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Part1

Sparse Representation and Dictionary
Learning
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Sparse representation problem

Terms: Sparse Representation (¥ #i#:¥1)/Sparse Coding (74w i)

SR problem: Given a signal vector x € R™ and a dictionary matrix D €
R™*", we seek a sparse coefficient vector z* € R" such that

1
2 = argmin 5 |lx = Dz|l3 + A |1z, ),
z

where A > 0 is a penalty parameter and ||z||, counts the number of nonzero
components of z.
Remarks:

@ In the matrix-vector multiplication Dz, the components of z are
the coefficients with respect to columns (also called atoms) of D.

@ We call ||z||, the £° norm of z, even though ¢° is not really a
norm, since the homogeneity property fails, ||az|lo # ||| z/o-

@ It is inefficient to compute || z||, directly when 7 is large. In
practice, we will use the ¢! norm instead of the ¢° norm.
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Two dual /° minimization problems

In [Sharon-Wright-Ma 2007], they studied the following two dual ¢°
minimization problems:

@ Sparse error correction (SEC): Given 0 # y € R" and A € R"*P
withn > p and rank(A) = p, we seek w* € R¥ such that

w* = argmin ||y — Aw||o. (1)
w
@ Sparse signal reconstruction (SSR): Given D € R"™*" with m < n
and 0 # x € C(D) the column space of D, we seek z* € R" such that

z* = argmin ||z]|p subjectto x = Dz. (2)
z
Note that (1) is a decoding problem, while (2) is a sparse representation

problem. These two problems are dual in the sense that we can convert
one problem to the other, see page 8 below.
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Existence and uniqueness of solution

© Existence:

o Existence of w*: If 3w € R” s.t. ||y — Aw||op = 0, then
w* = w. Otherwise, define

S:={keN:JweRst |y—Aw| = k}.

Then @ # S C IN. By the well-ordering principle, 3 kg € S the
minimum of S. i.e., 3 w* such that w* = argmin ||y — Aw||o.
w

o Existence of z*: It can be shown in a similar way!

© Uniqueness: It will generally be true that these two dual problems
have a unique solution if

o Jwy such that the error e := y — Awy is sparse enough, or

o I zq sparse enough such that x = Dz.
e.g., if any set of 2T columns of D are linearly independent,
then any zg € R" with ||zg||, < T such that Dz = x is the
unique solution to SSR problem (2).
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Why we require matrix A full rank p in the SEC problem?

Note that A is of size n X pand n > p.

Suppose that A is not full rank p. Then rank(A) < p.

Since dim N(A) + rank(A) = p, we have dimN(A) > 0.
Thus, nullspace N(A) # {0} and 3 w # 0 such that Aw = 0.
If w* is a solution of the SEC problem, then

ly — A(w® +w)llo = [ly — Aw"[|o.

Hence, w* + w is also a solution of the SEC problem.

Therefore, in order to ensure the uniqueness, we require A full rank p.
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How to convert problem (2) to problem (1)?

@ The decoding problem (1) can be converted to the sparse representation
problem (2). [Candes et al. 2005, IEEE Symposium on FOCS]

@ Converting (2) to (1): Let p = n — rank(D) > 0 and A be a full-rank
n X p matrix whose columns span the nullspace of D, i.e., DA = 0.
Find any y € R" so that Dy = x and define f (w) = y — Aw. Then

argmin |1z]g = f (arg min [y — Awll,) . (3)
z & Dz=x w
= flw)

Proof: First, note that for all w € R”, we have
Df(w) = D(y — Aw) = Dy — DAw = Dy = x.
Claim: 3 @ € R” such that f(w) = y — Aw = z*.
» Dz =xand D(y — Aw) = x, YVw = D(—z"+y—Aw) =0
. JwsuchthatAw = -z +y—Aw = z* =y —A(w+ ) :=f()
Claim: w = w* := argmin,_, ||y — Aw||o, and then f (w*) = z*.
L @)lo < lIf(@)llo = 2"l < [If (w)llo = llf (w*)llo = [If (@) llo

By the uniqueness of w*, we obtain @w = w* and then f(w*) = z*.
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The ¢'-/° equivalence problem

@ In general, the /° minimizations (1) and (2) are NP-hard problems:

w"* = argmin ||y — Aw||,, (1)
w

z* = argmin ||z, subjectto x = Dz. (2)
z

@ The equivalence between (° and ¢! minimizations is conditional.

