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Part I

Sparse Representation and Dictionary
Learning
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Sparse representation problem

Terms: Sparse Representation (稀疏表現)/Sparse Coding (稀疏編碼)

SR problem: Given a signal vector x ∈ Rm and a dictionary matrix D ∈
Rm×n, we seek a sparse coefficient vector z∗ ∈ Rn such that

z∗ = arg min
z

(1
2
‖x−Dz‖2

2 + λ ‖z‖0

)
,

where λ > 0 is a penalty parameter and ‖z‖0 counts the number of nonzero
components of z.

Remarks:

In the matrix-vector multiplication Dz, the components of z are
the coefficients with respect to columns (also called atoms) of D.

We call ‖z‖0 the `0 norm of z, even though `0 is not really a
norm, since the homogeneity property fails, ‖αz‖0 6= |α|‖z‖0.

It is inefficient to compute ‖z‖0 directly when n is large. In
practice, we will use the `1 norm instead of the `0 norm.
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Two dual `0 minimization problems

In [Sharon-Wright-Ma 2007], they studied the following two dual `0

minimization problems:

Sparse error correction (SEC): Given 0 6= y ∈ Rn and A ∈ Rn×p

with n > p and rank(A) = p, we seek w∗ ∈ Rp such that

w∗ = arg min
w

‖y−Aw‖0. (1)

Sparse signal reconstruction (SSR): Given D ∈ Rm×n with m < n
and 0 6= x ∈ C(D) the column space of D, we seek z∗ ∈ Rn such that

z∗ = arg min
z
‖z‖0 subject to x = Dz. (2)

Note that (1) is a decoding problem, while (2) is a sparse representation
problem. These two problems are dual in the sense that we can convert
one problem to the other, see page 8 below.

c© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Sparse Dictionary Learning – 5/ 70



Existence and uniqueness of solution

1 Existence:

Existence of w∗: If ∃ w ∈ Rp s.t. ‖y−Aw‖0 = 0, then
w∗ = w. Otherwise, define

S := {k ∈N : ∃ w ∈ Rp s.t. ‖y−Aw‖0 = k}.

Then ∅ 6= S ⊆N. By the well-ordering principle, ∃ k0 ∈ S the
minimum of S . i.e., ∃ w∗ such that w∗ = arg min

w
‖y−Aw‖0.

Existence of z∗: It can be shown in a similar way!

2 Uniqueness: It will generally be true that these two dual problems
have a unique solution if

∃ w0 such that the error e := y−Aw0 is sparse enough, or
∃ z0 sparse enough such that x = Dz0.
e.g., if any set of 2T columns of D are linearly independent,
then any z0 ∈ Rn with ‖z0‖0 ≤ T such that Dz0 = x is the
unique solution to SSR problem (2).
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Why we require matrix A full rank p in the SEC problem?

Note that A is of size n× p and n > p.

Suppose that A is not full rank p. Then rank(A) < p.

Since dim N(A) + rank(A) = p, we have dim N(A) > 0.

Thus, nullspace N(A) 6= {0} and ∃ w̃ 6= 0 such that Aw̃ = 0.

If w∗ is a solution of the SEC problem, then

‖y−A(w∗ + w̃)‖0 = ‖y−Aw∗‖0.

Hence, w∗ + w̃ is also a solution of the SEC problem.

Therefore, in order to ensure the uniqueness, we require A full rank p.
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How to convert problem (2) to problem (1)?

The decoding problem (1) can be converted to the sparse representation
problem (2). [Candès et al. 2005, IEEE Symposium on FOCS]

Converting (2) to (1): Let p = n− rank(D) > 0 and A be a full-rank
n× p matrix whose columns span the nullspace of D, i.e., DA = 0.
Find any y ∈ Rn so that Dy = x and define f (w) = y−Aw. Then

arg min
z & Dz=x

‖z‖0︸ ︷︷ ︸
z∗

= f
(
arg min

w
‖y−Aw‖0

)
︸ ︷︷ ︸

f (w∗)

. (3)

Proof: First, note that for all w ∈ Rp, we have

Df (w) = D(y−Aw) = Dy−DAw = Dy = x.

Claim: ∃ w̃ ∈ Rp such that f (w̃) = y−Aw̃ = z∗.
∵ Dz∗ = x and D(y−Aw) = x, ∀w =⇒ D(−z∗ + y−Aw) = 0
∴ ∃ w̄ such that Aw̄ = −z∗ + y−Aw =⇒ z∗ = y−A(w + w̄) := f (w̃)

Claim: w̃ = w∗ := arg minw ‖y−Aw‖0, and then f (w∗) = z∗.
∵ ‖f (w∗)‖0 ≤ ‖f (w̃)‖0 = ‖z∗‖0 ≤ ‖f (w∗)‖0 =⇒ ‖f (w∗)‖0 = ‖f (w̃)‖0

By the uniqueness of w∗, we obtain w̃ = w∗ and then f (w∗) = z∗.
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The `1-`0 equivalence problem

In general, the `0 minimizations (1) and (2) are NP-hard problems:

w∗ = arg min
w

‖y−Aw‖0 , (1)

z∗ = arg min
z
‖z‖0 subject to x = Dz. (2)

The equivalence between `0 and `1 minimizations is conditional.

David L. Donoho, For most large underdetermined systems of linear
equations the minimal `1-norm solution is also the sparsest solution,
CPAM, 59 (2006), pp. 797-829.

If the error e := y−Aw∗ or the solution z∗ is sufficiently sparse, then
the solutions to (1) and (2) are the same as (4) and (5), respectively.

w∗ = arg min
w

‖y−Aw‖1 , (4)

z∗ = arg min
z
‖z‖1 subject to x = Dz. (5)
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3-D ball in different `r norms and the constraint Dz = x

`2-norm→ `1.5-norm→ `1-norm→ `0.5-norm

3-D ball in the different `r norms for r = 2, 1.5, 1, 0.5

z∗ = arg min
z
‖z‖1 subject to x︸︷︷︸

given

= D z︸︷︷︸
many

(5)
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The sparse representation problem

We have introduced some ideas about the `1-`0 equivalence. In
what follows, we don’t consider the original SR problem. We
consider the following `1 minimization problem instead:

SR problem: Given a signal vector x ∈ Rm and a dictionary matrix
D ∈ Rm×n, we seek a coefficient vector z∗ ∈ Rn such that

z∗ = arg min
z

(1
2
‖x−Dz‖2

2 + λ ‖z‖1

)
, λ > 0. (?)

