MA3113: Topics in Mathematical Image Processing I Sparse Representation and Dictionary Learning

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 32001, Taiwan

> syyang@math.ncu.edu.tw http://www.math.ncu.edu.tw/~syyang/

Outlines

- Sparse representation and dictionary learning
 - Sparse representation (SR) problem
 - Alternating direction method of multipliers (ADMM)
 - Application to signal denoising
 - Sparse dictionary learning (SDL) problem
 - Solving SDL problem
- Convolutional sparse representation and dictionary learning
 - ADMM for solving convolutional SR problem
 - Convolutional SDL problem
 - Solving convolutional SDL problem

Part I

Sparse Representation and Dictionary Learning

Sparse representation problem

Terms: Sparse Representation (稀疏表現)/Sparse Coding (稀疏編碼)

SR problem: Given a signal vector $\mathbf{x} \in \mathbb{R}^m$ and a dictionary matrix $\mathbf{D} \in \mathbb{R}^{m \times n}$, we seek a sparse coefficient vector $\mathbf{z}^* \in \mathbb{R}^n$ such that

$$z^* = \arg\min_{z} \left(\frac{1}{2} \|x - Dz\|_2^2 + \lambda \|z\|_0\right),$$

where $\lambda > 0$ is a penalty parameter and $\|z\|_0$ counts the number of nonzero components of z.

Remarks:

- In the matrix-vector multiplication *Dz*, the components of *z* are the coefficients with respect to columns (also called *atoms*) of *D*.
- We call $||z||_0$ the ℓ^0 norm of z, even though ℓ^0 is *not* really a norm, since the *homogeneity property* fails, $||\alpha z||_0 \neq |\alpha|||z||_0$.
- It is inefficient to compute $||z||_0$ directly when n is large. In practice, we will use the ℓ^1 norm instead of the ℓ^0 norm.

Two dual ℓ^0 minimization problems

In [Sharon-Wright-Ma 2007], they studied the following two dual ℓ^0 minimization problems:

• **Sparse error correction (SEC):** Given $0 \neq y \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times p}$ with n > p and rank(A) = p, we seek $w^* \in \mathbb{R}^p$ such that

$$w^* = \arg\min_{w} \|y - Aw\|_0.$$
 (1)

• Sparse signal reconstruction (SSR): Given $D \in \mathbb{R}^{m \times n}$ with m < n and $0 \neq x \in C(D)$ the column space of D, we seek $z^* \in \mathbb{R}^n$ such that

$$z^* = \underset{z}{\operatorname{arg\,min}} \|z\|_0$$
 subject to $x = Dz$. (2)

Note that (1) is a *decoding problem*, while (2) is a *sparse representation problem*. These two problems are *dual* in the sense that we can convert one problem to the other, see page 8 below.

Existence and uniqueness of solution

- Existence:
 - Existence of w^* : If $\exists w \in \mathbb{R}^p$ s.t. $\|y Aw\|_0 = 0$, then $w^* = w$. Otherwise, define

$$S := \{k \in \mathbb{N} : \exists w \in \mathbb{R}^p \text{ s.t. } ||y - Aw||_0 = k\}.$$

Then $\varnothing \neq S \subseteq \mathbb{N}$. By the well-ordering principle, $\exists k_0 \in S$ the minimum of S. i.e., $\exists w^*$ such that $w^* = \arg\min_{z \in S} \|y - Aw\|_0$.

- Existence of z^* : It can be shown in a similar way!
- **Uniqueness:** *It will generally be true* that these two dual problems have a unique solution if
 - $\exists w_0$ such that the error $e := y Aw_0$ is sparse enough, or
 - \exists z_0 sparse enough such that $x = Dz_0$. e.g., if any set of 2T columns of D are linearly independent, then any $z_0 \in \mathbb{R}^n$ with $||z_0||_0 \le T$ such that $Dz_0 = x$ is the unique solution to SSR problem (2).

Why we require matrix A full rank p in the SEC problem?

Note that *A* is of size $n \times p$ and n > p.

Suppose that *A* is not full rank *p*. Then rank(A) < p.

Since $\dim N(A) + \operatorname{rank}(A) = p$, we have $\dim N(A) > 0$.

Thus, nullspace $N(A) \neq \{\mathbf{0}\}$ and $\exists \ \widetilde{w} \neq \mathbf{0}$ such that $A\widetilde{w} = \mathbf{0}$.

If w^* is a solution of the SEC problem, then

$$\|y - A(w^* + \widetilde{w})\|_0 = \|y - Aw^*\|_0.$$

Hence, $w^* + \widetilde{w}$ is also a solution of the SEC problem.

Therefore, in order to ensure the uniqueness, we require A full rank p.

How to convert problem (2) to problem (1)?

- The decoding problem (1) can be converted to the sparse representation problem (2). [Candès et al. 2005, IEEE Symposium on FOCS]
- Converting (2) to (1): Let p = n rank(D) > 0 and A be a full-rank $n \times p$ matrix whose columns span the nullspace of D, i.e., DA = 0. Find any $y \in \mathbb{R}^n$ so that Dy = x and define f(w) = y - Aw. Then

$$\underset{z^*}{\operatorname{arg\,min}} \|z\|_0 = f\left(\underset{w}{\operatorname{arg\,min}} \|y - Aw\|_0\right). \tag{3}$$

Proof: First, note that for all $w \in \mathbb{R}^p$, we have

$$Df(w) = D(y - Aw) = Dy - DAw = Dy = x.$$

Claim: $\exists \ \widetilde{w} \in \mathbb{R}^p \text{ such that } f(\widetilde{w}) = y - A\widetilde{w} = z^*.$

$$\therefore Dz^* = x \text{ and } D(y - Aw) = x, \ \forall w \implies D(-z^* + y - Aw) = 0$$

$$\therefore \ \exists \ \bar{w} \text{ such that } A\bar{w} = -z^* + y - Aw \implies z^* = y - A(w + \bar{w}) := f(\widetilde{w})$$

Claim:
$$\widetilde{w} = w^* := \arg\min_{w} \|y - Aw\|_0$$
, and then $f(w^*) = z^*$.

$$\|f(w^*)\|_0 \le \|f(\widetilde{w})\|_0 = \|z^*\|_0 \le \|f(w^*)\|_0 \Longrightarrow \|f(w^*)\|_0 = \|f(\widetilde{w})\|_0$$

By the uniqueness of w^* , we obtain $\widetilde{w} = w^*$ and then $f(w^*) = z^*$.

The ℓ^1 - ℓ^0 equivalence problem

• In general, the ℓ^0 minimizations (1) and (2) are *NP-hard problems*:

$$w^* = \arg\min_{w} \|y - Aw\|_0, \qquad (1)$$

$$z^* = \underset{z}{\arg\min} \|z\|_0$$
 subject to $x = Dz$. (2)

• The equivalence between ℓ^0 and ℓ^1 minimizations is conditional.

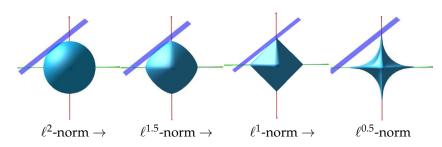
David L. Donoho, For most large underdetermined systems of linear equations the minimal ℓ_1 -norm solution is also the sparsest solution, CPAM, 59 (2006), pp. 797-829.

If the error $e := y - Aw^*$ or the solution z^* is sufficiently sparse, then the solutions to (1) and (2) are the same as (4) and (5), respectively.

$$w^* = \arg\min_{w} \|y - Aw\|_1, \tag{4}$$

$$z^* = \underset{z}{\arg\min} \|z\|_1$$
 subject to $x = Dz$. (5)

3-D ball in different ℓ^r norms and the constraint Dz = x



3-D ball in the different ℓ^r norms for r=2, 1.5, 1, 0.5

$$z^* = \underset{z}{\operatorname{arg\,min}} \|z\|_1$$
 subject to $\underbrace{x}_{\text{given}} = D\underbrace{z}_{\text{many}}$ (5)

The sparse representation problem

• We have introduced some ideas about the ℓ^1 - ℓ^0 equivalence. In what follows, we don't consider the original SR problem. We consider the following ℓ^1 minimization problem instead:

SR problem: Given a signal vector $\mathbf{x} \in \mathbb{R}^m$ and a dictionary matrix $\mathbf{D} \in \mathbb{R}^{m \times n}$, we seek a coefficient vector $\mathbf{z}^* \in \mathbb{R}^n$ such that

$$z^* = \arg\min_{z} \left(\frac{1}{2} \|x - Dz\|_2^2 + \lambda \|z\|_1\right), \quad \lambda > 0.$$
 (*)

The existence (and uniqueness) of solution of the SR problem (\star) can be ensured because matrix $D^{\top}D$ is symmetric (+ *positive definite*) and the second term $\lambda \| \cdot \|_1$ is a *convex function*.

- Problem (*) is also a regression analysis method in statistics and machine learning. It is the so-called *least absolute shrinkage and* selection operator (LASSO).
 - R. J. Tibshirani, The lasso problem and uniqueness, *Electronic Journal of Statistics*, 7 (2013), pp. 1456-1490 \oplus A. Ali, 13 (2019), pp. 2307-2347.

Alternating direction method of multipliers (ADMM)

We will use the "Alternating Direction Method of Multipliers" to solve the above ℓ^1 -norm SR problem.

 ADMM is an iterative scheme for solving the following equality constrained optimization problems:

$$\min_{z} f(z)$$
 subject to $Az = b$.

- ADMM consists of three steps:
 - 1. adding an auxiliary variable y and a dual variable (multipliers) v and then scaled as u
 - 2. separating the new cost function into a sum of f(z) and g(y)
 - 3. using an iterative method to solve the problem
- Then the optimization problem can be re-posed as

$$\min_{z, y} (f(z) + g(y))$$
 subject to $Az + By = c$.

