

An overview of projection methods for viscous incompressible flow (II)

Cheng-Shu You (游承書)

Department of Mathematics, National Central University
Jhongli District, Taoyuan City 32001, Taiwan

March 13, 2017

Governing equations

Let Ω be an open bounded domain in \mathbb{R}^d ($d = 2, 3$) and $[0, T]$ be the time interval. The time-dependent, incompressible Stokes problem can be posed as: find \mathbf{u} and p with $\int_{\Omega} p dV = 0$, so that

$$\begin{aligned}\frac{\partial \mathbf{u}}{\partial t} - \nu \nabla^2 \mathbf{u} + \nabla p &= \mathbf{f} \quad \text{in } \Omega \times (0, T], \\ \nabla \cdot \mathbf{u} &= 0 \quad \text{in } \Omega \times (0, T], \\ \mathbf{u} &= \mathbf{0} \quad \text{on } \partial\Omega \times [0, T], \\ \mathbf{u} &= \mathbf{u}_0 \quad \text{in } \Omega \times \{t = 0\}.\end{aligned}$$

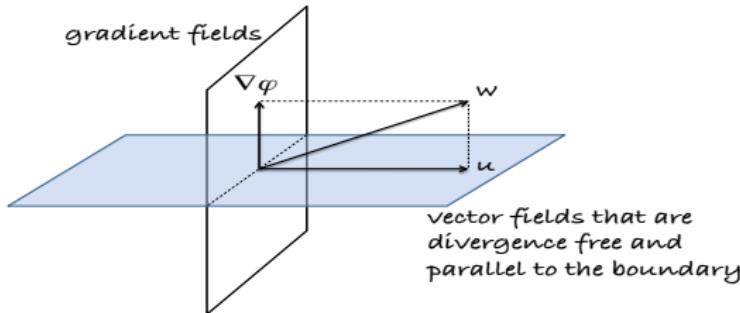
- \mathbf{u} is the velocity field, p the pressure (divided by a constant density ρ), ν the kinematic viscosity, and \mathbf{f} the body force.

Helmholtz-Hodge decomposition (Chorin & Marsden)

A smooth vector field w defined on $\bar{\Omega}$ can be uniquely decomposed orthogonally in the form:

$$w = u + \nabla \varphi,$$

where u has zero divergence, $\nabla \cdot u = 0$ in Ω , and $u \cdot n = 0$ on $\partial\Omega$.



Remarks:

- Orthogonality means $\int_{\Omega} u \cdot \nabla \varphi dV = 0$ (L^2 -inner product).
- The HHD describes the decomposition of a flow field w into its divergence-free component u and curl-free component $\nabla \varphi$, since $\nabla \cdot u = 0$ and $\nabla \times (\nabla \varphi) = 0$ in Ω .

Time-discretization of the incompressible Stokes eqns

First, we discretize the time variable of the Stokes problem, with the spatial variable being left continuous. Consider **the q th-order backward difference formula (BDFq)**:

$$\begin{aligned}\frac{1}{\Delta t} \left(\beta_q \mathbf{u}^{n+1} - \sum_{j=0}^{q-1} \beta_j \mathbf{u}^{n-j} \right) - \nu \nabla^2 \mathbf{u}^{n+1} + \nabla p^{n+1} &= \mathbf{f}^{n+1} \quad \text{in } \Omega, \\ \nabla \cdot \mathbf{u}^{n+1} &= 0 \quad \text{in } \Omega, \\ \mathbf{u}^{n+1} &= \mathbf{0} \quad \text{on } \partial\Omega,\end{aligned}$$

where $t_i := i\Delta t$ for $i = 0, 1, \dots, K = \frac{T}{\Delta t}, \dots, \Delta t > 0$ is the time step length, and \mathbf{g}^n denotes an approximate (or exact) value of $\mathbf{g}(t_n)$ at the time level n .

A general pressure-correction projection methods

Step 1: Solve for the intermediate velocity field $\tilde{\mathbf{u}}$,

$$\left\{ \begin{array}{l} \frac{1}{\Delta t} \left(\beta_q \tilde{\mathbf{u}}^{n+1} - \sum_{j=0}^{q-1} \beta_j \mathbf{u}^{n-j} \right) - \nu \nabla^2 \tilde{\mathbf{u}}^{n+1} + \nabla p^{*,n+1} = \mathbf{f}^{n+1} \quad \text{in } \Omega, \\ \tilde{\mathbf{u}} = \mathbf{0} \quad \text{on } \partial\Omega, \end{array} \right.$$

where $p^{*,n+1} = \sum_{j=0}^{r-1} \gamma_j p^{n-j}$ is **the r th order extrapolation of p^{n+1}** .