The existence (and uniqueness) of solution of the SR problem
(?) can be ensured because matrix D>D is symmetric (+ positive
definite) and the second term λ‖ · ‖1 is a convex function.

Problem (?) is also a regression analysis method in statistics and
machine learning. It is the so-called least absolute shrinkage and
selection operator (LASSO).

R. J. Tibshirani, The lasso problem and uniqueness, Electronic Journal of
Statistics, 7 (2013), pp. 1456-1490 ⊕ A. Ali, 13 (2019), pp. 2307-2347.
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Alternating direction method of multipliers (ADMM)

We will use the “Alternating Direction Method of Multipliers” to solve
the above `1-norm SR problem.

ADMM is an iterative scheme for solving the following equality
constrained optimization problems:

min
z

f (z) subject to Az = b.

ADMM consists of three steps:
1. adding an auxiliary variable y and a dual variable (multipliers) v

and then scaled as u
2. separating the new cost function into a sum of f (z) and g(y)
3. using an iterative method to solve the problem

Then the optimization problem can be re-posed as

min
z, y

(
f (z) + g(y)

)
subject to Az + By = c.
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Derivation of the ADMM: augmented Lagrangian

First, we formulate the augmented Lagrangian

Lρ(z, y, v) := f (z) + g(y) + v>︸︷︷︸
multipliers

(Az + By− c) +
ρ

2
‖Az + By− c‖2

2︸ ︷︷ ︸
penalty term

,

where ρ > 0 is the penalty parameter. Then the iterative scheme of
the augmented Lagrangian method (ALM) is given by

(z(i+1), y(i+1)) = arg min
z

Lρ(z, y, v(i)),

v(i+1) = v(i) + ρ
(
Az(i+1) + By(i+1) − c

)
.

In ADMM, z and y are updated in an alternating or sequential
fashion, which accounts for the term alternating direction.

z(i+1) = arg min
z

Lρ(z, y(i), v(i)),

y(i+1) = arg min
y

Lρ(z(i+1), y, v(i)),

v(i+1) = v(i) + ρ(Az(i+1) + By(i+1) − c).
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Scaled form of the augmented Lagrangian

The ADMM can be written in a slightly different form, which is often
more convenient, by combining the linear and quadratic terms in the
augmented Lagrangian and scaling the dual variable (multipliers) v.

Define the residual r := Az + By− c. Then

v>(Az + By− c) +
ρ

2
‖Az + By− c‖2

2

= v>r +
ρ

2
‖r‖2

2 =
ρ

2
‖r + 1

ρ
v‖2

2 −
1

2ρ
‖v‖2

2.

Set u = 1
ρ v. Then Lρ(z, y, v) = Lρ(z, y, u), and

Lρ(z, y, u) = f (z) + g(y) +
ρ

2
‖Az + By− c + u‖2

2 −
ρ

2
‖u‖2

2.
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ADMM: scaled form

The ADMM in the scaled form is given by

z(i+1) = arg min
z

(
f (z) + g(y(i)) +

ρ

2
‖Az + By(i) − c + u(i)‖2

2−
ρ

2
‖u(i)‖2

2

)
,

y(i+1) = arg min
y

(
f (z(i+1)) + g(y) +

ρ

2
‖Az(i+1) + By− c + u(i)‖2

2−
ρ

2
‖u(i)‖2

2

)
,

u(i+1) = u(i) + Az(i+1) + By(i+1) − c,

where ρ > 0 is the penalty parameter which is related to the convergent
rate of the iterations.

Note that the terms in blue can be omitted in practical computations!

Reference: S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
Distributed optimization and statistical learning via the ADMM,
Foundations and Trends R© in Machine Learning, 3 (2010), pp. 1-122.
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ADMM for the `1-norm SR problem

For the `1-norm SR problem,

z∗ = arg min
z

(1
2
‖x−Dz‖2

2 + λ ‖z‖1

)
, λ > 0, (?)

we set

f (z) :=
1
2
‖x−Dz‖2

2, g(y) := λ‖y‖1, Az + By = c⇔ z− y = 0.

The ADMM for the `1-norm SR problem is given by

z(i+1) = arg min
z

(1
2
‖x−Dz‖2

2 +
ρ

2
‖z− y(i) + u(i)‖2

2

)
, (61)

y(i+1) = arg min
y

(
λ‖y‖1 +

ρ

2
‖z(i+1) − y + u(i)‖2

2

)
, (62)

u(i+1) = u(i) + z(i+1) − y(i+1), (63)

where ρ > 0 is penalty parameter related to the convergent rate of
the iterations.
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Solving minimization problem (61)

Define
F1(z) :=

1
2
‖x−Dz‖2

2 +
ρ

2
‖z− y(i) + u(i)‖2

2.

Then F1 is a quadratic function in variables z1, z2, · · · , zn and
F1(z) ≥ 0 ∀ z ∈ Rn. To solve “min

z
F1(z)”, first we compute

∇F1(z) = −D>(x−Dz) + ρI(z− y(i) + u(i))

= (D>D + ρI)z−
(
D>x + ρ(y(i) − u(i))

)
.

Letting ∇F1(z) = 0, we have

(D>D + ρI)z =
(
D>x + ρ(y(i) − u(i))

)
.

Therefore, we obtain the solution

z(i+1) = (D>D + ρI)−1(D>x + ρ(y(i) − u(i))
)
.
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Solving minimization problem (62)

Using the soft-thresholding function Sλ/ρ, the solution of problem (62)
has the closed form (see next few pages):

y(i+1) = Sλ/ρ(z
(i+1) + u(i)),

where
Sλ/ρ(v) = sign(v)�max(0, |v| − λ/ρ),

and sign(·), max(·, ·), and | · | are all applied to the input vector v
component-wisely, and � is the Hadamard product.