Derivation of the ADMM: augmented Lagrangian

First, we formulate the augmented Lagrangian

$$L_{\rho}(z,y,v) := f(z) + g(y) + \underbrace{v^{\top}}_{multipliers} (Az + By - c) + \underbrace{\frac{\rho}{2} \|Az + By - c\|_2^2}_{penalty\ term},$$

where $\rho > 0$ is the penalty parameter. Then the iterative scheme of the augmented Lagrangian method (ALM) is given by

$$egin{array}{lll} (z^{(i+1)},y^{(i+1)}) &=& rg \min_{oldsymbol{z}} L_{
ho}(oldsymbol{z},oldsymbol{y},oldsymbol{v}^{(i)}), \ & oldsymbol{v}^{(i+1)} &=& oldsymbol{v}^{(i)} +
ho(oldsymbol{A}oldsymbol{z}^{(i+1)} + oldsymbol{B}oldsymbol{y}^{(i+1)} - oldsymbol{c}). \end{array}$$

In ADMM, z and y are updated in an alternating or sequential fashion, which accounts for the term alternating direction.

$$egin{array}{lcl} oldsymbol{z}^{(i+1)} &=& rg \min_{oldsymbol{z}} L_{
ho}(oldsymbol{z}, oldsymbol{y}^{(i)}, oldsymbol{v}^{(i)}), \ oldsymbol{y}^{(i+1)} &=& rg \min_{oldsymbol{y}} L_{
ho}(oldsymbol{z}^{(i+1)}, oldsymbol{y}, oldsymbol{v}^{(i)}), \ oldsymbol{v}^{(i+1)} &=& oldsymbol{v}^{(i)} +
ho(oldsymbol{A} oldsymbol{z}^{(i+1)} + oldsymbol{B} oldsymbol{y}^{(i+1)} - oldsymbol{c}). \end{array}$$

Scaled form of the augmented Lagrangian

The ADMM can be written in a slightly different form, which is often more convenient, by combining the linear and quadratic terms in the augmented Lagrangian and scaling the dual variable (multipliers) v.

Define the residual r := Az + By - c. Then

$$v^{\top}(Az + By - c) + \frac{\rho}{2} ||Az + By - c||_{2}^{2}$$

$$= v^{\top}r + \frac{\rho}{2} ||r||_{2}^{2} = \frac{\rho}{2} ||r + \frac{1}{\rho}v||_{2}^{2} - \frac{1}{2\rho} ||v||_{2}^{2}.$$

Set $\pmb{u} = \frac{1}{\rho} \pmb{v}$. Then $L_{\rho}(\pmb{z}, \pmb{y}, \pmb{v}) = L_{\rho}(\pmb{z}, \pmb{y}, \pmb{u})$, and

$$L_{\rho}(z,y,u) = f(z) + g(y) + \frac{\rho}{2} ||Az + By - c + u||_{2}^{2} - \frac{\rho}{2} ||u||_{2}^{2}.$$

ADMM: scaled form

The ADMM in the scaled form is given by

$$\begin{split} & z^{(i+1)} = \underset{z}{\arg\min} \Big(f(z) + g(\boldsymbol{y}^{(i)}) + \frac{\rho}{2} \|Az + B\boldsymbol{y}^{(i)} - c + \boldsymbol{u}^{(i)}\|_2^2 - \frac{\rho}{2} \|\boldsymbol{u}^{(i)}\|_2^2 \Big), \\ & y^{(i+1)} = \underset{y}{\arg\min} \Big(f(\boldsymbol{z}^{(i+1)}) + g(\boldsymbol{y}) + \frac{\rho}{2} \|Az^{(i+1)} + B\boldsymbol{y} - c + \boldsymbol{u}^{(i)}\|_2^2 - \frac{\rho}{2} \|\boldsymbol{u}^{(i)}\|_2^2 \Big), \\ & \boldsymbol{u}^{(i+1)} = \boldsymbol{u}^{(i)} + Az^{(i+1)} + B\boldsymbol{y}^{(i+1)} - c, \end{split}$$

where $\rho > 0$ is the *penalty parameter* which is related to the convergent rate of the iterations.

Note that the terms in blue can be omitted in practical computations!

Reference: S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the ADMM, *Foundations and Trends* in *Machine Learning*, 3 (2010), pp. 1-122.

ADMM for the ℓ^1 -norm SR problem

• For the ℓ^1 -norm SR problem,

$$z^* = \arg\min_{z} \left(\frac{1}{2} \|x - Dz\|_2^2 + \lambda \|z\|_1 \right), \quad \lambda > 0, \quad (\star)$$

we set

$$f(z) := \frac{1}{2} \|x - Dz\|_{2}^{2}, \ g(y) := \lambda \|y\|_{1}, \ Az + By = c \Leftrightarrow z - y = 0.$$

• The ADMM for the ℓ^1 -norm SR problem is given by

$$z^{(i+1)} = \arg\min_{z} \left(\frac{1}{2} \|x - Dz\|_{2}^{2} + \frac{\rho}{2} \|z - y^{(i)} + u^{(i)}\|_{2}^{2}\right), \quad (6_{1})$$

$$y^{(i+1)} = \arg\min_{z} \left(\lambda \|y\|_{1} + \frac{\rho}{2} \|z^{(i+1)} - y + u^{(i)}\|_{2}^{2}\right), \quad (6_{2})$$

$$u^{(i+1)} = u^{(i)} + z^{(i+1)} - y^{(i+1)}, \quad (6_{3})$$

where $\rho > 0$ is *penalty parameter* related to the convergent rate of the iterations.

Solving minimization problem (6₁)

Define

$$F_1(z) := \frac{1}{2} \|x - Dz\|_2^2 + \frac{\rho}{2} \|z - y^{(i)} + u^{(i)}\|_2^2.$$

Then F_1 is a quadratic function in variables z_1, z_2, \dots, z_n and $F_1(z) \ge 0 \ \forall \ z \in \mathbb{R}^n$. To solve " $\min_z F_1(z)$ ", first we compute

$$\nabla F_1(z) = -D^{\top}(x - Dz) + \rho I(z - y^{(i)} + u^{(i)})$$

= $(D^{\top}D + \rho I)z - (D^{\top}x + \rho(y^{(i)} - u^{(i)})).$

Letting $\nabla F_1(z) = \mathbf{0}$, we have

$$(\boldsymbol{D}^{\top}\boldsymbol{D} + \rho \boldsymbol{I})\boldsymbol{z} = (\boldsymbol{D}^{\top}\boldsymbol{x} + \rho(\boldsymbol{y}^{(i)} - \boldsymbol{u}^{(i)})).$$

Therefore, we obtain the solution

$$\boldsymbol{z}^{(i+1)} = (\boldsymbol{D}^{\top} \boldsymbol{D} + \rho \boldsymbol{I})^{-1} (\boldsymbol{D}^{\top} \boldsymbol{x} + \rho (\boldsymbol{y}^{(i)} - \boldsymbol{u}^{(i)})).$$

Solving minimization problem (6_2)

Using the *soft-thresholding function* $S_{\lambda/\rho}$, the solution of problem (6_2) has the closed form (see next few pages):

$$\mathbf{y}^{(i+1)} = \mathcal{S}_{\lambda/\rho}(\mathbf{z}^{(i+1)} + \mathbf{u}^{(i)}),$$

where

$$S_{\lambda/\rho}(v) = \operatorname{sign}(v) \odot \max(\mathbf{0}, |v| - \lambda/\rho),$$

and $sign(\cdot)$, $max(\cdot, \cdot)$, and $|\cdot|$ are all applied to the input vector v component-wisely, and \odot is the Hadamard product.

Finally, the iterative scheme can be posed as follows:

$$z^{(i+1)} = (D^{\top}D + \rho I)^{-1}(D^{\top}x + \rho(y^{(i)} - u^{(i)})),$$
 (7₁)

$$y^{(i+1)} = S_{\lambda/\rho}(z^{(i+1)} + u^{(i)}),$$
 (7₂)

$$u^{(i+1)} = u^{(i)} + z^{(i+1)} - v^{(i+1)}. (73)$$

Details of the solution of problem (6_2)

Recall the problem (6_2) ,

$$y^{(i+1)} = \arg\min_{y} \left(\lambda \|y\|_1 + \frac{\rho}{2} \|z^{(i+1)} - y + u^{(i)}\|_2^2 \right).$$
 (62)

Let $v := z^{(i+1)} + u^{(i)} \in \mathbb{R}^n$. Then we have

$$y^{(i+1)} = \underset{y}{\arg\min} \Big(\lambda \|y\|_1 + \frac{\rho}{2} \|v - y\|_2^2 \Big).$$

Define a real-valued function $F_2(y)$ as follows:

$$F_{2}(y) = \lambda \|y\|_{1} + \frac{\rho}{2} \|v - y\|_{2}^{2}$$

$$= \left(\lambda |y_{1}| + \frac{\rho}{2} (v_{1} - y_{1})^{2}\right) + \dots + \left(\lambda |y_{n}| + \frac{\rho}{2} (v_{n} - y_{n})^{2}\right)$$

$$:= f_{1}(y_{1}) + \dots + f_{n}(y_{n}),$$

where we define

$$f_j(y) := \lambda |y| + \frac{\rho}{2}(v_j - y)^2 \quad \forall j = 1, 2, \cdots, n.$$

Analysis of functions f_j

For simplicity of the presentation, we consider the function

$$f(y) = \lambda |y| + \frac{\rho}{2} (v - y)^2.$$

Computing the derivative of f(y) for $y \neq 0$, we have

$$f'(y) = \lambda \operatorname{sign}(y) - \rho(v - y) \quad \forall y \neq 0.$$

Let f'(y) = 0. Then we have the critical number $c \neq 0$,

$$c = v - \frac{\lambda}{\rho} \operatorname{sign}(c).$$

In order to find the minimum of f, we consider the following three cases:

$$v > \frac{\lambda}{\rho}, \quad v < -\frac{\lambda}{\rho}, \quad |v| \le \frac{\lambda}{\rho}.$$

Case 1: $v > \frac{\lambda}{\rho}$

If c<0, then $\mathrm{sign}(c)=-1$ and $c=v+\frac{\lambda}{\rho}>0$, this is a contradiction! Thus, we have c>0. Then $\mathrm{sign}(c)=1$, $c=v-\frac{\lambda}{\rho}>0$, and

$$\begin{split} f(c) &= f(v - \frac{\lambda}{\rho}) &= \lambda \left(v - \frac{\lambda}{\rho}\right) + \frac{\rho}{2} \left(v - \left(v - \frac{\lambda}{\rho}\right)\right)^2 \\ &= \frac{\rho}{2} \left(v^2 - \left(v - \frac{\lambda}{\rho}\right)^2\right) < \frac{\rho}{2} v^2 = f(0). \end{split}$$

For $y \ge 0$, since f is a quadratic polynomial in y with positive leading coefficient, we can conclude that $f(c) \le f(y)$ for all $y \ge 0$.