David L. Donoho, For most large underdetermined systems of linear
equations the minimal {1-norm solution is also the sparsest solution,
CPAM, 59 (2006), pp. 797-829.

If the error e := y — Aw" or the solution z* is sufficiently sparse, then
the solutions to (1) and (2) are the same as (4) and (5), respectively.

w" = argmin |y — Awl),, (4)
w

z* = argmin ||z||; subjectto x=Dz. (5)
z
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3-D ball in different /" norms and the constraint Dz = x

654

—norm — norm — —norm — norm

3-D ball in the different {" norms forr =2, 1.5, 1, 0.5

z* = argmin ||z||; subjectto x =D_z (5)
z <~ <~
given many
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The sparse representation problem

@ We have introduced some ideas about the £!-/? equivalence. In
what follows, we don’t consider the original SR problem. We
consider the following ¢! minimization problem instead:

SR problem: Given a signal vector x € R" and a dictionary matrix
D € R™*", we seek a coefficient vector z* € R" such that

1
¥ = argmin(i |x — Dz|5 4+ A HzHl), A > 0. (%)
z

The existence (and uniqueness) of solution of the SR problem
(%) can be ensured because matrix D" D is symmetric (+ positive
definite) and the second term A|| - || is a convex function.

@ Problem (x) is also a regression analysis method in statistics and
machine learning. It is the so-called least absolute shrinkage and
selection operator (LASSO).

R. J. Tibshirani, The lasso problem and uniqueness, Electronic Journal of
Statistics, 7 (2013), pp. 1456-1490 © A. Ali, 13 (2019), pp. 2307-2347.
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Alternating direction method of multipliers (ADMM)

We will use the “Alternating Direction Method of Multipliers” to solve
the above ¢!-norm SR problem.

@ ADMM is an iterative scheme for solving the following equality
constrained optimization problems:

min f(z) subjectto Az =b.
z

@ ADMM consists of three steps:

1. adding an auxiliary variable y and a dual variable (multipliers) v
and then scaled as u

2. separating the new cost function into a sum of f (z) and g(y)

3. using an iterative method to solve the problem

@ Then the optimization problem can be re-posed as

Igiyn (f(z) +g(y)) subjectto Az+ By =c.
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Derivation of the ADMM: augmented Lagrangian

First, we formulate the augmented Lagrangian

— T P 2
Lo(zy,v) :=f(z) +8(y) + @ _ (Az+By—c)+7|Az+By —cllz,

multipliers

penalty term

where p > 0 is the penalty parameter. Then the iterative scheme of
the augmented Lagrangian method (ALM) is given by

(z(iJrl), y(iﬂ)) = argmin Lp(z, Y, o) ),

o) — 50 —|—p(Az<i+l) +By(i+1) —c).

In ADMM, z and y are updated in an alternating or sequential
fashion, which accounts for the term alternating direction.

ylith = argminLP(z(”l),y,v(i)),
oD = () 4 p(Az(i“) + By(i“) —c).
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Scaled form of the augmented Lagrangian

The ADMM can be written in a slightly different form, which is often
more convenient, by combining the linear and quadratic terms in the
augmented Lagrangian and scaling the dual variable (multipliers) v.

Define the residual r := Az 4 By — c. Then
v' (Az+By —¢) + gHAz +By — |3

T P2 P 1 - 1 5
=v r+ 5“””2 = EH”JFEUHz* ZH”Hz-

Setu = %v. Then Ly(z,y,v) = Ly(z,y,u), and

Lo(z,y,u) = £(2) +(y) + Sl1az + By — e+ ull3 = Efjul3.