Finally, the iterative scheme can be posed as follows:

z(i+1) = (D>D + ρI)−1(D>x + ρ(y(i) − u(i))
)
, (71)

y(i+1) = Sλ/ρ(z
(i+1) + u(i)), (72)

u(i+1) = u(i) + z(i+1) − y(i+1). (73)
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Details of the solution of problem (62)

Recall the problem (62),

y(i+1) = arg min
y

(
λ‖y‖1 +

ρ

2
‖z(i+1) − y + u(i)‖2

2

)
. (62)

Let v := z(i+1) + u(i) ∈ Rn. Then we have

y(i+1) = arg min
y

(
λ‖y‖1 +

ρ

2
‖v− y‖2

2

)
.

Define a real-valued function F2(y) as follows:

F2(y) = λ‖y‖1 +
ρ

2
‖v− y‖2

2

=
(

λ|y1|+
ρ

2
(v1 − y1)

2
)
+ · · ·+

(
λ|yn|+

ρ

2
(vn − yn)

2
)

:= f1(y1) + · · ·+ fn(yn),

where we define

fj(y) := λ|y|+ ρ

2
(vj − y)2 ∀ j = 1, 2, · · · , n.
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Analysis of functions fj

For simplicity of the presentation, we consider the function

f (y) = λ|y|+ ρ

2
(v− y)2.

Computing the derivative of f (y) for y 6= 0, we have

f ′(y) = λsign(y)− ρ(v− y) ∀ y 6= 0.

Let f ′(y) = 0. Then we have the critical number c 6= 0,

c = v− λ

ρ
sign(c).

In order to find the minimum of f , we consider the following three cases:

v >
λ

ρ
, v < −λ

ρ
, |v| ≤ λ

ρ
.
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Case 1: v > λ
ρ

If c < 0, then sign(c) = −1 and c = v + λ
ρ > 0, this is a contradiction!

Thus, we have c > 0. Then sign(c) = 1, c = v− λ
ρ > 0, and

f (c) = f (v− λ

ρ
) = λ

(
v− λ

ρ

)
+

ρ

2
(
v− (v− λ

ρ
)
)2

=
ρ

2

(
v2 − (v− λ

ρ
)2
)
<

ρ

2
v2 = f (0).

For y ≥ 0, since f is a quadratic polynomial in y with positive leading
coefficient, we can conclude that f (c) ≤ f (y) for all y ≥ 0.

For y < 0, f (y) is monotone decreasing since

f ′(y) = λsign(y)− ρ(v− y) = −λ− ρv + ρy
< −λ− λ + ρy = −2λ + ρy < 0,

which implies f (y) > f (0) for all y < 0.

Therefore, f has a minimum at c = v− λ
ρ > 0.
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Case 2: v < −λ
ρ

If c > 0, then sign(c) = 1 and c = v− λ
ρ < 0, this is a contradiction!

Thus, we have c < 0. Then sign(c) = −1, c = v + λ
ρ < 0, and

f (c) = f (v +
λ

ρ
) = −λ(v +

λ

ρ
) +

ρ

2

(
v− (v +

λ

ρ
)
)2

=
ρ

2

(
v2 − (v +

λ

ρ
)2
)
<

ρ

2
v2 = f (0).

For y ≤ 0, since f is a quadratic polynomial in y with positive leading
coefficient, we can conclude that f (c) ≤ f (y) for all y ≤ 0.

For y > 0, f (y) is monotone increasing since

f ′(y) = λsign(y)− ρ(v− y) = λ− ρv + ρy
> λ + λ + ρy = 2λ + ρy > 0,

which implies f (y) > f (0) for all y > 0.

Therefore, f has a minimum at c = v + λ
ρ > 0.
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Case 3: |v| ≤ λ
ρ

If c < 0, then sign(c) = −1 and c = v + λ
ρ ≥ 0, this is a contradiction!

If c > 0, then sign(c) = 1 and c = v− λ
ρ ≤ 0, this is a contradiction!

For y > 0, f (y) is monotone increasing since

f ′(y) = λsign(y)− ρ(v− y) = λ− ρv + ρy
≥ λ− λ + ρy = ρy > 0,

which implies f (y) > f (0) for all y > 0.

For y < 0, f (y) is monotone decreasing since

f ′(y) = λsign(y)− ρ(v− y) = −λ− ρv + ρy
≤ −λ + λ + ρy = ρy < 0,

which implies f (y) > f (0) for all y < 0.

Therefore, f has a minimum at 0.
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Solution of problem (62)

By the above discussions, we have

arg min
y

f (y) =


v + λ

ρ , if v < − λ
ρ , (case 2)

0, if |v| ≤ λ
ρ , (case 3)

v− λ
ρ , if v > λ

ρ . (case 1)

In other words, we have

arg min
y

f (y) = Sλ/ρ(v) = sign(v)max(0, |v| − λ/ρ).

Therefore,

y(i+1) = arg min
y

F2(y) = Sλ/ρ(v) = Sλ/ρ(z
(i+1) + u(i)).

where the soft-thresholding,

Sλ/ρ(v) := sign(v)�max(0, |v| − λ/ρ),

and sign(·), max(·, ·), and | · | are all applied to the input vector v
component-wisely, and � is the Hadamard product.
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Application to signal denoising

First, we construct a random dictionary matrix D ∈ R512×2048

and a random sparse vector z ∈ R2048 with ‖z‖0 = 32. We then
have the true signal x := Dz.

Define the noise signal xn := x + n, where n ∈ R512 is a random
white Gaussian noise with noised powers P = 0.5, 1, 5. We then
consider λ = 5, 10, 20, 30 for the minimization problem.

Peak signal-to-noise ratio (PSNR): We define the mean squared
error (MSE) and then the PSNR as follows:

MSE :=
1

512

512

∑
i=1

(
true(i)− approx(i)

)2,

PSNR := 10× log10

(max2

MSE

)
,

where “max” is the maximum amplitude of the true signal.