For y < 0, f(y) is monotone decreasing since

$$f'(y) = \lambda \operatorname{sign}(y) - \rho(v - y) = -\lambda - \rho v + \rho y$$

$$< -\lambda - \lambda + \rho y = -2\lambda + \rho y < 0,$$

which implies f(y) > f(0) for all y < 0.

Therefore, f has a minimum at $c = v - \frac{\lambda}{\rho} > 0$.

Case 2: $v<-\frac{\lambda}{\rho}$

If c>0, then $\mathrm{sign}(c)=1$ and $c=v-\frac{\lambda}{\rho}<0$, this is a contradiction! Thus, we have c<0. Then $\mathrm{sign}(c)=-1$, $c=v+\frac{\lambda}{\rho}<0$, and

$$f(c) = f(v + \frac{\lambda}{\rho}) = -\lambda(v + \frac{\lambda}{\rho}) + \frac{\rho}{2}\left(v - (v + \frac{\lambda}{\rho})\right)^{2}$$
$$= \frac{\rho}{2}\left(v^{2} - (v + \frac{\lambda}{\rho})^{2}\right) < \frac{\rho}{2}v^{2} = f(0).$$

For $y \le 0$, since f is a quadratic polynomial in y with positive leading coefficient, we can conclude that $f(c) \le f(y)$ for all $y \le 0$.

For y > 0, f(y) is monotone increasing since

$$f'(y) = \lambda \operatorname{sign}(y) - \rho(v - y) = \lambda - \rho v + \rho y$$

> $\lambda + \lambda + \rho y = 2\lambda + \rho y > 0$,

which implies f(y) > f(0) for all y > 0.

Therefore, f has a minimum at $c = v + \frac{\lambda}{\rho} > 0$.

Case 3: $|v| \leq \frac{\lambda}{\rho}$

If c < 0, then $\operatorname{sign}(c) = -1$ and $c = v + \frac{\lambda}{\rho} \ge 0$, this is a contradiction! If c > 0, then $\operatorname{sign}(c) = 1$ and $c = v - \frac{\lambda}{\rho} \le 0$, this is a contradiction!

For y > 0, f(y) is monotone increasing since

$$f'(y) = \lambda \operatorname{sign}(y) - \rho(v - y) = \lambda - \rho v + \rho y$$

$$\geq \lambda - \lambda + \rho y = \rho y > 0,$$

which implies f(y) > f(0) for all y > 0.

For y < 0, f(y) is monotone decreasing since

$$f'(y) = \lambda \operatorname{sign}(y) - \rho(v - y) = -\lambda - \rho v + \rho y$$

$$\leq -\lambda + \lambda + \rho y = \rho y < 0,$$

which implies f(y) > f(0) for all y < 0.

Therefore, f has a minimum at 0.

Solution of problem (6₂)

By the above discussions, we have

$$\underset{y}{\operatorname{arg\,min}} f(y) = \begin{cases} v + \frac{\lambda}{\rho}, & \text{if } v < -\frac{\lambda}{\rho}, & \text{(case 2)} \\ 0, & \text{if } |v| \leq \frac{\lambda}{\rho}, & \text{(case 3)} \\ v - \frac{\lambda}{\rho}, & \text{if } v > \frac{\lambda}{\rho}. & \text{(case 1)} \end{cases}$$

In other words, we have

$$\underset{y}{\arg\min} f(y) = \mathcal{S}_{\lambda/\rho}(v) = \operatorname{sign}(v) \max(0, |v| - \lambda/\rho).$$

Therefore,

$$y^{(i+1)} = \arg\min_{y} F_2(y) = \mathcal{S}_{\lambda/\rho}(v) = \mathcal{S}_{\lambda/\rho}(z^{(i+1)} + u^{(i)}).$$

where the soft-thresholding,

$$S_{\lambda/\rho}(v) := \operatorname{sign}(v) \odot \max(\mathbf{0}, |v| - \lambda/\rho),$$

and $sign(\cdot)$, $max(\cdot, \cdot)$, and $|\cdot|$ are all applied to the input vector v component-wisely, and \odot is the Hadamard product.

Application to signal denoising

- First, we construct a random dictionary matrix $D \in \mathbb{R}^{512 \times 2048}$ and a random sparse vector $z \in \mathbb{R}^{2048}$ with $||z||_0 = 32$. We then have the true signal x := Dz.
- Define the noise signal $x_n := x + n$, where $n \in \mathbb{R}^{512}$ is a random white Gaussian noise with noised powers P = 0.5, 1, 5. We then consider $\lambda = 5, 10, 20, 30$ for the minimization problem.
- Peak signal-to-noise ratio (PSNR): We define the mean squared error (MSE) and then the PSNR as follows:

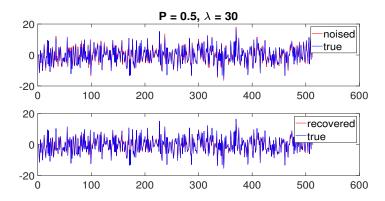
$$MSE := \frac{1}{512} \sum_{i=1}^{512} \left(\text{true}(i) - \text{approx}(i) \right)^2,$$

$$PSNR := 10 \times \log_{10} \left(\frac{\text{max}^2}{MSE} \right),$$

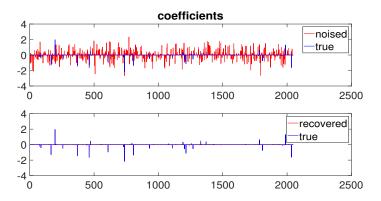
where "max" is the maximum amplitude of the true signal.

• Source of matlab code: http://brendt.wohlberg.net/software/SPORCO/

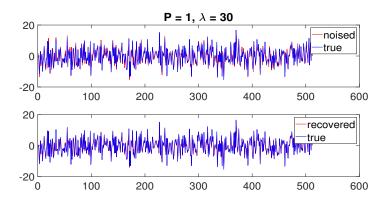
Numerical results for P = 0.5 and $\lambda = 30$



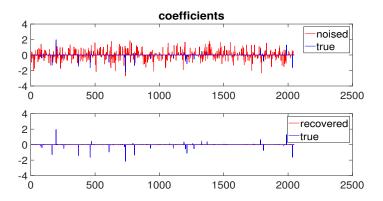
Coefficients for P = 0.5 **and** $\lambda = 30$



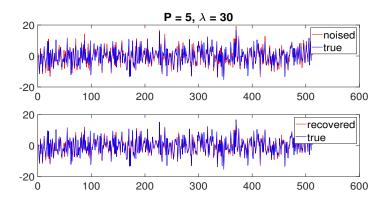
Numerical results for P = 1 and $\lambda = 30$



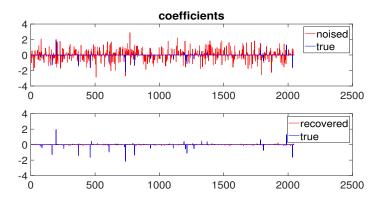
Coefficients for P = 1 and $\lambda = 30$



Numerical result for P = 5 and $\lambda = 30$



Coefficients for P = 5 and $\lambda = 30$



PSNR values and iteration numbers

In general, the higher the value of PSNR the better the quality of the recovered signals.

PSNR values

P	0.5	0.5	1	1	5	5
λ	noised	rcvered	noised	rcvered	noised	rcvered
5	29.51	30.36	29.71	30.41	25.57	26.11
10	29.51	31.16	29.71	31.10	25.57	26.63
20	29.51	32.55	29.71	32.23	25.57	27.62
30	29.51	33.45	29.71	32.77	25.57	28.50

Iteration numbers of ADMM

λP	0.5	1	5
5	550	664	569
10	301	303	320
20	172	169	186
30	129	130	154

Sparse dictionary learning problem

In the SR problem, the solution of interest z^* is the coefficient vector of a linear combination of over-complete basis elements (columns) from a given dictionary \mathbf{D} under some sparsity constraint. Therefore, it is typically accompanied by a dictionary learning mechanism.

We are going to study a more general problem. The dictionary D is unknown and needed to be sought together with the sparse solution.

SDL problem: Let $\{x_i\}_{i=1}^N \subset \mathbb{R}^m$ be a given dataset of signals. We seek a dictionary matrix $\mathbf{D} = [d_1, d_2, \cdots, d_n] \in \mathbb{R}^{m \times n}$ together with the sparse coefficient vectors $\{z_i\}_{i=1}^N \subset \mathbb{R}^n$ that solve the minimization problem:

$$\begin{split} \min_{\boldsymbol{D}, \{\boldsymbol{z}_i\}} \left(\frac{1}{2} \sum_{i=1}^N \|\boldsymbol{x}_i - \boldsymbol{D} \boldsymbol{z}_i\|_2^2 + \lambda \sum_{i=1}^N \|\boldsymbol{z}_i\|_1 \right) \\ \text{subject to } \|\boldsymbol{d}_k\|_2 \leq 1, \ \forall \ 1 \leq k \leq n, \end{split}$$

where $\lambda > 0$ is a penalty parameter.

Problem formulation in a more compact form

To simplify the formulation of the SDL problem, we define

$$X = [x_1, x_2, \cdots, x_N] \in \mathbb{R}^{m \times N},$$

 $Z = [z_1, z_2, \cdots, z_N] \in \mathbb{R}^{n \times N}.$

Then the SDL problem can be posed as follows: Given a training data matrix X, find a dictionary matrix D and a coefficient matrix Z such that

$$\begin{split} \min_{D,\,\mathbf{Z}} \left(\frac{1}{2} \| \mathbf{X} - D\mathbf{Z} \|_F^2 + \lambda \| \mathbf{Z} \|_{1,1} \right) & (\star\star) \\ \text{subject to } \| \mathbf{d}_k \|_2 \leq 1, \ \forall \ 1 \leq k \leq n, \end{split}$$

where $\|\cdot\|_F$ denotes the Frobenius norm and $\|\mathbf{Z}\|_{1,1}$ is the $L_{1,1}$ -norm which is defined as

$$\|\mathbf{Z}\|_{1,1} := \sum_{i=1}^{N} \|z_i\|_1.$$

An iterative approach for solving the SDL problem

In the SDL problem $(\star\star)$, we have two unknown matrices D and Z. We will use a simple iterative approach together with the ADMM to solve $(\star\star)$, though it is more complicated.