Step 2: Determine \mathbf{u}^{n+1} and ϕ^{n+1} by solving

$$\left\{ \begin{array}{l} \frac{\beta_q}{\Delta t} (\mathbf{u}^{n+1} - \tilde{\mathbf{u}}^{n+1}) + \nabla \phi^{n+1} = \mathbf{0} \quad \text{in } \Omega, \\ \nabla \cdot \mathbf{u}^{n+1} = 0 \quad \text{in } \Omega, \\ \mathbf{u}^{n+1} \cdot \mathbf{n} = \mathbf{0} \quad \text{on } \partial\Omega. \end{array} \right.$$

Step 3: Update the pressure, $p^{n+1} = p^{*,n+1} + \phi^{n+1} - \chi \nu \nabla \cdot \tilde{\mathbf{u}}^{n+1}$, χ is a user-defined coefficient that may be equal to 0 or 1.

A general pressure-correction projection methods

- $(q, r) = (1, 0)$ and $\chi = 0$
⇒ non-incremental pressure-correction scheme (Chorin).
- $(q, r) = (2, 1)$ and $\chi = 0$
⇒ standard pressure-correction scheme.
- $(q, r) = (2, 1)$ and $\chi = 1$
⇒ rotational pressure-correction scheme. ☺

Remark: If one chooses $r = q$, then the formal consistency errors for the velocity in H^1 -norm and the pressure in L^2 -norm are both of the same order. However, stability and convergence are only available for $q = r = 1$.

Velocity-correction schemes

- These schemes have been introduced in a somewhat different (although equivalent) form by Orszag et al. (1986) and Karniadakis et al. (1991).
- The main idea is to switch the role of the velocity and the pressure in the pressure-correction schemes, i.e., the viscous term is treated explicitly or ignored in the first substep and the velocity is corrected accordingly in the second substep.

Non-incremental velocity-correction scheme

Set $\tilde{\mathbf{u}}^0 = \mathbf{u}_0$, and for $n \geq 0$ find $(\tilde{\mathbf{u}}^{n+1}, \mathbf{u}^{n+1}, p^{n+1})$ by the following algorithm:

Step 1: Determine \mathbf{u}^{n+1} and p^{n+1} by solving

$$\begin{cases} \frac{1}{\Delta t}(\mathbf{u}^{n+1} - \tilde{\mathbf{u}}^n) + \nabla p^{n+1} = \mathbf{f}^{n+1} & \text{in } \Omega, \\ \nabla \cdot \mathbf{u}^{n+1} = 0 & \text{in } \Omega, \\ \mathbf{u}^{n+1} \cdot \mathbf{n} = 0 & \text{on } \partial\Omega. \end{cases}$$

Step 2: Solve for the intermediate velocity field $\tilde{\mathbf{u}}^{n+1}$,

$$\begin{cases} \frac{1}{\Delta t}(\tilde{\mathbf{u}}^{n+1} - \mathbf{u}^{n+1}) - \nu \nabla^2 \tilde{\mathbf{u}}^{n+1} = 0 & \text{in } \Omega, \\ \tilde{\mathbf{u}}^{n+1} = 0 & \text{on } \partial\Omega. \end{cases}$$

Non-incremental velocity-correction scheme

Theorem (Rannacher (1991), Guermond & Shen (2003))

Assuming that (\mathbf{u}^e, p^e) , solving the Stokes equations, is sufficiently smooth, the solution of above projection method, satisfies the following error estimates:

$$\|\mathbf{u}_{\Delta t}^e - \mathbf{u}_{\Delta t}\|_{\ell^\infty([L^2(\Omega)]^d)} + \|\mathbf{u}_{\Delta t}^e - \tilde{\mathbf{u}}_{\Delta t}\|_{\ell^\infty([L^2(\Omega)]^d)} \leq c(\mathbf{u}^e, p^e, T) \Delta t,$$
$$\|p_{\Delta t}^e - p_{\Delta t}\|_{\ell^\infty(L^2(\Omega))} + \|\mathbf{u}_{\Delta t}^e - \tilde{\mathbf{u}}_{\Delta t}\|_{\ell^\infty([H^1(\Omega)]^d)} \leq c(\mathbf{u}^e, p^e, T) \Delta t^{1/2}.$$