Source of matlab code:
http://brendt.wohlberg.net/software/SPORCO/
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Numerical results for P = 0.5 and λ = 30
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Coefficients for P = 0.5 and λ = 30
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Numerical results for P = 1 and λ = 30
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Coefficients for P = 1 and λ = 30
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Numerical result for P = 5 and λ = 30
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Coefficients for P = 5 and λ = 30
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PSNR values and iteration numbers

In general, the higher the value of PSNR the better the quality of the
recovered signals.

PSNR values
P 0.5 0.5 1 1 5 5
λ noised rcvered noised rcvered noised rcvered
5 29.51 30.36 29.71 30.41 25.57 26.11

10 29.51 31.16 29.71 31.10 25.57 26.63
20 29.51 32.55 29.71 32.23 25.57 27.62
30 29.51 33.45 29.71 32.77 25.57 28.50

Iteration numbers of ADMM
λ\P 0.5 1 5

5 550 664 569
10 301 303 320
20 172 169 186
30 129 130 154
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Sparse dictionary learning problem

In the SR problem, the solution of interest z∗ is the coefficient vector of a
linear combination of over-complete basis elements (columns) from a given
dictionary D under some sparsity constraint. Therefore, it is typically
accompanied by a dictionary learning mechanism.

We are going to study a more general problem. The dictionary D is
unknown and needed to be sought together with the sparse solution.

SDL problem: Let {xi}N
i=1 ⊂ Rm be a given dataset of signals. We seek a

dictionary matrix D = [d1, d2, · · · , dn] ∈ Rm×n together with the sparse
coefficient vectors {zi}N

i=1 ⊂ Rn that solve the minimization problem:

min
D,{zi}

(1
2

N

∑
i=1
‖xi −Dzi‖2

2 + λ
N

∑
i=1
‖zi‖1

)
subject to ‖dk‖2 ≤ 1, ∀ 1 ≤ k ≤ n,

where λ > 0 is a penalty parameter.
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Problem formulation in a more compact form

To simplify the formulation of the SDL problem, we define

X = [x1, x2, · · · , xN] ∈ Rm×N,

Z = [z1, z2, · · · , zN] ∈ Rn×N.

Then the SDL problem can be posed as follows: Given a training data
matrix X, find a dictionary matrix D and a coefficient matrix Z such that

min
D, Z

(1
2
‖X −DZ‖2

F + λ‖Z‖1,1

)
(??)

subject to ‖dk‖2 ≤ 1, ∀ 1 ≤ k ≤ n,

where ‖ · ‖F denotes the Frobenius norm and ‖Z‖1,1 is the L1,1-norm which
is defined as

‖Z‖1,1 :=
N

∑
i=1
‖zi‖1.
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An iterative approach for solving the SDL problem

In the SDL problem (??), we have two unknown matrices D and Z.
We will use a simple iterative approach together with the ADMM to
solve (??), though it is more complicated.

Given an initial guess D(0), for j = 0, 1, · · · , we solve the following
two sub-problems alternatingly:

Z(j) = arg min
Z

(1
2
‖X −D(j)Z‖2

F + λ‖Z‖1,1

)
, (8)

D(j+1) = arg min
D

(1
2
‖X −DZ(j)‖2

F + λ‖Z(j)‖1,1

)
subject to ‖dk‖2 ≤ 1, ∀ 1 ≤ k ≤ n. (9)

We iterate (8) and (9) until convergence is achieved. As we have
introduced previously, problems (8) and (9) will be solved by ADMM.
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ADMM for solving problem (8)

Adding an auxiliary variable Y and a dual variable U, we define

f (Z) :=
1
2
‖X −D(j)Z‖2

F, g(Y) := λ‖Y‖1,1, Z = Y.

Then the ADMM for solving (8) is given by

Z(i+1) = arg min
Z

(1
2
‖X −D(j)Z‖2

F +
ρ

2
‖Z− Y(i) + U(i)‖2

F

)
, (81)

Y(i+1) = arg min
Y

(
λ‖Y‖1,1 +

ρ

2
‖Z(i+1) − Y + U(i)‖2

F

)
, (82)

U(i+1) = U(i) + Z(i+1) − Y(i+1). (83).

Similar to the SR problem, we will use the same methods to
solve the sub-problems (81) and (82).
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Solving minimization problem (81)

Define

F1(Z) :=
1
2
‖X −D(j)Z‖2

F +
ρ

2
‖Z− Y(i) + U(i)‖2

F.

To solve “min
Z

F1(Z)”, first we compute

∇F1(Z) = −D>(j)(X −D(j)Z) + ρI(Z− Y(i) + U(i))

= (D>(j)D(j) + ρI)Z−
(
D>(j)X + ρ(Y(i) −U(i))

)
.

Letting ∇F1(Z) = 0, we have

(D>(j)D(j) + ρI)Z =
(
D>(j)X + ρ(Y(i) −U(i))

)
.

Therefore, we obtain the solution

Z(i+1) = (D>(j)D(j) + ρI)−1(D>(j)X + ρ(Y(i) −U(i))
)
.
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Solving minimization problem (82)

Using the component-wise soft-thresholding function, the solution of
problem (82) has the closed form:

Y(i+1) = Sλ/ρ(Z
(i+1) + U(i)),

where
Sλ/ρ(V) = sign(V)�max(0, |V | − λ/ρ),

with sign(V) and |V | are element-wisely applied to the matrix V and
� is the Hadamard product.

Therefore, the iterative scheme can be posed as follows:

Z(i+1) = (D>(j)D(j) + ρI)−1(D>(j)X + ρ(Y(i) −U(i))
)
, (101)

Y(i+1) = Sλ/ρ(Z
(i+1) + U(i)), (102)

U(i+1) = U(i) + Z(i+1) − Y(i+1). (103)
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Solving minimization problem (9)

Recall that

D(j+1) = arg min
D

(1
2
‖X −DZ(j)‖2

F + λ‖Z(j)‖1,1

)
subject to ‖dk‖2 ≤ 1, ∀ 1 ≤ k ≤ n. (9)

Since the term λ‖Z(j)‖1,1 is a fixed number when Z(j) is given, problem (9)
can be replaced by

D(j+1) = arg min
D

1
2
‖X −DZ(j)‖2

F

subject to ‖dk‖2 ≤ 1, ∀ 1 ≤ k ≤ n. (9′)

Next, we introduce an auxiliary variable G and a dual variable H in
ADMM for solving (9’).
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ADMM for solving problem (9’)

Define

g(G) := {[d1, d2, · · · , dn] : ‖dk‖2 ≤ 1, ∀ 1 ≤ k ≤ n},
G := D.