Given an initial guess $D_{(0)}$, for $j=0,1,\cdots$, we solve the following two sub-problems alternatingly:

$$Z_{(j)} = \arg\min_{\mathbf{Z}} \left(\frac{1}{2} \| \mathbf{X} - \mathbf{D}_{(j)} \mathbf{Z} \|_{F}^{2} + \lambda \| \mathbf{Z} \|_{1,1} \right),$$
(8)

$$D_{(j+1)} = \arg\min_{\mathbf{D}} \left(\frac{1}{2} \| \mathbf{X} - \mathbf{D} \mathbf{Z}_{(j)} \|_{F}^{2} + \lambda \| \mathbf{Z}_{(j)} \|_{1,1} \right)$$
subject to $\| \mathbf{d}_{k} \|_{2} \le 1, \ \forall \ 1 \le k \le n.$ (9)

We iterate (8) and (9) until convergence is achieved. As we have introduced previously, problems (8) and (9) will be solved by ADMM.

ADMM for solving problem (8)

Adding an auxiliary variable Y and a dual variable U, we define

$$f(\mathbf{Z}) := \frac{1}{2} \|\mathbf{X} - \mathbf{D}_{(j)} \mathbf{Z}\|_F^2, \quad g(\mathbf{Y}) := \lambda \|\mathbf{Y}\|_{1,1}, \quad \mathbf{Z} = \mathbf{Y}.$$

• Then the ADMM for solving (8) is given by

$$Z^{(i+1)} = \arg\min_{\mathbf{Z}} \left(\frac{1}{2} \| \mathbf{X} - \mathbf{D}_{(j)} \mathbf{Z} \|_{F}^{2} + \frac{\rho}{2} \| \mathbf{Z} - \mathbf{Y}^{(i)} + \mathbf{U}^{(i)} \|_{F}^{2} \right), \quad (8_{1})$$

$$\mathbf{Y}^{(i+1)} = \arg\min_{\mathbf{Y}} \left(\lambda \| \mathbf{Y} \|_{1,1} + \frac{\rho}{2} \| \mathbf{Z}^{(i+1)} - \mathbf{Y} + \mathbf{U}^{(i)} \|_{F}^{2} \right), \quad (8_{2})$$

$$\mathbf{U}^{(i+1)} = \mathbf{U}^{(i)} + \mathbf{Z}^{(i+1)} - \mathbf{Y}^{(i+1)}. \quad (8_{3}).$$

• Similar to the SR problem, we will use the same methods to solve the sub-problems (8_1) and (8_2) .

Solving minimization problem (8₁)

Define

$$F_1(\mathbf{Z}) := \frac{1}{2} \|\mathbf{X} - \mathbf{D}_{(j)} \mathbf{Z}\|_F^2 + \frac{\rho}{2} \|\mathbf{Z} - \mathbf{Y}^{(i)} + \mathbf{U}^{(i)}\|_F^2.$$

To solve "min $F_1(\mathbf{Z})$ ", first we compute

$$\nabla F_1(\mathbf{Z}) = -\mathbf{D}_{(j)}^{\top} (\mathbf{X} - \mathbf{D}_{(j)} \mathbf{Z}) + \rho \mathbf{I} (\mathbf{Z} - \mathbf{Y}^{(i)} + \mathbf{U}^{(i)})$$
$$= (\mathbf{D}_{(j)}^{\top} \mathbf{D}_{(j)} + \rho \mathbf{I}) \mathbf{Z} - (\mathbf{D}_{(j)}^{\top} \mathbf{X} + \rho (\mathbf{Y}^{(i)} - \mathbf{U}^{(i)})).$$

Letting $\nabla F_1(\mathbf{Z}) = 0$, we have

$$(\boldsymbol{D}_{(j)}^{\top}\boldsymbol{D}_{(j)} + \rho \boldsymbol{I})\boldsymbol{Z} = (\boldsymbol{D}_{(j)}^{\top}\boldsymbol{X} + \rho(\boldsymbol{Y}^{(i)} - \boldsymbol{U}^{(i)})).$$

Therefore, we obtain the solution

$$\mathbf{Z}^{(i+1)} = (\mathbf{D}_{(i)}^{\top} \mathbf{D}_{(i)} + \rho \mathbf{I})^{-1} (\mathbf{D}_{(i)}^{\top} \mathbf{X} + \rho (\mathbf{Y}^{(i)} - \mathbf{U}^{(i)})).$$

Solving minimization problem (8_2)

Using the component-wise soft-thresholding function, the solution of problem (8_2) has the closed form:

$$\mathbf{Y}^{(i+1)} = \mathcal{S}_{\lambda/\rho}(\mathbf{Z}^{(i+1)} + \mathbf{U}^{(i)}),$$

where

$$S_{\lambda/\rho}(V) = \operatorname{sign}(V) \odot \max(\mathbf{0}, |V| - \lambda/\rho),$$

with sign(V) and |V| are element-wisely applied to the matrix V and \odot is the Hadamard product.

Therefore, the iterative scheme can be posed as follows:

$$\mathbf{Z}^{(i+1)} = (\mathbf{D}_{(j)}^{\top} \mathbf{D}_{(j)} + \rho \mathbf{I})^{-1} (\mathbf{D}_{(j)}^{\top} \mathbf{X} + \rho (\mathbf{Y}^{(i)} - \mathbf{U}^{(i)})), \qquad (10_1)$$

$$\mathbf{Y}^{(i+1)} = \mathcal{S}_{\lambda/\rho} (\mathbf{Z}^{(i+1)} + \mathbf{U}^{(i)}), \qquad (10_2)$$

$$\mathbf{U}^{(i+1)} = \mathbf{U}^{(i)} + \mathbf{Z}^{(i+1)} - \mathbf{Y}^{(i+1)}. \qquad (10_3)$$

Solving minimization problem (9)

Recall that

$$D_{(j+1)} = \arg\min_{D} \left(\frac{1}{2} \| X - DZ_{(j)} \|_{F}^{2} + \lambda \| Z_{(j)} \|_{1,1} \right)$$
subject to $\| d_{k} \|_{2} \le 1$, $\forall 1 \le k \le n$. (9)

Since the term $\lambda \|\mathbf{Z}_{(j)}\|_{1,1}$ is a fixed number when $\mathbf{Z}_{(j)}$ is given, problem (9) can be replaced by

$$D_{(j+1)} = \underset{D}{\operatorname{arg min}} \frac{1}{2} ||X - DZ_{(j)}||_{F}^{2}$$

 $\operatorname{subject to} ||d_{k}||_{2} \le 1, \ \forall \ 1 \le k \le n.$ (9')

Next, we introduce an *auxiliary variable* G and a *dual variable* H in ADMM for solving (9').

ADMM for solving problem (9')

Define

$$g(G) := \{[d_1, d_2, \cdots, d_n] : ||d_k||_2 \le 1, \forall 1 \le k \le n\},\ G := D.$$

The ADMM for solving problem (9') is given by

$$\begin{split} & \boldsymbol{D}^{(i+1)} &= & \arg\min_{\boldsymbol{D}} \left(\frac{1}{2} \| \boldsymbol{X} - \boldsymbol{D} \boldsymbol{Z}_{(j)} \|_F^2 + \frac{\rho}{2} \| \boldsymbol{D} - \boldsymbol{G}^{(i)} + \boldsymbol{H}^{(i)} \|_F^2 \right), \quad (9_1) \\ & \boldsymbol{G}^{(i+1)} &= & \operatorname{proj}_{\mathcal{G}(\boldsymbol{G})} \{ \boldsymbol{D}^{(i+1)} \}, \quad (9_2) \\ & \boldsymbol{H}^{(i+1)} &= & \boldsymbol{H}^{(i)} + \boldsymbol{D}^{(i+1)} - \boldsymbol{G}^{(i+1)}. \quad (9_3) \end{split}$$

For solving problem (9_1) , we define

$$F_2(D) := \frac{1}{2} \| \boldsymbol{X} - \boldsymbol{D} \boldsymbol{Z}_{(j)} \|_F^2 + \frac{\rho}{2} \| \boldsymbol{D} - \boldsymbol{G}^{(i)} + \boldsymbol{H}^{(i)} \|_F^2.$$

Solving minimization problem (9₁)

Computing $\nabla F_2(\mathbf{D})$, we have

$$\nabla F_2(D) = (X - DZ_{(j)})(-Z_{(j)}^{\top}) + \rho I_m(D - G^{(i)} + H^{(i)})$$

= $D(\rho I_n + Z_{(j)}Z_{(j)}^{\top}) + XZ_{(j)}^{\top} - \rho(G^{(i)} - H^{(i)}).$

Letting $\nabla F_2(\mathbf{D}) = \mathbf{0}$, we have

$$D(\mathbf{Z}_{(j)}\mathbf{Z}_{(j)}^{\top} + \rho \mathbf{I}_n) = \mathbf{X}\mathbf{Z}_{(j)}^{\top} - \rho(\mathbf{G}^{(i)} - \mathbf{H}^{(i)}).$$

Therefore, we obtain the solution

$$\boldsymbol{D}^{(i+1)} = (\boldsymbol{X} \boldsymbol{Z}_{(j)}^{\top} - \rho (\boldsymbol{G}^{(i)} - \boldsymbol{H}^{(i)})) (\boldsymbol{Z}_{(j)} \boldsymbol{Z}_{(j)}^{\top} + \rho \boldsymbol{I}_n)^{-1}.$$

Finally, the ADMM for problem (9') is given by

$$D^{(i+1)} = (XZ_{(j)}^{\top} - \rho(G^{(i)} - H^{(i)}))(Z_{(j)}Z_{(j)}^{\top} + \rho I_n)^{-1}, \quad (11_1)$$

$$G^{(i+1)} = \operatorname{proj}_{g(G)}\{D^{(i+1)}\}, \quad (11_2)$$

$$H^{(i+1)} = H^{(i)} + D^{(i+1)} - G^{(i+1)}. \quad (11_3)$$

Convergence and stopping criterion

- In [Boyd *et al.* 2010], there are more details about convergence results of the ADMM.
- In the iterative scheme (10_1) , (10_2) , (10_3) , we define

$$R_z = Y^{(i+1)} - Y^{(i)}, \quad S_z = U^{(i+1)} - U^{(i)}.$$

If R_z and S_z less than the tolerances ε_{R_z} and ε_{S_z} , then we say that the iteration of coefficients $\mathbf{Z}^{(i+1)}$ converges.