Note: We denote that $\varphi_{\Delta t} = \{\varphi^0, \varphi^1, \dots, \varphi^K\}$ be some sequence of functions in a Hilbert space E and define the following discrete norm:

$$\|\varphi_{\Delta t}\|_{\ell^2(E)} = \left(\Delta t \sum_{k=1}^K \|\varphi^k\|_E^2 \right)^{1/2}, \quad \|\varphi_{\Delta t}\|_{\ell^\infty(E)} = \max_{0 \leq k \leq K} \|\varphi^k\|_E.$$

Standard velocity-correction scheme

Using the BDFq to approximate the time derivative, the standard velocity-correction scheme reads as follows:

Step 1: Determine \mathbf{u}^{n+1} and p^{n+1} by solving

$$\left\{ \begin{array}{l} \frac{1}{\Delta t} \left(\beta_q \mathbf{u}^{n+1} - \sum_{j=0}^{q-1} \beta_j \tilde{\mathbf{u}}^{n-j} \right) - \nu \nabla^2 \tilde{\mathbf{u}}^{\star, n+1} + \nabla p^{n+1} = \mathbf{f}^{n+1} \quad \text{in } \Omega, \\ \nabla \cdot \mathbf{u}^{n+1} = 0 \quad \text{in } \Omega, \\ \mathbf{u}^{n+1} \cdot \mathbf{n} = 0 \quad \text{on } \partial\Omega. \end{array} \right.$$

where $\tilde{\mathbf{u}}^{\star, n+1} = \sum_{j=0}^{r-1} \gamma_j \tilde{\mathbf{u}}^{n-j}$ be a r th order extrapolation of $\tilde{\mathbf{u}}^{n+1}$.

Step 2: Solve for the intermediate velocity field $\tilde{\mathbf{u}}^{n+1}$,

$$\left\{ \begin{array}{l} \frac{\beta_q}{\Delta t} (\tilde{\mathbf{u}}^{n+1} - \mathbf{u}^{n+1}) - \nu \nabla^2 (\tilde{\mathbf{u}}^{n+1} - \tilde{\mathbf{u}}^{\star, n+1}) = 0 \quad \text{in } \Omega, \\ \tilde{\mathbf{u}}^{n+1} = 0 \quad \text{on } \partial\Omega. \end{array} \right.$$

Standard velocity-correction scheme

Hypothesis

$\tilde{\mathbf{u}}^1$ is computed such that the following estimates holds:

$$\begin{aligned}\|\mathbf{u}^e(\Delta t) - \tilde{\mathbf{u}}^1\|_0 &\leq c\Delta t^2, \\ \|\mathbf{u}^e(\Delta t) - \tilde{\mathbf{u}}^1\|_1 &\leq c\Delta t^{3/2}, \\ \|\mathbf{u}^e(\Delta t) - \tilde{\mathbf{u}}^1\|_2 &\leq c\Delta t.\end{aligned}$$

Theorem (Guermond & Shen (2003))

Under the hypothesis , if the (\mathbf{u}^e, p^e) , solving the Stokes equations, is smooth enough in space and time, the solution of above projection method with $(q, r) = (2, 1)$ satisfies the following error estimates:

$$\begin{aligned}\|\mathbf{u}_{\Delta t}^e - \mathbf{u}_{\Delta t}\|_{\ell^2([L^2(\Omega)]^d)} + \|\mathbf{u}_{\Delta t}^e - \tilde{\mathbf{u}}_{\Delta t}\|_{\ell^2([L^2(\Omega)]^d)} &\leq c(\mathbf{u}^e, p^e, T)\Delta t^2, \\ \|\mathbf{u}_{\Delta t}^e - \mathbf{u}_{\Delta t}\|_{\ell^\infty([L^2(\Omega)]^d)} + \|\mathbf{u}_{\Delta t}^e - \tilde{\mathbf{u}}_{\Delta t}\|_{\ell^\infty([L^2(\Omega)]^d)} &\leq c(\mathbf{u}^e, p^e, T)\Delta t^{\frac{3}{2}}, \\ \|\mathbf{u}_{\Delta t}^e - \tilde{\mathbf{u}}_{\Delta t}\|_{\ell^\infty([H^1(\Omega)]^d)} + \|p_{\Delta t}^e - p_{\Delta t}\|_{\ell^\infty(L^2(\Omega))} &\leq c(\mathbf{u}^e, p^e, T)\Delta t.\end{aligned}$$