The ADMM for solving problem (9’) is given by

D(i+1) = arg min
D

(1
2
‖X −DZ(j)‖2

F +
ρ

2
‖D−G(i) + H(i)‖2

F

)
, (91)

G(i+1) = projg(G){D
(i+1)}, (92)

H(i+1) = H(i) + D(i+1) −G(i+1). (93)

For solving problem (91), we define

F2(D) :=
1
2
‖X −DZ(j)‖2

F +
ρ

2
‖D−G(i) + H(i)‖2

F.
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Solving minimization problem (91)

Computing ∇F2(D), we have

∇F2(D) = (X −DZ(j))(−Z>(j)) + ρIm(D−G(i) + H(i))

= D(ρIn + Z(j)Z
>
(j)) + XZ>(j) − ρ(G(i) −H(i)).

Letting ∇F2(D) = 0, we have

D(Z(j)Z
>
(j) + ρIn) = XZ>(j) − ρ(G(i) −H(i)).

Therefore, we obtain the solution

D(i+1) =
(
XZ(j)

> − ρ(G(i) −H(i))
)
(Z(j)Z(j)

> + ρIn)
−1.

Finally, the ADMM for problem (9’) is given by

D(i+1) =
(
XZ(j)

> − ρ(G(i) −H(i))
)
(Z(j)Z(j)

> + ρIn)
−1, (111)

G(i+1) = projg(G){D
(i+1)}, (112)

H(i+1) = H(i) + D(i+1) −G(i+1). (113)
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Convergence and stopping criterion

In [Boyd et al. 2010], there are more details about convergence
results of the ADMM.

In the iterative scheme (101), (102), (103), we define

Rz = Y(i+1) − Y(i), Sz = U(i+1) −U(i).

If Rz and Sz less than the tolerances εRz and εSz , then we say that
the iteration of coefficients Z(i+1) converges.

In the iterative scheme (111), (112), (113), we define

Rd = G(i+1) −G(i), Sd = H(i+1) −H(i).

If Rd and Sd less than the tolerances εRd and εSd , then we say that
the iteration of dictionary D(i+1) converges.
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Part II

Convolutional Sparse Representation and
Dictionary Learning
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Convolution of two functions

Let f and g be two integrable functions with compact supports in R.
Then the convolution of f and g is defined as a function in variable t,

(f ∗ g)(t) :=
∫ ∞

−∞
f (τ)g(t− τ) dτ, t ∈ R.
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Convolution of two vectors

Definition: Let u = [u1, · · · , un]> ∈ Rn and v = [v1, · · · , vm]> ∈ Rm.
The convolution of u and v, denoted by u ∗ v, is defined as follows:

u ∗ v :=



u1v1
u1v2 + u2v1

u1v3 + u2v2 + u3v1
...

un−2vm + un−1vm−1 + unvm−2
un−1vm + unvm−1

unvm


∈ Rm+n−1.

More specifically, for i = 1, 2, · · · , (m + n− 1), the i-th component of u ∗ v
is given by

(u ∗ v)i =
min(i,n)

∑
j=max(1,i−m+1)

ujvi−j+1.

Remark: Convolutional operator ∗ is commutative, i.e., u ∗ v = v ∗ u.
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Convolutional sparse representation (CSR) problem

CSR problem: Given a signal x ∈ Rm and a dictionary D = [d1, · · · , dn]
∈ R`×n, we seek a sparse matrix Z = [z1, · · · , zn] ∈ Rk×n, m = `+ k− 1,
which solves the following minimization problem:

min
Z

(1
2
‖x−

n

∑
j=1

dj ∗ zj‖2
2 + λ

n

∑
j=1
‖zj‖1

)
,

where λ > 0 is a penalty parameter.

Remarks:

In SR, we use Dz to recover the signal x,

x ≈ Dz = d1z1 + d2z2 + · · ·+ dnzn =
n

∑
j=1

djzj.

In CSR, we use ∑n
j=1 dj ∗ zj instead,

x ≈ d1 ∗ z1 + d2 ∗ z2 + · · ·+ dn ∗ zn =
n

∑
j=1

dj ∗ zj.

Convolution is a way to regulate dj ∗ zj such that x ≈ ∑n
j=1 dj ∗ zj.

It is more flexible than x ≈ ∑n
j=1 djzj, but indeed more expensive!
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Toeplitz matrix

We define an (m + n− 1)×m matrix U in terms of ui, which is called
a Toeplitz matrix, as follows:

U :=



u1 0 · · · 0 0

u2 u1
. . . 0 0

... u2
. . . 0 0

...
...

. . . u1 0

un−1
...

... u2 u1

un un−1
...

... u2

0 un
. . .

...
...

0 0
. . . un−1

...
...

...
. . . un un−1

0 0 · · · 0 un


(m+n−1)×m

Then one can check that u ∗ v = Uv, where u = [u1, · · · , un]> ∈ Rn

and v = [v1, · · · , vm]> ∈ Rm.
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CSR problem using Toeplitz matrices

With the help of Toeplitz matrix, we can rewrite the CSR problem as

min
z̃

(1
2
‖x− D̃z̃

∥∥∥2

2
+ λ‖z̃‖1

)
, (12)

with

z̃ = [z>1 , z>2 , · · · , z>n ]
>
nk×1 and D̃ = [D1, D2, · · · , Dn](`+k−1)×nk,

where Dj is a Toeplitz (`+ k− 1)× k matrix associated with the column
vector dj ∈ R`, and `+ k− 1 = m.

Remarks:

We can use the same way for SR problem to solve the CSR
problem (12). We can employ the ADMM, but it is too expensive
since the matrix size of D̃ is too large.