In the iterative scheme (11_1) , (11_2) , (11_3) , we define

$$R_d = G^{(i+1)} - G^{(i)}, \quad S_d = H^{(i+1)} - H^{(i)}.$$

If R_d and S_d less than the tolerances ε_{R_d} and ε_{S_d} , then we say that the iteration of dictionary $D^{(i+1)}$ converges.

References and source codes

ℓ^1 - ℓ^0 equivalence problem:

- [1] D. L. Donoho, For most large underdetermined systems of linear equations the minimal ℓ_1 -norm solution is also the sparsest solution, *Communications on Pure and Applied Mathematics*, 59 (2006), pp. 797-829.
- [2] Y. Sharon, J. Wright, and Y. Ma, Computation and relaxation of conditions for equivalence between ℓ^1 and ℓ^0 minimization, *UIUC Technical Report UILU-ENG-07-2008*, 2007.

ADMM:

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the ADMM, Foundations and Trends[®] in Machine Learning, 3 (2010), pp. 1-122.

Sparse dictionary learning:

https://en.wikipedia.org/wiki/Sparse_dictionary_learning

Matlab codes: http://brendt.wohlberg.net/software/SPORCO/

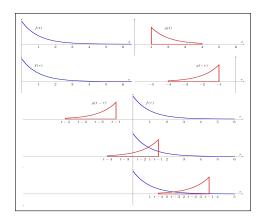
Part II

Convolutional Sparse Representation and Dictionary Learning

Convolution of two functions

Let f and g be two integrable functions with compact supports in \mathbb{R} . Then the convolution of f and g is defined as a function in variable t,

$$(f * g)(t) := \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau, \quad t \in \mathbb{R}.$$



Convolution of two vectors

Definition: Let $u = [u_1, \dots, u_n]^{\top} \in \mathbb{R}^n$ and $v = [v_1, \dots, v_m]^{\top} \in \mathbb{R}^m$. The convolution of u and v, denoted by u * v, is defined as follows:

$$\boldsymbol{u} * \boldsymbol{v} := \begin{bmatrix} u_1 v_1 \\ u_1 v_2 + u_2 v_1 \\ u_1 v_3 + u_2 v_2 + u_3 v_1 \\ \vdots \\ u_{n-2} v_m + u_{n-1} v_{m-1} + u_n v_{m-2} \\ u_{n-1} v_m + u_n v_{m-1} \\ u_n v_m \end{bmatrix} \in \mathbb{R}^{m+n-1}.$$

More specifically, for $i = 1, 2, \dots, (m + n - 1)$, the i-th component of u * v is given by

$$(u*v)_i = \sum_{j=\max(1,i-m+1)}^{\min(i,n)} u_j v_{i-j+1}.$$

Remark: Convolutional operator * is commutative, i.e., u * v = v * u.

Convolutional sparse representation (CSR) problem

CSR problem: Given a signal $x \in \mathbb{R}^m$ and a dictionary $\mathbf{D} = [d_1, \dots, d_n] \in \mathbb{R}^{\ell \times n}$, we seek a sparse matrix $\mathbf{Z} = [z_1, \dots, z_n] \in \mathbb{R}^{k \times n}$, $m = \ell + k - 1$, which solves the following minimization problem:

$$\min_{\mathbf{Z}} \left(\frac{1}{2} \| \mathbf{x} - \sum_{j=1}^{n} d_j * z_j \|_2^2 + \lambda \sum_{j=1}^{n} \| z_j \|_1 \right),$$

where $\lambda > 0$ is a penalty parameter.

Remarks:

• In SR, we use Dz to recover the signal x,

$$x \approx Dz = d_1z_1 + d_2z_2 + \cdots + d_nz_n = \sum_{j=1}^n d_jz_j.$$

In CSR, we use $\sum_{j=1}^{n} d_j * z_j$ instead,

$$x \approx d_1 * z_1 + d_2 * z_2 + \cdots + d_n * z_n = \sum_{j=1}^n d_j * z_j.$$

• Convolution is a way to regulate $d_j * z_j$ such that $x \approx \sum_{j=1}^n d_j * z_j$. It is more flexible than $x \approx \sum_{j=1}^n d_j z_j$, but indeed more expensive!

Toeplitz matrix

We define an $(m+n-1) \times m$ matrix **U** in terms of u_i , which is called a *Toeplitz matrix*, as follows:

$$\mathbf{U} := \begin{bmatrix} u_1 & 0 & \cdots & 0 & 0 \\ u_2 & u_1 & \ddots & 0 & 0 \\ \vdots & u_2 & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & u_1 & 0 \\ u_{n-1} & \vdots & \vdots & u_2 & u_1 \\ u_n & u_{n-1} & \vdots & \vdots & u_2 \\ 0 & u_n & \ddots & \vdots & \vdots \\ 0 & 0 & \ddots & u_{n-1} & \vdots \\ \vdots & \vdots & \ddots & u_n & u_{n-1} \\ 0 & 0 & \cdots & 0 & u_n \end{bmatrix}_{(m+n-1)\times m}$$

Then one can check that $\mathbf{u} * \mathbf{v} = \mathbf{U}\mathbf{v}$, where $\mathbf{u} = [u_1, \cdots, u_n]^{\top} \in \mathbb{R}^n$ and $v = [v_1, \cdots, v_m]^{\top} \in \mathbb{R}^m$.

CSR problem using Toeplitz matrices

With the help of Toeplitz matrix, we can rewrite the CSR problem as

$$\min_{\widetilde{z}} \left(\frac{1}{2} \| x - \widetilde{D} \widetilde{z} \|_{2}^{2} + \lambda \| \widetilde{z} \|_{1} \right), \tag{12}$$

with

$$\widetilde{z} = [z_1^\top, z_2^\top, \cdots, z_n^\top]_{nk \times 1}^\top$$
 and $\widetilde{\mathbf{D}} = [\mathbf{D}_1, \mathbf{D}_2, \cdots, \mathbf{D}_n]_{(\ell+k-1) \times nk}$,

where \mathbf{D}_j is a Toeplitz $(\ell + k - 1) \times k$ matrix associated with the column vector $\mathbf{d}_i \in \mathbb{R}^{\ell}$, and $\ell + k - 1 = m$.

Remarks:

- We can use the same way for SR problem to solve the CSR problem (12). We can employ the ADMM, but it is too expensive since the matrix size of \tilde{D} is too large.
- The discrete Fourier transform $\mathcal{F}: \mathbb{C}^N \to \mathbb{C}^N$ can help us to address this computational issue.

Discrete Fourier transform (DFT) and its inverse (IDFT)

• $\widehat{\mathbf{x}} = \mathcal{F}(\mathbf{x})$: The DFT $\mathcal{F}: \mathbb{C}^N \to \mathbb{C}^N$ transforms a finite vector $\mathbf{x} = [x_1, x_2, \cdots, x_N]^{\top}$ into another vector $\hat{\mathbf{x}} = [\hat{x}_1, \hat{x}_2, \cdots, \hat{x}_N]^{\top}$, which is defined by

$$\widehat{x}_k = \sum_{n=1}^N x_n e^{-\frac{i2\pi}{N}(k-1)(n-1)}.$$

Then DFT is an invertible linear transformation.

• $x = \mathcal{F}^{-1}(\widehat{x})$: The inverse discrete Fourier transform (IDFT) $\mathcal{F}^{-1}: \mathbb{C}^N \to \mathbb{C}^N, \widehat{x} \mapsto x$, is given by

$$x_n = \frac{1}{N} \sum_{k=1}^{N} \widehat{x}_k e^{\frac{i2\pi}{N}(k-1)(n-1)}.$$

• Euler's formula: $e^{i\theta} = \cos \theta + i \sin \theta$, $\forall \theta \in \mathbb{R}$.

https://en.wikipedia.org/wiki/Discrete_Fourier_transform

Hadamard product

• Let $u \in \mathbb{R}^n$ and $v \in \mathbb{R}^m$. Then $u * v \in \mathbb{R}^{m+n-1}$ and

$$\mathcal{F}(u*v) = \mathcal{F}(u') \odot \mathcal{F}(v'),$$

where \mathcal{F} denotes the DFT, u' and v' are respectively the zero padding of u and v with the same size of u * v, i.e.,

$$u' = [u^{\top}, 0, \dots, 0]^{\top}, \quad v' = [v^{\top}, 0, \dots, 0]^{\top} \in \mathbb{R}^{m+n-1},$$

and \odot is the Hadamard product.