© Suh-Yuh Yang (7)), Math. Dept., NCU, Taiwan Sparse Dictionary Learning — 14/ 70



ADMM: scaled form

The ADMM in the scaled form is given by

2040 — argmin f(z) + g(y") + £ 14z + By — e+ u3-Eu?]3),
1 c i i i i)2)
y*) = argmin (f(z041) + g(y) + 24z + By — e+ u 3£ V3
y
D) — () L g5 (+1) +By(i+1) —¢,

where p > 0 is the penalty parameter which is related to the convergent
rate of the iterations.

Note that the terms in blue can be omitted in practical computations!
Reference: S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,

Distributed optimization and statistical learning via the ADMM,
Foundations and Trends® in Machine Learning, 3 (2010), pp. 1-122.
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ADMM for the /'-norm SR problem

@ For the ¢!-norm SR problem,
1
z —argmin(3 v~ Dz|f+Az],), A >0, ()
V)
we set
1
f(2) == 5llx = Dz|}3, 8(y) = Allylh, Az+By =c = z—y=0.

@ The ADMM for the ¢!-norm SR problem is given by

) = argmin(3Jx—Dzl3+ 2y +uB), (1)

y " = argmin(Allyy+ 52—y +uP3),  (62)
y 2

u(i+1) _ u(i)+z(i+1)_y(i+1), (63)

where p > 0 is penalty parameter related to the convergent rate of
the iterations.
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Solving minimization problem (6;)
Define ,
Fi(z) = 5l = Dz[3+ £llz =y +ul|.

Then F; is a quadratic function in variables z1,z, - - - ,z; and
Fi(z) > 0V z € R". To solve “min F;(z)”, first we compute
z

VFi(z) = —D'(x—Dz)+pI(z—y® +ul))
= (D'D+pl)z— (D"x+p(y") —u)).
Letting VF;(z) = 0, we have
(D'D+pl)z= (D x+py? —u)).
Therefore, we obtain the solution

2D = (DD 4 pD) 1 (DTx + p(yP) — u)).
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Solving minimization problem (6,)

Using the soft-thresholding function S /,, the solution of problem (6;)
has the closed form (see next few pages):

y(i+1) _ SMP(Z(iH) +u(i>),

where
S /p(v) = sign(v) © max(0, |v| —A/p),

and sign(-), max(-,-), and | - | are all applied to the input vector v
component-wisely, and © is the Hadamard product.

Finally, the iterative scheme can be posed as follows:

20 = (DD 4D (D x4 py D —u)), (7))
i) — SMP(Z(iH) +uld), (72)
S VR RIS CS Y y(iH). (73)
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Details of the solution of problem (6;)

Recall the problem (6,),

g0 = argmin(Alyl + 20—y +403). (&)
y

Let v := z(tD) 4+ 4() € R". Then we have

y* = argmin (A]lylly + o — yI13)-
y
Define a real-valued function F;(y) as follows:
Baly) = Alyll+Elo—yl3

= ()\|y1| + g(vl _]/1)2) +- (Mynl + g(vn _]/n)z)
= fily1) + - +fulyn),

where we define

f]()*AIyIJr (vj—y)* Vj=12--,n
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Analysis of functions f;

For simplicity of the presentation, we consider the function

f) = Alyl + £ =2
Computing the derivative of f(y) for y # 0, we have
f'(y) = Asign(y) —p(o—y) Yy #0.
Let f'(y) = 0. Then we have the critical number ¢ # 0,

A
C=70— —Ss1gnic).
o518 (c)

In order to find the minimum of f, we consider the following three cases:

A A A
v>=, v<—=, |v]<=.
Y Y 1Y
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Case1: v > %

If c < 0, thensign(c) = —land c = v + % > 0, this is a contradiction!
Thus, we have ¢ > 0. Then sign(c) =1,c =v — % > 0, and

T
fle) =f(v p

) = A(02)+g(v(v))2

For y > 0, since f is a quadratic polynomial in y with positive leading
coefficient, we can conclude that f(c) < f(y) forally > 0.

Fory < 0, f(y) is monotone decreasing since
fily) = Asign(y) —p(o—y) = —A —pv+py
< —A—A+py=-2A+py <0,
which implies f(y) > f(0) forally < 0.