The discrete Fourier transform F : CN → CN can help us to address
this computational issue.
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Discrete Fourier transform (DFT) and its inverse (IDFT)

x̂ = F (x) : The DFT F : CN → CN transforms a finite vector
x = [x1, x2, · · · , xN]

> into another vector x̂ = [x̂1, x̂2, · · · , x̂N]
>,

which is defined by

x̂k =
N

∑
n=1

xne−
i2π
N (k−1)(n−1).

Then DFT is an invertible linear transformation.

x = F−1(x̂) : The inverse discrete Fourier transform (IDFT)
F−1 : CN → CN, x̂ 7→ x, is given by

xn =
1
N

N

∑
k=1

x̂ke
i2π
N (k−1)(n−1).

Euler’s formula: eiθ = cos θ + i sin θ, ∀ θ ∈ R.

https://en.wikipedia.org/wiki/Discrete_Fourier_transform
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Hadamard product

Let u ∈ Rn and v ∈ Rm. Then u ∗ v ∈ Rm+n−1 and

F (u ∗ v) = F (u′)�F (v′),
where F denotes the DFT, u′ and v′ are respectively the zero
padding of u and v with the same size of u ∗ v, i.e.,

u′ = [u>, 0, · · · , 0]>, v′ = [v>, 0, · · · , 0]> ∈ Rm+n−1,

and � is the Hadamard product.

The Hadamard product � of two vectors is a component-wise
product. Let u = [u1, u2, · · · , un]>, v = [v1, v2, · · · , vn]> ∈ Rn,

u� v := [u1v1, u2v2, · · · , unvn]
>.

We can define a diagonal matrix U such that u� v = Uv, where

U :=


u1 0 · · · 0
0 u2 · · · 0
...

...
. . .

...
0 0 · · · un

 .

c© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Sparse Dictionary Learning – 51/ 70



Recalling the CSR problem

CSR problem: Given x ∈ Rm and D = [d1, · · · , dn] ∈ R`×n, we seek
Z = [z1, · · · , zn] ∈ Rk×n with m = `+ k− 1 solving

min
Z

(1
2
‖x−

n

∑
j=1

dj ∗ zj‖2
2 + λ

n

∑
j=1
‖zj‖1

)
.

To solve the above minimization problem, we first use the ADMM
algorithm to split it into three subproblems:

Z(i+1) = arg min
Z

(1
2
‖x−

n

∑
j=1

dj ∗ zj‖2
2 +

ρ

2

n

∑
j=1
‖zj − y(i)

j + u(i)
j ‖

2
2

)
,

Y(i+1) = arg min
Y

(
λ

n

∑
j=1
‖yj‖1 +

ρ

2

n

∑
j=1
‖z(i+1)

j − yj + u(i)
j ‖

2
2,
)

U(i+1) = U(i) + Z(i+1) − Y(i+1).
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Using discrete Fourier transform for Z

We will use the discrete Fourier transform and Hadamard product to
solve the subproblem of Z. We can rewrite these subproblems as

Ẑ
(i+1)

= arg min
Ẑ

(1
2
‖x̂−

n

∑
j=1

d̂′j � ẑ′j‖
2
2 +

ρ

2

n

∑
j=1
‖ẑ′j − ŷ′j

(i)
+ û′j

(i)
‖2

2

)
,

Y(i+1) = arg min
Y

(
λ

n

∑
j=1
‖yj‖1 +

ρ

2

n

∑
j=1
‖F−1(ẑ′j

(i+1)
)− yj + u(i)

j ‖
2
2

)
,

U(i+1) = U(i) +F−1(Ẑ
(i+1)

)− Y(i+1),

where
F−1(Ẑ) = [F−1(ẑ′1),F

−1(ẑ′2), · · · ,F−1(ẑ′n)].
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Why can we use the discrete Fourier transform?

Note that the discrete Fourier transform F is linear. Thus, we have

1
2
‖x−

n

∑
j=1

dj ∗ zj‖2
2 =

1
2m
‖F (x−

n

∑
j=1

dj ∗ zj)‖2
2 (Plancherel theorem)

=
1

2m
‖F (x)−F (

n

∑
j=1

dj ∗ zj)‖2
2

=
1

2m
‖x̂−

n

∑
j=1
F (dj ∗ zj)‖2

2 =
1

2m
‖x̂−

n

∑
j=1

d̂′j � ẑ′j‖
2
2.

Similarly, the second term of subproblem Z can be rewritten as

ρ

2

n

∑
j=1
‖zj − y(i)

j + u(i)
j ‖

2
2 =

ρ

2

n

∑
j=1
‖z′j − y′j

(i)
+ u′j

(i)‖2
2

=
ρ

2m

n

∑
j=1
‖ẑ′j − ŷ′j

(i)
+ û′j

(i)
‖2

2.

Note: x ∈ Rm, dj ∈ R`, zj ∈ Rk, dj ∗ zj ∈ R`+k−1 = Rm, d′j , z′j ∈ Rm.
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The subproblem of Ẑ

We first define

D̂j = diag(d̂′j). (m×m disgonal matrix)

Then the subproblem in the Fourier domain can be posed as:

ẑ(i+1) = arg min
ẑ

(1
2
‖x̂− D̂ẑ‖2

2 +
ρ

2
‖ẑ− ŷ(i) + û(i)‖2

2

)
,

where

D̂ = [D̂1, D̂2, · · · , D̂n]m×mn, ẑ = [ẑ′1
>

, ẑ′2
>

, · · · , ẑ′n
>
]>mn×1,

and

ŷ = [ŷ′1
>

, ŷ′2
>

, · · · , ŷ′n
>
]>mn×1, û = [û′1

>
, û′2
>

, · · · , û′n
>
]>mn×1.