• The Hadamard product \odot of two vectors is a component-wise product. Let $\boldsymbol{u} = [u_1, u_2, \cdots, u_n]^\top, \boldsymbol{v} = [v_1, v_2, \cdots, v_n]^\top \in \mathbb{R}^n$,

$$\boldsymbol{u}\odot\boldsymbol{v}:=[u_1v_1,u_2v_2,\cdots,u_nv_n]^{\top}.$$

We can define a diagonal matrix U such that $u \odot v = Uv$, where

$$\boldsymbol{U} := \begin{bmatrix} u_1 & 0 & \cdots & 0 \\ 0 & u_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_n \end{bmatrix}.$$

Recalling the CSR problem

CSR problem: Given $x \in \mathbb{R}^m$ and $D = [d_1, \dots, d_n] \in \mathbb{R}^{\ell \times n}$, we seek $Z = [z_1, \dots, z_n] \in \mathbb{R}^{k \times n}$ with $m = \ell + k - 1$ solving

$$\min_{\mathbf{Z}} \left(\frac{1}{2} \| \mathbf{x} - \sum_{j=1}^{n} d_j * \mathbf{z}_j \|_2^2 + \lambda \sum_{j=1}^{n} \| \mathbf{z}_j \|_1 \right).$$

To solve the above minimization problem, we first use the ADMM algorithm to split it into three subproblems:

$$\begin{split} \mathbf{Z}^{(i+1)} &= & \arg\min_{\mathbf{Z}} \left(\frac{1}{2} \| \mathbf{x} - \sum_{j=1}^{n} \mathbf{d}_{j} * \mathbf{z}_{j} \|_{2}^{2} + \frac{\rho}{2} \sum_{j=1}^{n} \| \mathbf{z}_{j} - \mathbf{y}_{j}^{(i)} + \mathbf{u}_{j}^{(i)} \|_{2}^{2} \right), \\ \mathbf{Y}^{(i+1)} &= & \arg\min_{\mathbf{Y}} \left(\lambda \sum_{j=1}^{n} \| \mathbf{y}_{j} \|_{1} + \frac{\rho}{2} \sum_{j=1}^{n} \| \mathbf{z}_{j}^{(i+1)} - \mathbf{y}_{j} + \mathbf{u}_{j}^{(i)} \|_{2}^{2}, \right) \\ \mathbf{U}^{(i+1)} &= & \mathbf{U}^{(i)} + \mathbf{Z}^{(i+1)} - \mathbf{Y}^{(i+1)}. \end{split}$$

Using discrete Fourier transform for Z

We will use the discrete Fourier transform and Hadamard product to solve the subproblem of **Z**. We can rewrite these subproblems as

$$\begin{split} \widehat{\mathbf{Z}}^{(i+1)} &= & \arg\min_{\widehat{\mathbf{Z}}} \left(\frac{1}{2} \| \widehat{\mathbf{x}} - \sum_{j=1}^n \widehat{\mathbf{d}}_j' \odot \widehat{\mathbf{z}}_j' \|_2^2 + \frac{\rho}{2} \sum_{j=1}^n \| \widehat{\mathbf{z}}_j' - \widehat{\mathbf{y}}_j^{(i)} + \widehat{\mathbf{u}}_j'^{(i)} \|_2^2 \right), \\ \mathbf{Y}^{(i+1)} &= & \arg\min_{\mathbf{Y}} \left(\lambda \sum_{j=1}^n \| \mathbf{y}_j \|_1 + \frac{\rho}{2} \sum_{j=1}^n \| \mathcal{F}^{-1}(\widehat{\mathbf{z}}_j'^{(i+1)}) - \mathbf{y}_j + \mathbf{u}_j^{(i)} \|_2^2 \right), \\ \mathbf{U}^{(i+1)} &= & \mathbf{U}^{(i)} + \mathcal{F}^{-1}(\widehat{\mathbf{Z}}^{(i+1)}) - \mathbf{Y}^{(i+1)}, \\ \text{where} & \\ & \mathcal{F}^{-1}(\widehat{\mathbf{Z}}) = [\mathcal{F}^{-1}(\widehat{\mathbf{z}}_1'), \mathcal{F}^{-1}(\widehat{\mathbf{z}}_2'), \cdots, \mathcal{F}^{-1}(\widehat{\mathbf{z}}_n')]. \end{split}$$

Why can we use the discrete Fourier transform?

Note that the discrete Fourier transform $\mathcal F$ is linear. Thus, we have

$$\frac{1}{2} \| \mathbf{x} - \sum_{j=1}^{n} d_{j} * \mathbf{z}_{j} \|_{2}^{2} = \frac{1}{2m} \| \mathcal{F}(\mathbf{x} - \sum_{j=1}^{n} d_{j} * \mathbf{z}_{j}) \|_{2}^{2} \quad \text{(Plancherel theorem)}$$

$$= \frac{1}{2m} \| \mathcal{F}(\mathbf{x}) - \mathcal{F}(\sum_{j=1}^{n} d_{j} * \mathbf{z}_{j}) \|_{2}^{2}$$

$$= \frac{1}{2m} \| \widehat{\mathbf{x}} - \sum_{j=1}^{n} \mathcal{F}(d_{j} * \mathbf{z}_{j}) \|_{2}^{2} = \frac{1}{2m} \| \widehat{\mathbf{x}} - \sum_{j=1}^{n} \widehat{d}'_{j} \odot \widehat{\mathbf{z}}'_{j} \|_{2}^{2}.$$

Similarly, the second term of subproblem **Z** can be rewritten as

$$\frac{\rho}{2} \sum_{j=1}^{n} \|z_{j} - y_{j}^{(i)} + u_{j}^{(i)}\|_{2}^{2} = \frac{\rho}{2} \sum_{j=1}^{n} \|z_{j}' - y_{j}'^{(i)} + u_{j}'^{(i)}\|_{2}^{2}$$

$$= \frac{\rho}{2m} \sum_{i=1}^{n} \|\widehat{z}_{j}' - \widehat{y}_{j}'^{(i)} + \widehat{u}_{j}'^{(i)}\|_{2}^{2}.$$

Note: $x \in \mathbb{R}^m$, $d_j \in \mathbb{R}^\ell$, $z_j \in \mathbb{R}^k$, $d_j * z_j \in \mathbb{R}^{\ell+k-1} = \mathbb{R}^m$, d_j' , $z_j' \in \mathbb{R}^m$.

The subproblem of \hat{Z}

We first define

$$\widehat{m{D}_j} = \mathrm{diag}(\widehat{m{d}_j'}). \quad (m \times m \ disgonal \ matrix)$$

Then the subproblem in the Fourier domain can be posed as:

$$\widehat{\boldsymbol{z}}^{(i+1)} = \arg\min_{\widehat{\boldsymbol{z}}} \left(\frac{1}{2} \| \widehat{\boldsymbol{x}} - \widehat{\boldsymbol{D}} \widehat{\boldsymbol{z}} \|_2^2 + \frac{\rho}{2} \| \widehat{\boldsymbol{z}} - \widehat{\boldsymbol{y}}^{(i)} + \widehat{\boldsymbol{u}}^{(i)} \|_2^2 \right),$$

where

$$\widehat{D} = [\widehat{D}_1, \widehat{D}_2, \cdots, \widehat{D}_n]_{m \times mn}, \quad \widehat{z} = [\widehat{z_1'}^{\top}, \widehat{z_2'}^{\top}, \cdots, \widehat{z_n'}^{\top}]_{mn \times 1}^{\top},$$

and

$$\widehat{y} = [\widehat{y_1'}^\top, \widehat{y_2'}^\top, \cdots, \widehat{y_n'}^\top]_{mn \times 1}^\top, \quad \widehat{u} = [\widehat{u_1'}^\top, \widehat{u_2'}^\top, \cdots, \widehat{u_n'}^\top]_{mn \times 1}^\top.$$

Note that we drop the scalar factor 1/m in the subproblem.

Rewriting the subproblems of ADMM

Using the above definitions, we can rewrite the subproblems of ADMM as:

$$\widehat{z}^{(i+1)} = \min_{\widehat{z}} \left(\frac{1}{2} \| \widehat{x} - \widehat{D} \widehat{z} \|_{2}^{2} + \frac{\rho}{2} \| \widehat{z} - \widehat{y}^{(i)} + \widehat{u}^{(i)} \|_{2}^{2} \right), \quad (13_{1})$$

$$y^{(i+1)} = \min_{y} \left(\lambda \| y \|_{1} + \frac{\rho}{2} \sum_{j=1}^{n} \| \mathcal{F}^{-1}(\widehat{z}^{(i+1)}) - y + u^{(i)} \|_{2}^{2} \right), \quad (13_{2})$$

$$u^{(i+1)} = u^{(i)} + \mathcal{F}^{-1}(\widehat{z}^{(i+1)}) - y^{(i+1)}, \quad (13_{3})$$

where

$$y = [{y_1'}^{\top}, {y_2'}^{\top}, \cdots, {y_n'}^{\top}]_{mn \times 1}^{\top}, \quad u = [{u_1'}^{\top}, {u_2'}^{\top}, \cdots, {u_n'}^{\top}]_{mn \times 1}^{\top}.$$

Solving minimization problem (13₁)

First we define

$$F(\widehat{z}) = \frac{1}{2} \|\widehat{x} - \widehat{D}\widehat{z}\|_{2}^{2} + \frac{\rho}{2} \|\widehat{z} - \widehat{y}^{(i)} + \widehat{u}^{(i)}\|_{2}^{2}.$$

To solve $\min_{\widehat{z}} F(\widehat{z})$, we compute

$$\nabla F(\widehat{\boldsymbol{z}}) = -\widehat{\boldsymbol{D}}^{\top}(\widehat{\boldsymbol{x}} - \widehat{\boldsymbol{D}}\widehat{\boldsymbol{z}}) + \rho \boldsymbol{I}(\widehat{\boldsymbol{z}} - \widehat{\boldsymbol{y}}^{(i)} + \widehat{\boldsymbol{u}}^{(i)})$$
$$= (\widehat{\boldsymbol{D}}^{\top}\widehat{\boldsymbol{D}} + \rho \boldsymbol{I})\widehat{\boldsymbol{z}} - (\widehat{\boldsymbol{D}}^{\top}\widehat{\boldsymbol{x}} + \rho(\widehat{\boldsymbol{y}}^{(i)} - \widehat{\boldsymbol{u}}^{(i)})).$$

Letting $\nabla F(\widehat{z}) = \mathbf{0}$, we have

$$(\widehat{\boldsymbol{D}}^{\top}\widehat{\boldsymbol{D}} + \rho \boldsymbol{I})_{mn \times mn}\widehat{\boldsymbol{z}} = \widehat{\boldsymbol{D}}^{\top}\widehat{\boldsymbol{x}} + \rho(\widehat{\boldsymbol{y}}^{(i)} - \widehat{\boldsymbol{u}}^{(i)}).$$

Therefore, we obtain the solution

$$\widehat{\boldsymbol{z}}^{(i+1)} = (\widehat{\boldsymbol{D}}^{\top} \widehat{\boldsymbol{D}} + \rho \boldsymbol{I})^{-1} \big(\widehat{\boldsymbol{D}}^{\top} \widehat{\boldsymbol{x}} + \rho (\widehat{\boldsymbol{y}}^{(i)} - \widehat{\boldsymbol{u}}^{(i)})\big).$$

Solving minimization problem (13₂)

The way to solve minimization problem (13_2) is similar to that for solving problem (6_2) .

