-4 || 1.99
a ||2.57E-3|6.69E-4|1.69E-4|1.97||2.90E-3|7.57E-4|1.91E-4|[1.97 || 7.44E-3 | 1.99E-3 |5.11E-4|| 1.93
¢ ||8.24E-4|2.14E-4|5.40E-5|[1.97 || 1.03E-3 | 2.66E-4|6.72E-5 || 1.97 || 2.95E-3 | 7.84E-4| 1.99E-4 || 1.95
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The gauge method and consistent splitting method

are “equivalent!”
Staring with the gauge method and changing the variables,

ﬁﬂJrl _ VH—l V(:* Vl+1 uVH—l — mVH—l o V(:n-‘rl,
n+l1 __ n+1 2 an+1 *xn+1 D *,n+1 2 ox,n+1
= gty el = et g2
;7 Zkt_éf é: 4 }7 th,éf éf 7

we can prove that, up to an appropriate change of variables and when

the space is continuous, the gauge algorithm is equivalent to the
following;:

l)'vn—kl
N . szﬁ+ vp*,rH»l _ fi’l-‘rl in Q,
u = 0 onodQ.
~n—+1
Viprtt = V- Du - O

V¢"l.n = 0 ond0)

Pn+1 _ p*,n—i-l +LyV - ﬁn+1 — q)n—&-l.
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Summary

Table 1
Stability and convergence rates of rotational schemes®
B.C. q r Order Pressure-correction Velocity-correction Consistent splitting
Dirichlet B.C. 1 1 (1,1) Proved Proved Proved
3 .
2 1 2, i) Proved Proved Not applicable
2 2 (2,2)* FE: stable if ¢h* < Ar* FE: stable® FE: stable™
5\ * LG: stable if ¢N7? < Ar* LG: stable* LG: stable®
302 (3.5) FE: stable if ch® < Ar* FE: stable if ch® < Ar* Not applicable
LG: stable if ¢N* < Ar* LG: stable*
Open B.C. 1 1 (3 : s 3 :A) Proved Numerical evidences only Numerical evidences only
5 3 . . .
2 1 ( IS Ij) Proved Numerical evidences only Not applicable
2 2 Unusable FE: stable if qhz <A< (2112« FE: stable if c,hl <A< czhz* FE: stable if c,hz <A< tzhz"
Inf-sup Needed Needed for (4.8) Needed for (5.10)

Can be avoided™ for (4.6)

Can be avoided™ for (5.8)

 The first (resp. second) number in the parenthesis is the convergence rate for the velocity in the L>norm (resp. the velocity in the H'-norm and the
pressure in the L2-norm); s is the regularity index of the Stokes operator; the symbol % means numerical evidences only.
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Thank you for your attention!
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