Note that we drop the scalar factor 1/m in the subproblem.
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Rewriting the subproblems of ADMM

Using the above definitions, we can rewrite the subproblems of
ADMM as:

ẑ(i+1) = min
ẑ

(1
2
‖x̂− D̂ẑ‖2

2 +
ρ

2
‖ẑ− ŷ(i) + û(i)‖2

2

)
, (131)

y(i+1) = min
y

(
λ‖y‖1 +

ρ

2

n

∑
j=1
‖F−1(ẑ(i+1))− y + u(i)‖2

2

)
, (132)

u(i+1) = u(i) +F−1(ẑ(i+1))− y(i+1), (133)

where

y = [y′1
>, y′2

>, · · · , y′n
>
]>mn×1, u = [u′1

>, u′2
>, · · · , u′n

>
]>mn×1.
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Solving minimization problem (131)

First we define

F(ẑ) =
1
2
‖x̂− D̂ẑ‖2

2 +
ρ

2
‖ẑ− ŷ(i) + û(i)‖2

2.

To solve min
ẑ

F(ẑ), we compute

∇F(ẑ) = −D̂
>
(x̂− D̂ẑ) + ρI(ẑ− ŷ(i) + û(i))

= (D̂
>

D̂ + ρI)ẑ−
(
D̂
>

x̂ + ρ(ŷ(i) − û(i))
)
.

Letting ∇F(ẑ) = 0, we have

(D̂
>

D̂ + ρI)mn×mnẑ = D̂
>

x̂ + ρ(ŷ(i) − û(i)).

Therefore, we obtain the solution

ẑ(i+1) = (D̂
>

D̂ + ρI)−1(D̂>x̂ + ρ(ŷ(i) − û(i))
)
.
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Solving minimization problem (132)

The way to solve minimization problem (132) is similar to that for
solving problem (62).

Finally, we obtain the ADMM iterative scheme as follows:

ẑ(i+1) = (D̂
>

D̂ + ρI)−1(D̂>x̂ + ρ(ŷ(i) − û(i))
)
, (141)

y(i+1) = Sλ/ρ

(
F−1(ẑ(i+1)) + u(i)), (142)

u(i+1) = u(i) +F−1(ẑ(i+1))− y(i+1). (143)

Next, we will introduce the Sherman-Morrison formula which can be
applied to solve ẑ(i+1) in a more efficient way.
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The Sherman-Morrison formula: a special case

Let A and B be two n× n matrices. In general, (A + B) is not
invertible, even though A is invertible. However, if A is invertible
and B has some certain structure, then (A + B)−1 exists.

A special case of the Sherman-Morrison formula: Let I be the n× n
identity matrix and u, v be two given vectors in Cn. If 1 + v>u 6= 0, then
I + uv> is invertible and

(I + uv>)−1 = I− uv>

1 + v>u
.

Proof: We check that

(I + uv>)
(

I− uv>

1 + v>u

)
= I− uv>

1 + v>u
+ uv> − uv>uv>

1 + v>u

= I +
−uv> + uv> + v>uuv>

1 + v>u
− uv>uv>

1 + v>u

= I +
v>uuv>

1 + v>u
− uv>uv>

1 + v>u
= I. (v>u : scalar) �
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How to derive the inverse?

Given b ∈ Cn, we consider the linear system (I + uv>)x = b. Assume
that I + uv> is invertible. Then the unique solution x exists.
Let k = v>x ∈ C. Then x + ku = b ⇒ v>x + kv>u = v>b
⇒ k + k(v>u) = v>b, which implies

k =
v>b

1 + v>u
, if 1 + v>u 6= 0.

Therefore, we know that

x = b− ku = b− v>b
1 + v>u

u = b− uv>

1 + v>u
b =

inverse of I+uv>︷ ︸︸ ︷(
I− uv>

1 + v>u

)
b.

The Sherman-Morrison formula: Suppose that A ∈ Cn×n is an
invertible matrix and u, v ∈ Cn. Then A + uv> is invertible if and only if
1 + v>A−1u 6= 0. In this case, we have

(A + uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
.
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How to compute (141)?

Recall that(
D̂
>

D̂ + ρI
)
ẑ(i+1) =

(
D̂
>

x̂ + ρ(ŷ(i) − û(i))
)
, (141)

where matrix D̂ has the following structure:

D̂ = [D̂1, D̂2, · · · , D̂n]m×mn

=


d̂′1,1 0 · · · 0 d̂′2,1 0 · · · 0 · · ·

0 d̂′1,2
. . .

... 0 d̂′2,2
. . .

... · · ·
...

. . . . . . 0
...

. . . . . . 0 · · ·
0 · · · 0 d̂′1,m 0 · · · 0 d̂′2,m · · ·

 ,

where
D̂j = diag(d̂′j) (m×m diagonal matrix).
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The structure of matrix D̂
>

D̂ + ρI

Note that

D̂
>

D̂ + ρI =


D̂
>
1

D̂
>
2
...

D̂
>
n

 [D̂1, D̂2, · · · , D̂n] + ρI

=


D̂
>
1 D̂1 + ρIm D̂

>
1 D̂2 · · · D̂

>
1 D̂n

D̂
>
2 D̂1 D̂

>
2 D̂2 + ρIm · · · D̂

>
2 D̂n

...
...

. . .
...

D̂
>
n D̂1 D̂

>
n D̂2 · · · D̂

>
n D̂n + ρIm


mn×mn

.

By re-ordering the equations, the mn×mn system
(
D̂
>

D̂ + ρI
)
ẑ(i+1) = R

can be replaced by m independent linear systems of size n× n, each of which
consists of a rank one component plus a diagonal component, then solved by
the Sherman-Morrison formula, see [Wohlberg 2016, Appendix A].
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Convolutional sparse dictionary learning problem

We now consider the convolutional sparse dictionary learning
problem, where the dictionary D is unknown and needed to be
sought together with the convolutional sparse solution.

Convolutional SDL problem: Let {xi}N
i=1 ⊂ Rm be a given dataset of

signals. We seek a dictionary matrix D = [d1, d2, · · · , dM] ∈ R`×M and
the coefficient matrices {Zi}N

i=1 ⊂ Rk×M with Zi = [z1,i, z2,i, · · · , zM,i]

and m = `+ k− 1 such that D and {Zi}N
i=1 solve the following

minimization problem:

min
{dj}M

j=1,{zj,i}M,N
j=1,i=1

(1
2

N

∑
i=1
‖xi −

M

∑
j=1

dj ∗ zj,i‖2
2 + λ

N

∑
i=1

M

∑
j=1
‖zj,i‖1

)
subject to ‖dj‖2 ≤ 1 ∀ j = 1, 2, · · · , M,

where λ > 0 is a given penalty parameter.
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Toeplitz matrix

Define D̃ =
[
D1 D2 · · · DM

]
with each Dj is the Toeplitz

matrix defined with respect to dj as before.