Finally, we obtain the ADMM iterative scheme as follows:

$$\widehat{\mathbf{z}}^{(i+1)} = (\widehat{\mathbf{D}}^{\top} \widehat{\mathbf{D}} + \rho \mathbf{I})^{-1} (\widehat{\mathbf{D}}^{\top} \widehat{\mathbf{x}} + \rho (\widehat{\mathbf{y}}^{(i)} - \widehat{\mathbf{u}}^{(i)})), \quad (14_1)$$

$$\mathbf{y}^{(i+1)} = \mathcal{S}_{\lambda/\rho} (\mathcal{F}^{-1} (\widehat{\mathbf{z}}^{(i+1)}) + \mathbf{u}^{(i)}), \quad (14_2)$$

$$\mathbf{u}^{(i+1)} = \mathbf{u}^{(i)} + \mathcal{F}^{-1} (\widehat{\mathbf{z}}^{(i+1)}) - \mathbf{y}^{(i+1)}. \quad (14_3)$$

Next, we will introduce the *Sherman-Morrison formula* which can be applied to solve $\hat{z}^{(i+1)}$ in a more efficient way.

The Sherman-Morrison formula: a special case

Let A and B be two $n \times n$ matrices. In general, (A + B) is not invertible, even though A is invertible. However, if A is invertible and B has some certain structure, then $(A + B)^{-1}$ exists.

A special case of the Sherman-Morrison formula: *Let* I *be the* $n \times n$ *identity matrix and* u, v *be two given vectors in* \mathbb{C}^n . *If* $1 + v^{\top}u \neq 0$, *then* $I + uv^{\top}$ *is invertible and*

$$(I + uv^{\top})^{-1} = I - \frac{uv^{\top}}{1 + v^{\top}u}.$$

Proof: We check that

$$(I + uv^{\top}) \left(I - \frac{uv^{\top}}{1 + v^{\top}u} \right) = I - \frac{uv^{\top}}{1 + v^{\top}u} + uv^{\top} - \frac{uv^{\top}uv^{\top}}{1 + v^{\top}u}$$

$$= I + \frac{-uv^{\top} + uv^{\top} + v^{\top}uuv^{\top}}{1 + v^{\top}u} - \frac{uv^{\top}uv^{\top}}{1 + v^{\top}u}$$

$$= I + \frac{v^{\top}uuv^{\top}}{1 + v^{\top}u} - \frac{uv^{\top}uv^{\top}}{1 + v^{\top}u} = I. \quad (v^{\top}u : scalar) \quad \Box$$

How to derive the inverse?

Given $b \in \mathbb{C}^n$, we consider the linear system $(I + uv^\top)x = b$. Assume that $I + uv^\top$ is invertible. Then the unique solution x exists. Let $k = v^\top x \in \mathbb{C}$. Then $x + ku = b \Rightarrow v^\top x + kv^\top u = v^\top b$ $\Rightarrow k + k(v^\top u) = v^\top b$, which implies

$$k = \frac{\boldsymbol{v}^{\top} \boldsymbol{b}}{1 + \boldsymbol{v}^{\top} \boldsymbol{u}}, \quad \text{if } 1 + \boldsymbol{v}^{\top} \boldsymbol{u} \neq 0.$$

Therefore, we know that

$$x = b - ku = b - \frac{v^{\top}b}{1 + v^{\top}u}u = b - \frac{uv^{\top}}{1 + v^{\top}u}b = \underbrace{\left(I - \frac{uv^{\top}}{1 + v^{\top}u}\right)}_{\text{inverse of }I + uv^{\top}}b.$$

The Sherman-Morrison formula: Suppose that $A \in \mathbb{C}^{n \times n}$ is an invertible matrix and $u, v \in \mathbb{C}^n$. Then $A + uv^{\top}$ is invertible if and only if $1 + v^{\top}A^{-1}u \neq 0$. In this case, we have

$$(A + uv^{\top})^{-1} = A^{-1} - \frac{A^{-1}uv^{\top}A^{-1}}{1 + v^{\top}A^{-1}u}.$$

How to compute (14_1) ?

Recall that

$$(\widehat{\boldsymbol{D}}^{\top}\widehat{\boldsymbol{D}} + \rho \boldsymbol{I})\widehat{\boldsymbol{z}}^{(i+1)} = (\widehat{\boldsymbol{D}}^{\top}\widehat{\boldsymbol{x}} + \rho(\widehat{\boldsymbol{y}}^{(i)} - \widehat{\boldsymbol{u}}^{(i)})), \quad (14_1)$$

where matrix \hat{D} has the following structure:

$$\widehat{D} = [\widehat{D}_{1}, \widehat{D}_{2}, \cdots, \widehat{D}_{n}]_{m \times mn}
= \begin{bmatrix}
\widehat{d'_{1,1}} & 0 & \cdots & 0 & \widehat{d'_{2,1}} & 0 & \cdots & 0 & \cdots \\
0 & \widehat{d'_{1,2}} & \ddots & \vdots & 0 & \widehat{d'_{2,2}} & \ddots & \vdots & \cdots \\
\vdots & \ddots & \ddots & 0 & \vdots & \ddots & \ddots & 0 & \cdots \\
0 & \cdots & 0 & \widehat{d'_{1,m}} & 0 & \cdots & 0 & \widehat{d'_{2,m}} & \cdots
\end{bmatrix},$$

where

$$\widehat{D_i} = \operatorname{diag}(\widehat{d'_i}) \quad (m \times m \text{ diagonal matrix}).$$

The structure of matrix $\widehat{\boldsymbol{D}}^{\top}\widehat{\boldsymbol{D}} + \rho \boldsymbol{I}$

Note that

$$\widehat{\boldsymbol{D}}^{\top}\widehat{\boldsymbol{D}} + \rho \boldsymbol{I} = \begin{bmatrix} \widehat{\boldsymbol{D}}_{1}^{\top} \\ \widehat{\boldsymbol{D}}_{2}^{\top} \\ \vdots \\ \widehat{\boldsymbol{D}}_{n}^{\top} \end{bmatrix} [\widehat{\boldsymbol{D}}_{1}, \widehat{\boldsymbol{D}}_{2}, \cdots, \widehat{\boldsymbol{D}}_{n}] + \rho \boldsymbol{I}$$

$$= \begin{bmatrix} \widehat{\boldsymbol{D}}_{1}^{\top}\widehat{\boldsymbol{D}}_{1} + \rho \boldsymbol{I}_{m} & \widehat{\boldsymbol{D}}_{1}^{\top}\widehat{\boldsymbol{D}}_{2} & \cdots & \widehat{\boldsymbol{D}}_{1}^{\top}\widehat{\boldsymbol{D}}_{n} \\ \widehat{\boldsymbol{D}}_{2}^{\top}\widehat{\boldsymbol{D}}_{1} & \widehat{\boldsymbol{D}}_{2}^{\top}\widehat{\boldsymbol{D}}_{2} + \rho \boldsymbol{I}_{m} & \cdots & \widehat{\boldsymbol{D}}_{2}^{\top}\widehat{\boldsymbol{D}}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \widehat{\boldsymbol{D}}_{n}^{\top}\widehat{\boldsymbol{D}}_{1} & \widehat{\boldsymbol{D}}_{n}^{\top}\widehat{\boldsymbol{D}}_{2} & \cdots & \widehat{\boldsymbol{D}}_{n}^{\top}\widehat{\boldsymbol{D}}_{n} + \rho \boldsymbol{I}_{m} \end{bmatrix}_{mn \times mn}.$$

By re-ordering the equations, the mn imes mn system $(\widehat{m{D}}^{ op}\widehat{m{D}} +
ho m{I})\widehat{m{z}}^{(i+1)} = m{R}$ can be replaced by m independent linear systems of size $n \times n$, each of which consists of a rank one component plus a diagonal component, then solved by the Sherman-Morrison formula, see [Wohlberg 2016, Appendix A].

Convolutional sparse dictionary learning problem

We now consider the convolutional sparse dictionary learning problem, where the dictionary \boldsymbol{D} is unknown and needed to be sought together with the convolutional sparse solution.

Convolutional SDL problem: Let $\{x_i\}_{i=1}^N \subset \mathbb{R}^m$ be a given dataset of signals. We seek a dictionary matrix $\mathbf{D} = [\mathbf{d}_1, \mathbf{d}_2, \cdots, \mathbf{d}_M] \in \mathbb{R}^{\ell \times M}$ and the coefficient matrices $\{\mathbf{Z}_i\}_{i=1}^N \subset \mathbb{R}^{k \times M}$ with $\mathbf{Z}_i = [\mathbf{z}_{1,i}, \mathbf{z}_{2,i}, \cdots, \mathbf{z}_{M,i}]$ and $m = \ell + k - 1$ such that \mathbf{D} and $\{\mathbf{Z}_i\}_{i=1}^N$ solve the following minimization problem:

$$\min_{\substack{\{d_j\}_{j=1}^M, \{z_{j,i}\}_{j=1,i=1}^M \\ }} \left(\frac{1}{2} \sum_{i=1}^N \|x_i - \sum_{j=1}^M d_j * z_{j,i}\|_2^2 + \lambda \sum_{i=1}^N \sum_{j=1}^M \|z_{j,i}\|_1\right)$$
subject to $\|d_j\|_2 \le 1 \quad \forall j = 1, 2, \cdots, M$,

where $\lambda > 0$ is a given penalty parameter.

Toeplitz matrix

• Define $\widetilde{D} = \begin{bmatrix} D_1 & D_2 & \cdots & D_M \end{bmatrix}$ with each D_j is the *Toeplitz matrix* defined with respect to d_j as before.

Define
$$z_i = \begin{bmatrix} z_{1,i}^\top & z_{2,i}^\top & \cdots & z_{M,i}^\top \end{bmatrix}^\top$$
 for $i = 1, 2, \cdots, N$, where each z_i is the coefficient vector with respect to the data x_i . Define $\mathbf{Z} = \begin{bmatrix} z_1 & z_2 & \cdots & z_N \end{bmatrix}$ and $\mathbf{X} = \begin{bmatrix} x_1 & x_2 & \cdots & x_N \end{bmatrix}$.