Rotational form of the velocity-correction scheme

In order to obtain a better approximation of the pressure, Guermond and Shen (2001, 2003) propose to replace $\nabla^2 \tilde{\mathbf{u}}^{*,n+1}$ by $-\nabla \times \nabla \times \tilde{\mathbf{u}}^{*,n+1}$:

Step 1: Determine \mathbf{u}^{n+1} and p^{n+1} by solving

$$\left\{ \begin{array}{l} \frac{1}{\Delta t} \left(\beta_q \mathbf{u}^{n+1} - \sum_{j=0}^{q-1} \beta_j \tilde{\mathbf{u}}^{n-j} \right) + \nu \nabla \times \nabla \times \tilde{\mathbf{u}}^{*,n+1} + \nabla p^{n+1} = \mathbf{f}^{n+1} \quad \text{in } \Omega, \\ \nabla \cdot \mathbf{u}^{n+1} = 0 \quad \text{in } \Omega, \\ \mathbf{u}^{n+1} \cdot \mathbf{n} = \mathbf{0} \quad \text{on } \partial\Omega. \end{array} \right.$$

Step 2: Solve for the intermediate velocity field $\tilde{\mathbf{u}}^{n+1}$,

$$\left\{ \begin{array}{l} \frac{\beta_q}{\Delta t} (\tilde{\mathbf{u}}^{n+1} - \mathbf{u}^{n+1}) - \nu \nabla^2 \tilde{\mathbf{u}}^{n+1} - \nu \nabla \times \nabla \times \tilde{\mathbf{u}}^{*,n+1} = \mathbf{0} \quad \text{in } \Omega, \\ \tilde{\mathbf{u}}^{n+1} = \mathbf{0} \quad \text{on } \partial\Omega. \end{array} \right.$$

This scheme is referred to as the rotational form of the velocity-correction algorithm.

Rotational form of the velocity-correction scheme

Theorem (Guermond & Shen (2003))

Under the hypothesis , if the (\mathbf{u}^e, p^e) , solving the Stokes equations, is smooth enough in space and time, the solution of above projection method with $(q, r) = (2, 1)$ satisfies the following error estimates:

$$\|\mathbf{u}_{\Delta t}^e - \mathbf{u}_{\Delta t}\|_{\ell^2([L^2(\Omega)]^d)} + \|\mathbf{u}_{\Delta t}^e - \tilde{\mathbf{u}}_{\Delta t}\|_{\ell^2([L^2(\Omega)]^d)} \leq c(\mathbf{u}^e, p^e, T) \Delta t^2,$$

$$\|\mathbf{u}_{\Delta t}^e - \tilde{\mathbf{u}}_{\Delta t}\|_{\ell^2([H^1(\Omega)]^d)} + \|p_{\Delta t}^e - p_{\Delta t}\|_{\ell^2(L^2(\Omega))} \leq c(\mathbf{u}^e, p^e, T) \Delta t^{\frac{3}{2}}.$$

Consistent splitting schemes

- Guermond and Shen (2003) proposed the so-called consistent split scheme.
- The schemes are based on a **weak form of the pressure Poisson equation** and, at each time step, only require to solve a set of Helmholtz-type equations for the velocity and a Poisson equation (in the weak form) for the pressure.

The key idea

By taking the L^2 -inner product of the momentum equation of Stokes equations with ∇q , we obtain

$$\int_{\Omega} \nabla p \cdot \nabla q = \int_{\Omega} (\mathbf{f} + \nu \nabla^2 \mathbf{u}) \cdot \nabla q, \quad \forall q \in H^1(\Omega).$$

Assume \mathbf{u} is known, then above equation is simply the weak form of a Poisson equation for the pressure.

The principle of the consistent splitting scheme is to compute the velocity and the pressure in two consecutive steps:

- ① Compute the velocity by treating the pressure explicitly;
- ② Update the pressure using above equation.