Therefore, f has a minimum at c = v — % > 0.
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Case2: v < —%

If c > 0, then sign(c) =land c = v — % < 0, this is a contradiction!
Thus, we have ¢ < 0. Then sign(c) = —1,c =v+ % < 0, and

B AL AP A2
fO=fo+D) = Mo+ ) +5(e-+2)
_ g(vz_(v+2))<%2—f(o).

For y < 0, since f is a quadratic polynomial in y with positive leading
coefficient, we can conclude that f(c) < f(y) forally < 0.

For y > 0, f(y) is monotone increasing since

fily) = Asign(y) —p(v—y) = A —po+py
> A+A+py=21+py >0,
which implies f(y) > f(0) forally > 0.

Therefore, f has a minimum at ¢ = v + % > 0.
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Case 3: o] <

m>

If c < 0, thensign(c) = —landc=v + A >0, this is a contradiction!
If c > 0, then sign(c) =land c = v — ; < 0, this is a contradiction!

For y > 0, f(y) is monotone increasing since

fily) = Asign(y) —p(o—y) = A —pv+py
> A—=A+py=py>0,
which implies f(y) > f(0) forally > 0.
Fory < 0, f(y) is monotone decreasing since
fily) = Asign(y) —p(v—y) = —A —po+py
< A+ A+py=py <0,
which implies f(y) > f(0) forally < 0.

Therefore, f has a minimum at 0.
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Solution of problem (6;)

By the above discussions, we have

v+%, ifv < —%, (case 2)
argminf(y) =< 0, if || < %, (case 3)
v v— %, ifo > % (case 1)

In other words, we have

argminf(y) = Sy/,(v) = sign(v) max(0, [o| — A/p).
Y

Therefore,

y(”l) =argminF;(y) = S/\/p(v) = S/\/p(z(”l) + u(i)).
y

where the soft-thresholding,
Si/p(v) = sign(v) © max(0, [v| —A/p),

and sign(-), max(-,-), and | - | are all applied to the input vector v
component-wisely, and ® is the Hadamard product.
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Application to signal denoising

@ First, we construct a random dictionary matrix D € R%12x2048

and a random sparse vector z € R?*® with | z||o = 32. We then
have the true signal x := Dz.

@ Define the noise signal x,, := x +n, wheren € R52 is a random
white Gaussian noise with noised powers P = 0.5,1,5. We then
consider A = 5,10,20, 30 for the minimization problem.

@ Peak signal-to-noise ratio (PSNR): We define the mean squared
error (MSE) and then the PSNR as follows:

512

, 2
MSE := m{ﬂ(true(z)—approx(z)),
2
PSNR := 1Oxlog10<%>,

where “max” is the maximum amplitude of the true signal.

@ Source of matlab code:
http://brendt.wohlberg.net/software/SPORCO/
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Numerical results for P = 0.5 and A = 30
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Coefficients for P = 05and A = 30
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Numerical results for P =1 and A = 30

P=1,2=30
20 .
—noised
—true
0 I | B
_20 L L
0 100 200 300 400 500 600
20
—recovered
—true
0 l T 4
-20 : : !
0 100 200 300 400 500 600

Sparse Di Learning - 28/ 70

), Math. Dept., NCU, Taiwan

uh-Yuh Yang (157



Coefficients for P =1 and A = 30

4 coefficients
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Numerical result for P =5and A = 30
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Coefficients for P = 5and A = 30
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PSNR values and iteration numbers

In general, the higher the value of PSNR the better the quality of the
recovered signals.

PSNR values
(P 05 [ 05 | 1 [ 1 [ 5 [ 5 |
| A [ noised | revered | noised | revered | noised | revered |
5

29.51 30.36 29.71 30.41 25.57 26.11
0] 29.51 31.16 29.71 31.10 25.57 26.63
20 || 29.51 32.55 29.71 32.23 25.57 27.62
30 || 29.51 33.45 29.71 32.77 25.57 28.50

—_

Iteration numbers of ADMM
(AP05] T ] 5 |
5 550 | 664 | 569
10 || 301 | 303 | 320
20 172 | 169 | 186
30 129 | 130 | 154
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Sparse dictionary learning problem

In the SR problem, the solution of interest z* is the coefficient vector of a
linear combination of over-complete basis elements (columns) from a given
dictionary D under some sparsity constraint. Therefore, it is typically
accompanied by a dictionary learning mechanism.