• The convolutional SDL problem can be simplified as

$$\min_{\widetilde{D}, \mathbf{Z}} \left(\frac{1}{2} \| \mathbf{X} - \widetilde{D} \mathbf{Z} \|_F^2 + \lambda \| \mathbf{Z} \|_{1,1} \right)$$
subject to $\| \mathbf{d}_j \|_2 \le 1 \quad \forall j = 1, 2, \cdots, M$,

where $||Z||_{1,1}$ is defined as before.

How to solve the convolutional SDL problem?

Though we can still use the ADMM iterative scheme to solve

$$\min_{\widetilde{D}, Z} \left(\frac{1}{2} \| X - \widetilde{D}Z \|_F^2 + \lambda \| Z \|_{1,1} \right)$$
subject to $\| d_j \|_2 \le 1 \quad \forall j = 1, 2, \cdots, M$,

the sizes of the involved matrices are too large. Thus, we will use the DFT and the Sherman-Morrison formula to deal with this problem. The steps are similar to the CSR problem, but more complicated.

Recall the convolutional SDL problem:

$$\min_{\substack{\{d_j\}_{j=1}^M,\{z_{j,i}\}_{j=1,i=1}^{M,N}}} \left(\frac{1}{2} \sum_{i=1}^N \|x_i - \sum_{j=1}^M d_j * z_{j,i}\|_2^2 + \lambda \sum_{i=1}^N \sum_{j=1}^M \|z_{j,i}\|_1\right)$$
subject to $\|d_j\|_2 \le 1 \quad \forall j = 1, 2, \cdots, M$.

For solving this problem, we split it into two parts.

Step 1: Solving the coefficient *Z*

For solving the convolutional SDL problem, we first give an initial dictionary $D = [d_1, d_2, \cdots, d_M]$ to solve coefficient Z and then further use ADMM algorithm to split this problem into three subproblems:

$$\widehat{Z}^{(i+1)} = \arg\min_{\widehat{Z}} \left(\frac{1}{2} \sum_{i=1}^{N} \| \widehat{x_i} - \sum_{j=1}^{M} \widehat{d'_j} \odot \widehat{z'_{j,i}} \|_2^2 + \frac{\rho}{2} \sum_{i=1}^{N} \sum_{j=1}^{M} \| \widehat{z'_{j,i}} - \widehat{y'_{j,i}}^{(i)} + \widehat{u'_{j,i}}^{(i)} \|_2^2 \right)$$

$$\mathbf{Y}^{(i+1)} = \arg\min_{\mathbf{Y}} \left(\lambda \sum_{i=1}^{N} \sum_{j=1}^{M} \|\mathbf{y}_{j,i}\|_{1} + \frac{\rho}{2} \sum_{i=1}^{N} \sum_{j=1}^{M} \|\mathcal{F}^{-1}(\widehat{\mathbf{z}'_{j,i}}) - \mathbf{y}_{j,i} + \mathbf{u}'_{j,i}\|_{2}^{2} \right),$$

$$\mathbf{U}^{(i+1)} = \mathbf{U}^{(i)} + \mathcal{F}^{-1}(\widehat{\mathbf{Z}}^{(i+1)}) - \mathbf{Y}^{(i+1)},$$

with

$$\mathcal{F}^{-1}(\widehat{\mathbf{Z}}) = \begin{bmatrix} \mathcal{F}^{-1}(\widehat{z_{1,1}'}) & \cdots & \mathcal{F}^{-1}(\widehat{z_{1,M}'}) \\ \vdots & \ddots & \vdots \\ \mathcal{F}^{-1}(\widehat{z_{N,1}'}) & \cdots & \mathcal{F}^{-1}(\widehat{z_{N,M}'}) \end{bmatrix}.$$

Rewritten in a compact form

For convenience, we can rewrite these subproblems as follows:

$$\begin{split} \widehat{\pmb{Z}}^{(i+1)} &= \underset{\widehat{\pmb{Z}}}{\arg\min} \Big(\frac{1}{2} \| \widehat{\pmb{X}} - \widehat{\pmb{D}} \widehat{\pmb{Z}} \|_F^2 + \frac{\rho}{2} \| \widehat{\pmb{Z}} - \widehat{\pmb{Y}}^{(i)} + \widehat{\pmb{U}}^{(i)} \|_F^2 \Big), \\ \pmb{Y}^{(i+1)} &= \underset{\pmb{Y}}{\arg\min} \Big(\lambda \| \pmb{Y} \|_{1,1} + \frac{\rho}{2} \| \mathcal{F}^{-1} (\widehat{\pmb{Z}}^{(i+1)}) - \widehat{\pmb{Y}} + \widehat{\pmb{U}}^{(i)} \|_F^2 \Big), \\ \pmb{U}^{(i+1)} &= \pmb{U}^{(i)} + \mathcal{F}^{-1} (\widehat{\pmb{Z}}^{(i+1)}) - \pmb{Y}^{(i+1)}, \end{split}$$

with

$$\widehat{X} = [\widehat{x_1}, \widehat{x_2}, \cdots, \widehat{x_N}], \quad \widehat{D} = [\widehat{D_1}, \widehat{D_2}, \cdots, \widehat{D_M}],$$

and

$$\mathbf{Y} = \begin{bmatrix} y_{1,1}' & \cdots & y_{1,M}' \\ \vdots & \ddots & \vdots \\ y_{N,1}' & \cdots & y_{N,M}' \end{bmatrix}, \quad \mathbf{U} = \begin{bmatrix} u_{1,1}' & \cdots & u_{1,M}' \\ \vdots & \ddots & \vdots \\ u_{N,1}' & \cdots & u_{N,M}' \end{bmatrix}.$$

Using the similar ways as that for solving CSR problem, we can solve the above subproblems.

Step 2: Solving the dictionary *D*

Recall the convolutional SDL problem:

$$\min_{\substack{\{d_j\}_{j=1}^M,\ \{z_{j,i}\}_{j=1,i=1}^M \\ }} \left(\frac{1}{2} \sum_{i=1}^N \|x_i - \sum_{j=1}^M d_j * z_{j,i}\|_2^2 + \lambda \sum_{i=1}^N \sum_{j=1}^M \|z_{j,i}\|_1\right)$$
subject to $\|d_j\|_2 \le 1 \quad \forall j = 1, 2, \cdots, M.$

When the coefficient Z is obtained, the blue term is a given number. Solving the dictionary D is equivalent to solve

$$\min_{\{d_j\}_{j=1}^M} \frac{1}{2} \sum_{i=1}^N \|x_i - \sum_{j=1}^M d_j * z_{j,i}\|_2^2 \text{ subject to } \|d_j\|_2 \le 1, \quad \forall j = 1, 2, \cdots, M.$$

Using ADMM algorithm to solve Step 2

We use the ADMM algorithm to solve the above problem:

$$\begin{split} & \boldsymbol{D}^{(i+1)} &= & \arg\min_{\boldsymbol{D}} \Big(\frac{1}{2} \sum_{i=1}^{N} \| \boldsymbol{x}_i - \sum_{j=1}^{M} \boldsymbol{d}_j * \boldsymbol{z}_j \|_2^2 + \frac{\rho}{2} \sum_{j=1}^{M} \| \boldsymbol{d}_j - \boldsymbol{g}_j^{(i)} + \boldsymbol{h}_j^{(i)} \|_2^2 \Big), \\ & \boldsymbol{G}^{(i+1)} &= & \operatorname{proj}_{\boldsymbol{g}_{(G)}} \{ \boldsymbol{D}^{(i+1)} \}, \\ & \boldsymbol{H}^{(i+1)} &= & \boldsymbol{H}^{(i)} + \boldsymbol{D}^{(i+1)} - \boldsymbol{G}^{(i+1)}, \end{split}$$

and then use the Fourier transform and similar ways as before,

$$\begin{split} \widehat{\mathbf{D}}^{(i+1)} &= \arg\min_{\widehat{\mathbf{D}}} \left(\frac{1}{2} \sum_{i=1}^{N} \| \widehat{\mathbf{x}}_i - \sum_{j=1}^{M} \widehat{\mathbf{d}}_j' \odot \widehat{\mathbf{z}}_j' \|_2^2 + \frac{\rho}{2} \sum_{j=1}^{M} \| \widehat{\mathbf{d}}_j' - \widehat{\mathbf{g}}_j'^{(i)} + \widehat{\mathbf{h}}_j'^{(i)} \|_2^2 \right), \\ G^{(i+1)} &= \operatorname{proj}_{\mathbf{g}_{(G)}} \{ \mathcal{F}^{-1}(\widehat{\mathbf{D}}^{(i+1)}) \}, \\ H^{(i+1)} &= H^{(i)} + \mathcal{F}^{-1}(\widehat{\mathbf{D}}^{(i+1)}) - G^{(i+1)}, \\ \text{where} \\ \mathcal{F}^{-1}(\widehat{\mathbf{D}}) &= [\mathcal{F}^{-1}(\widehat{\mathbf{d}}_1'), \mathcal{F}^{-1}(\widehat{\mathbf{d}}_2'), \cdots, \mathcal{F}^{-1}(\widehat{\mathbf{d}}_M')]. \end{split}$$

References

- [1] H. Bristow, A. Eriksson, and S. Lucey, Fast convolutional sparse coding, 2013 IEEE CVPR, pp. 391-398.
- [2] F. Heide, W. Heidrich, and G. Wetzstein, Fast and flexible convolutional sparse coding, 2015 IEEE CVPR, pp. 5135-5143.
- [3] H. Sreter and R. Giryes, Learned convolutional sparse coding, 2018 IEEE ICASSP, pp. 2191-2195.
- [4] B. Wohlberg, Efficient convolutional sparse coding, 2014 IEEE ICASSP, pp. 7173-7177.
- [5] B. Wohlberg, Efficient algorithms for convolutional sparse representations, *IEEE Transactions on Image Processing*, 25 (2016), pp. 301-315.
- [6] J. Xiong, P. Richtarik, and W. Heidrich, Stochastic convolutional sparse coding, *Vision*, *Modeling*, *and Visualization*, 2019.