Standard splitting scheme

Denote $D := \beta_q \mathbf{u}^{n+1} - \sum_{j=0}^{q-1} \beta_j \mathbf{u}^{n-j}$. For $n \geq q-1$, find \mathbf{u}^{n+1} and p^{n+1} such that

$$\begin{aligned} \frac{D}{\Delta t} \mathbf{u}^{n+1} - \nu \nabla^2 \mathbf{u}^{n+1} + \nabla p^{\star, n+1} &= \mathbf{f}^{n+1}, \quad \mathbf{u}^{n+1}|_{\partial\Omega} = 0, \\ (\nabla p^{n+1}, \nabla q) &= (\mathbf{f}^{n+1} + \nu \nabla^2 \mathbf{u}^{n+1}, \nabla q), \quad \forall q \in H^1(\Omega). \end{aligned}$$

Note that $\nabla^2 \mathbf{u}^{n+1}$ may not be well defined in a finite element discretization. Taking the inner product of the first step with ∇q and subtract the result from the second step, we obtain the following equivalent formulation:

$$\begin{aligned} \frac{D}{\Delta t} \mathbf{u}^{n+1} - \nu \nabla^2 \mathbf{u}^{n+1} + \nabla p^{\star, n+1} &= \mathbf{f}^{n+1}, \quad \mathbf{u}^{n+1}|_{\partial\Omega} = 0, \\ (\nabla(p^{n+1} - p^{\star, n+1}), \nabla q) &= (\frac{D}{\Delta t} \mathbf{u}^{n+1}, \nabla q), \quad \forall q \in H^1(\Omega). \end{aligned}$$

Consistent splitting scheme

Theorem (Guermond & Shen (2003))

Provided that the solutions $(\mathbf{u}_{\Delta t}^e, p_{\Delta t}^e)$ of Stokes problem is smooth enough in time and space, the solution $(\mathbf{u}_{\Delta t}, p_{\Delta t})$ of consistent splitting scheme is unconditionally bounded and satisfies the following error estimates:

$$\|\mathbf{u}_{\Delta t}^e - \mathbf{u}_{\Delta t}\|_{\ell^2([L^2(\Omega)]^d)} \lesssim \Delta t^2,$$

$$\|\mathbf{u}_{\Delta t}^e - \mathbf{u}_{\Delta t}\|_{\ell^\infty([H^1(\Omega)]^d)} + \|p_{\Delta t}^e - p_{\Delta t}\|_{\ell^\infty(L^2(\Omega))} \lesssim \Delta t.$$

Consistent splitting scheme

By Replacing $\nabla^2 \mathbf{u}^{n+1}$ by $-\nabla \times \nabla \times \mathbf{u}^{n+1}$, leading to the following algorithm:

$$\frac{D}{\Delta t} \mathbf{u}^{n+1} - \nu \nabla^2 \mathbf{u}^{n+1} + \nabla p^{\star, n+1} = \mathbf{f}^{n+1}, \quad \mathbf{u}^{n+1}|_{\partial\Omega} = 0,$$

$$(\nabla p^{n+1}, \nabla q) = (\mathbf{f}^{n+1} - \nu \nabla \times \nabla \times \mathbf{u}^{n+1}, \nabla q), \quad \forall q \in H^1(\Omega).$$

Again, to avoid computing $-\nabla \times \nabla \times \mathbf{u}^{n+1}$. Taking the inner product of the first step with ∇q and subtract the result from the second step:

$$\frac{D}{\Delta t} \mathbf{u}^{n+1} - \nu \nabla^2 \mathbf{u}^{n+1} + \nabla p^{\star, n+1} = \mathbf{f}^{n+1}, \quad \mathbf{u}^{n+1}|_{\partial\Omega} = 0,$$

$$(\underbrace{(\nabla(p^{n+1} - p^{\star, n+1} + \nu \nabla \cdot \mathbf{u}^{n+1}), \nabla q)}_{\phi} = \left(\frac{D}{\Delta t} \mathbf{u}^{n+1}, \nabla q \right), \quad \forall q \in H^1(\Omega).$$

Consistent splitting scheme

This leads to an equivalent alternative form:

$$\begin{aligned} \frac{D}{\Delta t} \mathbf{u}^{n+1} - \nu \nabla^2 \mathbf{u}^{n+1} + \nabla p^{*,n+1} &= \mathbf{f}^{n+1}, \quad \mathbf{u}^{n+1}|_{\partial\Omega} = 0, \\ (\nabla \phi^{n+1}, \nabla q) &= \left(\frac{D}{\Delta t} \mathbf{u}^{n+1}, \nabla q \right), \quad \forall q \in H^1(\Omega), \\ p^{n+1} &= \phi^{n+1} + p^{*,n+1} - \nu \nabla \cdot \mathbf{u}^{n+1}. \end{aligned}$$

Remark: Neither standard splitting scheme nor consistent splitting is a projection scheme, for the velocity approximation \mathbf{u}^{n+1} is not divergence-free.