We are going to study a more general problem. The dictionary D is
unknown and needed to be sought together with the sparse solution.

SDL problem: Let {x;}}Y | C R™ be a given dataset of signals. We seck a
dictionary matrix D = [dq,dy, - - -, dy] € R™*" together with the sparse
coefficient vectors {z;}X; C R" that solve the minimization problem:

N
mm( Zux, Dzf3 4+ |zll)

DAz} 2 i=1
sub]ect to || dill2 <1, V1<k<n,

where A > 0 is a penalty parameter.
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Problem formulation in a more compact form

To simplify the formulation of the SDL problem, we define

X = [x1/x2/ Tt ,XN] S IRmXN/
7z = [21,22,- .- ,ZN] S ]RnXN.

Then the SDL problem can be posed as follows: Given a training data
matrix X, find a dictionary matrix D and a coefficient matrix Z such that

.1 >
min (5[|X ~DZ|} + A|1Z]1, ) (x%)
subject to ||di|» <1, V1 <k <m,
where || - || denotes the Frobenius norm and ||Z||1 1 is the Ly 1-norm which
is defined as

N
1Z]]1,1 := Y llzill1-
i=1
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An iterative approach for solving the SDL problem

In the SDL problem (xx), we have two unknown matrices D and Z.
We will use a simple iterative approach together with the ADMM to
solve (x«), though it is more complicated.

Given an initial guess D g, for j = 0,1, - - -, we solve the following
two sub-problems alternatingly:

!
Z5 = argzmln<§HX—DU)ZH%—Q—/\HZHM), (8)

/1
Diory = argmin(31X = DZg [ + A1) 1)

subject to ||y <1, V1 <k <n. (9)

We iterate (8) and (9) until convergence is achieved. As we have
introduced previously, problems (8) and (9) will be solved by ADMM.
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ADMM for solving problem (8)

@ Adding an auxiliary variable Y and a dual variable U, we define

1
f(2) = S|X-DyZI2 g(¥):=AlY|11, Z=Y.
2

@ Then the ADMM for solving (8) is given by

) 1 i i
ZUH) = argmin(=||X — D Z||? + EHZ YO uz), (8)
5 (2 | HNET F) !
YD) argmin(/\IIYlh,l n §||z(z‘+1) —y+u® ||%), (82)
Y
ud = g 4z _y+D (g,

@ Similar to the SR problem, we will use the same methods to
solve the sub-problems (8;) and (8;).
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Solving minimization problem (8;)
Define
1 , ,
F(Z) = 51X =Dz|p + 51z - Y + u?
2 2
To solve ”mzin F1(Z)”, first we compute

VF(Z)

_Dg) (X - DU)Z) + pI(Z — Y(i) 4 u(l))
= (D{,Dj) +pDZ - (DX +p(Y) —u)).
Letting VF1(Z) = 0, we have

(DE)D(J‘) +oD)Z = (Dg)Xan(Y(i) —uy).

Therefore, we obtain the solution

Zz(+1) — (D%DU) + o)~ (D&X +o(Y® —uy).
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Solving minimization problem (8,)

Using the component-wise soft-thresholding function, the solution of
problem (8;) has the closed form:

Y(i+l) _ S)\/p(z(i+1) + U(Z))’

where
Sr/p(V) = sign(V) © max(0, |[V| = A/p),

with sign(V) and | V| are element-wisely applied to the matrix V and
© is the Hadamard product.