Define zi =
[
z>1,i z>2,i · · · z>M,i

]>
for i = 1, 2, · · · , N, where

each zi is the coefficient vector with respect to the data xi.
Define Z =

[
z1 z2 · · · zN

]
and X =

[
x1 x2 · · · xN

]
.

The convolutional SDL problem can be simplified as

min
D̃, Z

(1
2
‖X − D̃Z‖2

F + λ‖Z‖1,1

)
subject to ‖dj‖2 ≤ 1 ∀ j = 1, 2, · · · , M,

where ‖Z‖1,1 is defined as before.
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How to solve the convolutional SDL problem?

Though we can still use the ADMM iterative scheme to solve

min
D̃, Z

(1
2
‖X − D̃Z‖2

F + λ‖Z‖1,1

)
subject to ‖dj‖2 ≤ 1 ∀ j = 1, 2, · · · , M,

the sizes of the involved matrices are too large. Thus, we will use the
DFT and the Sherman-Morrison formula to deal with this problem.
The steps are similar to the CSR problem, but more complicated.

Recall the convolutional SDL problem:

min
{dj}M

j=1,{zj,i}M,N
j=1,i=1

(1
2

N

∑
i=1
‖xi −

M

∑
j=1

dj ∗ zj,i‖2
2 + λ

N

∑
i=1

M

∑
j=1
‖zj,i‖1

)
subject to ‖dj‖2 ≤ 1 ∀ j = 1, 2, · · · , M.

For solving this problem, we split it into two parts.
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Step 1: Solving the coefficient Z

For solving the convolutional SDL problem, we first give an initial
dictionary D = [d1, d2, · · · , dM] to solve coefficient Z and then further
use ADMM algorithm to split this problem into three subproblems:

Ẑ
(i+1)

= arg min
Ẑ

(1
2

N

∑
i=1
‖x̂i −

M

∑
j=1

d̂′j � ẑ′j,i‖
2
2 +

ρ

2

N

∑
i=1

M

∑
j=1
‖ẑ′j,i − ŷ′j,i

(i)
+ û′j,i

(i)
‖2

2

)
,

Y(i+1) = arg min
Y

(
λ

N

∑
i=1

M

∑
j=1
‖yj,i‖1 +

ρ

2

N

∑
i=1

M

∑
j=1
‖F−1(ẑ′j,i)− yj,i + u′j,i‖2

2

)
,

U(i+1) = U(i) +F−1(Ẑ
(i+1)

)− Y(i+1),

with

F−1(Ẑ) =


F−1(ẑ′1,1) · · · F−1(ẑ′1,M)

...
. . .

...
F−1(ẑ′N,1) · · · F−1(ẑ′N,M)

 .
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Rewritten in a compact form

For convenience, we can rewrite these subproblems as follows:

Ẑ
(i+1)

= arg min
Ẑ

(1
2
‖X̂ − D̂Ẑ‖2

F +
ρ

2
‖Ẑ− Ŷ

(i)
+ Û

(i)‖2
F

)
,

Y(i+1) = arg min
Y

(
λ‖Y‖1,1 +

ρ

2
‖F−1(Ẑ

(i+1)
)− Ŷ + Û

(i)‖2
F

)
,

U(i+1) = U(i) +F−1(Ẑ
(i+1)

)− Y(i+1),

with
X̂ = [x̂1, x̂2, · · · , x̂N], D̂ = [D̂1, D̂2, · · · , D̂M],

and

Y =

y′1,1 · · · y′1,M
...

. . .
...

y′N,1 · · · y′N,M

 , U =

u′1,1 · · · u′1,M
...

. . .
...

u′N,1 · · · u′N,M

 .

Using the similar ways as that for solving CSR problem, we can solve
the above subproblems.
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Step 2: Solving the dictionary D

Recall the convolutional SDL problem:

min
{dj}M

j=1, {zj,i}M,N
j=1,i=1

(1
2

N

∑
i=1
‖xi −

M

∑
j=1

dj ∗ zj,i‖2
2+λ

N

∑
i=1

M

∑
j=1
‖zj,i‖1

)
subject to ‖dj‖2 ≤ 1 ∀ j = 1, 2, · · · , M.

When the coefficient Z is obtained, the blue term is a given number.
Solving the dictionary D is equivalent to solve

min
{dj}M

j=1

1
2

N

∑
i=1
‖xi−

M

∑
j=1

dj ∗ zj,i‖2
2 subject to ‖dj‖2 ≤ 1, ∀ j = 1, 2, · · · , M.
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Using ADMM algorithm to solve Step 2

We use the ADMM algorithm to solve the above problem:

D(i+1) = arg min
D

(1
2

N

∑
i=1
‖xi −

M

∑
j=1

dj ∗ zj‖2
2 +

ρ

2

M

∑
j=1
‖dj − gj

(i) + hj
(i)‖2

2

)
,

G(i+1) = projg(G)
{D(i+1)},

H(i+1) = H(i) + D(i+1) −G(i+1),

and then use the Fourier transform and similar ways as before,

D̂
(i+1)

= arg min
D̂

(1
2

N

∑
i=1
‖x̂i −

M

∑
j=1

d̂′j � ẑ′j‖
2
2 +

ρ

2

M

∑
j=1
‖d̂′j − ĝ′j

(i)
+ ĥ′j

(i)
‖2

2

)
,

G(i+1) = projg(G)
{F−1(D̂

(i+1)
)},

H(i+1) = H(i) +F−1(D̂
(i+1)

)−G(i+1),

where
F−1(D̂) = [F−1(d̂′1),F−1(d̂′2), · · · ,F−1(d̂′M)].
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