Consistent splitting scheme

Theorem (Guermond & Shen (2003))

Provided that the solutions $(\mathbf{u}_{\Delta t}^e, p_{\Delta t}^e)$ of Stokes problem is smooth enough in time and space, the solution $(\mathbf{u}_{\Delta t}, p_{\Delta t})$ of consistent splitting scheme with $q = 1$ is unconditionally bounded and satisfies the following error estimates:

$$\|\mathbf{u}_{\Delta t}^e - \mathbf{u}_{\Delta t}\|_{\ell^\infty([H^1(\Omega)]^d)} + \|p_{\Delta t}^e - p_{\Delta t}\|_{\ell^\infty(L^2(\Omega))} \lesssim \Delta t$$

Conjecture

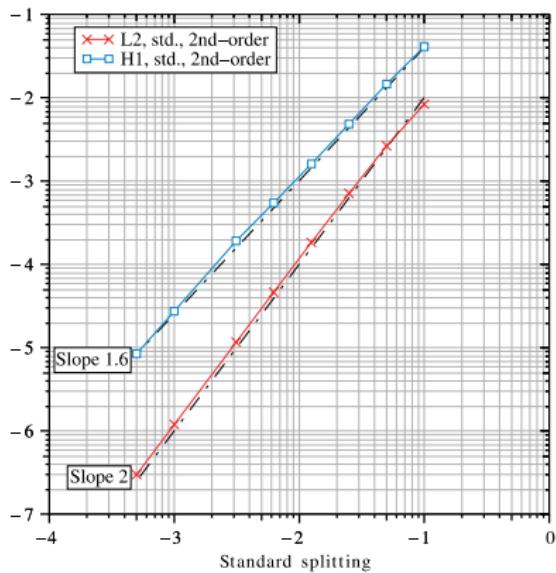
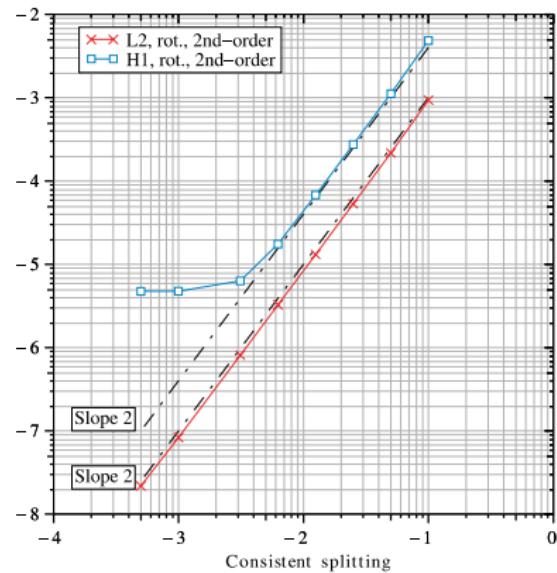
For $q = 2$ the following holds:

$$\|\mathbf{u}_{\Delta t}^e - \mathbf{u}_{\Delta t}\|_{\ell^\infty([H^1(\Omega)]^d)} + \|p_{\Delta t}^e - p_{\Delta t}\|_{\ell^\infty(L^2(\Omega))} \lesssim \Delta t^2$$

The numerical tests seem to confirm the above conjecture.

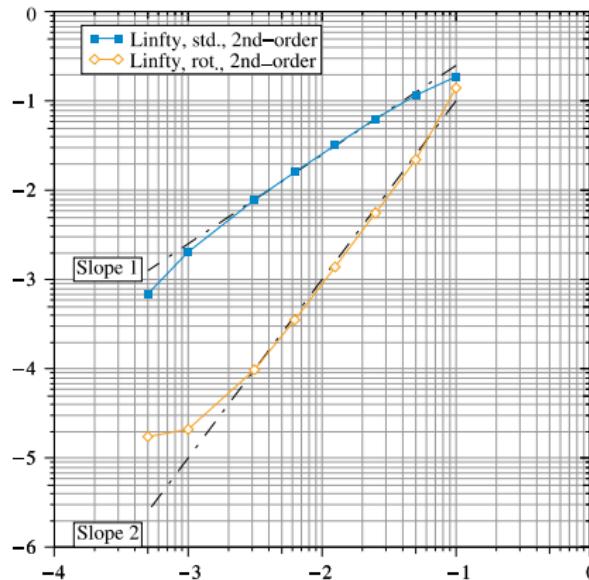
Numerical test (1/2)

Convergence tests using P_2/P_1 finite element for standard and consistent splitting schemes.