Therefore, the iterative scheme can be posed as follows:

Z+1) (D(T”D(j) +pI)~ ! (DE)X + (Y — U(i))), (107)
y(+)  — SA/p(Z(iH) +u), (102)
uttl =yl 4z _ v (105)
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Solving minimization problem (9)

Recall that
1
Dy = arggmn(i IX —DZ |+ AlIZ; H1,1)
subject to ||di|, <1, V1 <k <n. (9)

Since the term A||Z;)||1,1 is a fixed number when Z ; is given, problem (9)
can be replaced by

.1
D) = argmin 5 |X —DZ; |12
D
subject to ||di|2 <1, V1 <k <n. 9"

Next, we introduce an auxiliary variable G and a dual variable H in
ADMM for solving (9”).
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ADMM for solving problem (9’)

Define
$(6) = {lddy, ] dlo <1,Y1<k<n,
G = D.
The ADMM for solving problem (9") is given by
‘ .1 ' '
plith  — argmln(EHX ~DZ; |} + gHD -G +H(Z)H%>’ )
D
G = projy ) {DV}, (92)
gD — g L pli+) _ gli+D), (93)

For solving problem (9 ), we define

1 . .
F2(D) = 51X~ DZy) [ + £1ID - 6 + HOJ.
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Solving minimization problem (9;)

Computing VF;(D), we have

VF(D) = (X—DZy)(-Z[)+plu(D—GY +HY)

= D(pl, + zg)zg)) + ng) —p(G — g,
Letting VF,(D) = 0, we have
T _ T i i
D(Z(Z () + pIn) = XZ[;) — p(GY) — HY).
Therefore, we obtain the solution
DY = (xz;, " — p(GY —HY))(Z(Z(;) " + pL,) .

Finally, the ADMM for problem (9’) is given by

pl+h)  _ (XZ@T — (G —H)) (z(].)z(].)T +pI,)7 Y (1)
G = projgig {DTV}, (1)
HH) = HO 4 pi+h) _ gD - (115)
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Convergence and stopping criterion

@ In [Boyd et al. 2010], there are more details about convergence
results of the ADMM.

@ In the iterative scheme (107), (10;), (103), we define
R, =Yt _y(@) g — yl+) @,

If R; and S; less than the tolerances g, and ¢g_, then we say that

the iteration of coefficients Z(+1) converges.

In the iterative scheme (117), (113), (113), we define
R; =G g, g, =HIHD _ g0,

If R; and S; less than the tolerances eg, and ¢g,, then we say that
the iteration of dictionary DU*1) converges.
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Part 11

Convolutional Sparse Representation and
Dictionary Learning
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Convolution of two functions

Let f and g be two integrable functions with compact supports in R.
Then the convolution of f and g is defined as a function in variable ¢,

Fra)t) = [ floglt-m)dr, teR

~ ’H\
I T T s
e ’_/l
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Convolution of two vectors

Definition: Let u = [uy,--- ,u,] € R"andv = [v1,-- ,0,] " € R™
The convolution of u and v, denoted by u * v, is defined as follows:

U101
U107 + Uy
U103 + Uy + U301
Uk = : e R

Up—20m + U101 + UnUpy—2
Uy 10m + UnUpy—1
UnOm

More specifically, fori = 1,2,- - -, (m +n — 1), the i-th component of u * v
is given by
min(i,n)
(uxv); = Z UjOi—j1-
j=max(1,i—m+1)

Remark: Convolutional operator * is commutative, i.e., u xv = v *x u.
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Convolutional sparse representation (CSR) problem

CSR problem: Given a signal x € R" and a dictionary D = [dy, - - -, d,,]
€ R we seek a sparse matrix Z = [zq,- - ,zn] € R =0 +k—1,
which solves the following minimization problem:

mm(fux— zd w5344 l5lh),

j=1
where A > 0 is a penalty pammeter.
Remarks:
@ In SR, we use Dz to recover the signal x,

n
x~Dz=dz; +dozp+ - +dyz, = Zd]z]
=1

In CSR, we use Z L1 d; x zj instead, !
n
x~dyxz1+dy*xzo+- - +dyxzy = Zd]*zj
j=1
@ Convolution is a way to regulate d; x zj such that x ~ 2;7:1 di * z;.
It is more flexible than x ~ Z ] zj, but indeed more expensive!
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Toeplitz matrix

We define an (m +n — 1) x m matrix U in terms of u;, which is called
a Toeplitz matrix, as follows:

0 0o - 0 0
Uy u 0 0
u . 0 0
uq 0
U~ |%n—1 uz U1
Up Upy_q : : Uy
0 Uy
0 0 T T
: : . Up Uy 1

0 0 s 0 Un

L 4 (m+n—1)xm
Then one can check that u « v = Uv, where u = [uq,- - -, un]T e R"”




CSR problem using Toeplitz matrices

With the help of Toeplitz matrix, we can rewrite the CSR problem as
1 ~ |2 -
min( [~ Dz +AlE]),  (12)
with

Z=2{,23,* Zy g1 and D =[D1y,Da, -, Dul(rik1)snk

where Dj is a Toeplitz (£ + k — 1) x k matrix associated with the column
vector d; € R and 04+ k—1=m.