Error on the velocity in the L^2 -norm and in the H^1 -norm at $T = 1$

Numerical test (2/2)



Error on the pressure in the L^∞ -norm at $T = 1$

Relation with the gauge method

- The gauge method was introduced by E and Liu in 2003 to solve an **alternative incompressible Navier–Stokes equations**.
- The idea is that the pressure is replaced by a so-called **gauge variable** ξ and define **an auxiliary vector field m such that $m = u + \nabla \xi$** . Then, the Stokes problem can be reformulated as follows:

$$\frac{\partial \mathbf{m}}{\partial t} - \nu \nabla^2 \mathbf{m} = \mathbf{f}, \quad \mathbf{m} \cdot \mathbf{n}|_{\partial\Omega} = \mathbf{0}, \quad (\mathbf{m} - \nabla \xi) \times \mathbf{n}|_{\partial\Omega} = \mathbf{0},$$
$$\nabla^2 \xi = \nabla \cdot \mathbf{m}, \quad \nabla \xi \cdot \mathbf{n}|_{\partial\Omega} = \mathbf{0}.$$

The velocity and the pressure are recovered by

$$\mathbf{u} = \mathbf{m} - \nabla \xi, \quad p = \frac{\partial \xi}{\partial t} - \nu \nabla^2 \xi.$$

Time discretization of the gauge method

For $n \geq q - 1$, find \mathbf{m}^{n+1} and ξ^{n+1} by the following algorithm:

Step 1: Solve for an auxiliary vector field \mathbf{m}^{n+1} ,

$$\frac{D}{\Delta t} \mathbf{m}^{n+1} - \nu \nabla^2 \mathbf{m}^{n+1} = \mathbf{f}^{n+1},$$

$$\mathbf{m}^{n+1} \cdot \mathbf{n}|_{\partial\Omega} = \mathbf{0}, \quad (\mathbf{m}^{n+1} - \nabla \xi^{*,n+1}) \times \mathbf{n}|_{\partial\Omega} = \mathbf{0}.$$

where $\xi^{*,n+1}$ is the r th order extrapolation for ξ^{n+1} such that $\nabla \xi^{*,n+1} \cdot \mathbf{n}|_{\partial\Omega} = \mathbf{0}$.

Step 2: ξ^{n+1} is updated by

$$\nabla^2 \xi^{n+1} = \nabla \cdot \mathbf{m}^{n+1}, \quad \nabla \xi^{n+1} \cdot \mathbf{n}|_{\partial\Omega} = \mathbf{0}.$$

Step 3: \mathbf{u}^{n+1} and p^{n+1} are recovered by

$$\mathbf{u}^{n+1} = \mathbf{m}^{n+1} - \nabla \xi^{n+1}, \quad p = \frac{D}{\Delta t} \xi^{n+1} - \nu \nabla^2 \xi^{n+1}.$$

Numerical test (E & Liu, 2003)

In this example, E and Liu consider the Navier-Stokes equation with viscosity $\nu = 1$. The finite difference method was used for the spatial discretization and chooses $\Delta t = \Delta x$.

GM1	L_1				L_2				L_∞			
	32^2	64^2	128^2	ord	32^2	64^2	128^2	ord	32^2	64^2	128^2	ord
div \mathbf{u}	5.01E-3	1.37E-3	3.57E-4	1.91	6.37E-3	1.69E-3	4.37E-4	1.93	1.68E-2	4.98E-3	1.44E-3	1.77
\mathbf{u}	1.25E-2	7.37E-3	3.99E-3	0.83	1.48E-2	8.57E-3	4.60E-3	0.85	4.10E-2	2.51E-2	1.39E-2	0.79
\mathbf{a}	7.99E-2	4.33E-2	2.25E-2	0.92	8.89E-2	4.82E-2	2.50E-2	0.92	1.83E-1	1.01E-1	5.28E-2	0.90
ϕ	2.10E-2	1.14E-2	5.91E-3	0.92	2.59E-2	1.41E-2	7.32E-3	0.92	7.41E-2	4.09E-2	2.14E-2	0.90

GM2	L_1				L_2				L_∞			
	32^2	64^2	128^2	ord	32^2	64^2	128^2	ord	32^2	64^2	128^2	ord
div \mathbf{u}	5.00E-3	1.37E-3	3.57E-4	1.91	6.43E-3	1.71E-3	4.38E-4	1.94	1.87E-2	4.83E-3	1.22E-3	1.97
\mathbf{u}	2.01E-3	5.25E-4	1.33E-4	1.96	2.34E-3	5.97E-4	1.50E-4	1.98	4.22E-3	1.07E-3	2.68E-4	1.99
\mathbf{a}	2.57E-3	6.69E-4	1.69E-4	1.97	2.90E-3	7.57E-4	1.91E-4	1.97	7.44E-3	1.99E-3	5.11E-4	1.93
ϕ	8.24E-4	2.14E-4	5.40E-5	1.97	1.03E-3	2.66E-4	6.72E-5	1.97	2.95E-3	7.84E-4	1.99E-4	1.95

In two tables, $\mathbf{a} := \mathbf{m}$ and $\phi := \zeta$

The gauge method and consistent splitting method are “equivalent!”

Starting with the gauge method and changing the variables,

$$\begin{aligned}\tilde{u}^{n+1} &= m^{n+1} - \nabla \xi^{\star, n+1}, & u^{n+1} &= m^{n+1} - \nabla \xi^{n+1}, \\ p^{n+1} &= \frac{D}{\Delta t} \xi^{n+1} - \nu \nabla^2 \xi^{n+1}, & p^{\star, n+1} &= \frac{D}{\Delta t} \xi^{\star, n+1} - \nu \nabla^2 \xi^{\star, n+1},\end{aligned}$$

we can prove that, up to an appropriate change of variables and when the space is continuous, the gauge algorithm is equivalent to the following:

$$\begin{cases} \frac{D\tilde{u}^{n+1}}{\Delta t} - \nu \nabla^2 \tilde{u} + \nabla p^{\star, n+1} = f^{n+1} & \text{in } \Omega, \\ \tilde{u} = \mathbf{0} & \text{on } \partial\Omega. \end{cases}$$

$$\begin{cases} \nabla^2 \phi^{n+1} = \nabla \cdot \frac{D\tilde{u}^{n+1}}{\Delta t} & \text{in } \Omega, \\ \nabla \phi^{n+1} \cdot \mathbf{n} = 0 & \text{on } \partial\Omega; \\ p^{n+1} - p^{\star, n+1} + \nu \nabla \cdot \tilde{u}^{n+1} = \phi^{n+1}. \end{cases}$$

Summary

Table 1

Stability and convergence rates of rotational schemes^a

B.C.	q	r	Order	Pressure-correction	Velocity-correction	Consistent splitting
Dirichlet B.C.	1	1	(1, 1)	Proved	Proved	Proved
	2	1	$\left(2, \frac{3}{2}\right)$	Proved	Proved	Not applicable
	2	2	$(2, 2)^*$	FE: stable if $ch^2 \leq \Delta t^*$ LG: stable if $cN^{-3} \leq \Delta t^*$	FE: stable* LG: stable*	FE: stable* LG: stable*
	3	2	$\left(3, \frac{5}{2}\right)^*$	FE: stable if $ch^2 \leq \Delta t^*$ LG: stable if $cN^{-3} \leq \Delta t^*$	FE: stable if $ch^2 \leq \Delta t^*$ LG: stable*	Not applicable
Open B.C.	1	1	$\left(\frac{3+s}{4}, \frac{3+s}{4}\right)$	Proved	Numerical evidences only	Numerical evidences only
	2	1	$\left(\frac{5+s}{4}, \frac{3+s}{4}\right)$	Proved	Numerical evidences only	Not applicable
	2	2	Unusable Inf-sup	FE: stable if $c_1 h^2 \leq \Delta t \leq c_2 h^2$ Needed	FE: stable if $c_1 h^2 \leq \Delta t \leq c_2 h^2$ Needed for (4.8)	FE: stable if $c_1 h^2 \leq \Delta t \leq c_2 h^2$ Needed for (5.10)
					Can be avoided* for (4.6)	Can be avoided* for (5.8)

^a The first (resp. second) number in the parenthesis is the convergence rate for the velocity in the L^2 -norm (resp. the velocity in the H^1 -norm and the pressure in the L^2 -norm); s is the regularity index of the Stokes operator; the symbol \star means numerical evidences only.

Thank you for your attention!