Remarks:

@ We can use the same way for SR problem to solve the CSR
problem (12). We can employ the ADMM, but it is too expensive
since the matrix size of D is too large.

@ The discrete Fourier transform F : CN — CN can help us to address
this computational issue.
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Discrete Fourier transform (DFT) and its inverse (IDFT)

@ ¥ = F(x) : The DFT F : CN — CN transforms a finite vector
x = [x1,Xp,- -+ ,xy] | into another vector ¥ = [X1,X2,- -+ ,Xn] |,
which is defined by

= il — B (k—1)(n—1)
X = Z .

Then DFT is an invertible linear transformation.

@ x = F (%) : The inverse discrete Fourier transform (IDFT)
F1:CN - N, ¥ — x, isgivenby

o N (k=1)(n—1)

I MZ

@ Euler’s formula: ¢ = cosf +isin6,V 0 € R.

https://en.wikipedia.org/wiki/Discrete_Fourier_transform
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Hadamard product

@ Letu e R"and v € R™. Then u x v € R"*"~1 and
Fluxv)=FW)o F(v),

where F denotes the DFT, u’ and v’ are respectively the zero
padding of u and v with the same size of u v, i.e,,

u = [uT/ o,--- ,O]T, o = [UT, 0, - ,O]T c IRernfl,
and © is the Hadamard product.

@ The Hadamard product © of two vectors is a component-wise
product. Let u = [uy,up, - - - Jun) T, 0= [v1,00, -, 04T €R",

,_ T
UQ U= U101, UpVy, -+, UpTy] .

We can define a diagonal matrix U such that # ©® v = Uv, where

0 u -+ 0
u:.=
0 0 - u
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Recalling the CSR problem

CSR problem: Given x € R" and D = [dy,--- ,d,] € R, we seck
Z=1z1,- ,zn| € R withm = 0+ k —1 solving

min 5 [ zd *z]nzmzuz,n ).

To solve the above minimization problem, we first use the ADMM
algorithm to split it into three subproblems:

, 1
Z(i+1) argzrmn(EHx Zd *Z]H2+ ZHZ yJ +u Hz)
. . n . 1 o
yi+l)  — arg;nm()\ZHyjHl—!—g Z\|z](1+ ) _yj+u}l)“%/)
=1 =1
ulit = g 4 z>+1) _ y+1),
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Using discrete Fourier transform for Z

We will use the discrete Fourier transform and Hadamard product to
solve the subproblem of Z. We can rewrite these subproblems as

5(i+1) N N e N U 10

VA = argAmm<§Hx—Zd;@z;“%—i—%i”z}—]’- —I—u]/- H%),
Z j=1 j=1

, " _1,50+1) '

Y+ argmln(AZ||yJ||1+§ZHf W)yl B),
j=1

uit = y® 4 F- ((ZH)) y(+1),
where
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Why can we use the discrete Fourier transform?

Note that the discrete Fourier transform F is linear. Thus, we have

7Hx Zd *zJ||2 = —H}" fod * Zj )3 (Plancherel theorem)
j=1

—zsz—fqywmﬁ

=——w—2fd*mﬁ ZWGMb
j=
Similarly, the second term of subproblem Z can be rewrltten as
Py () 02— Ly )2
EJ;HZJ'*!/,' +ullh = QJ;HZJ'*VJ' +ui |2

_ P o oW S50
= Zm];Hzf Yi —l—u]. ll2-

Note: x € R", d; € RY, zj € R, dixzj€ RTK1 = R™, d]’,z c R™.
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The subproblem of Z

We first define
/D7 = diag(g]’-). (m x m disgonal matrix)

Then the subproblem in the Fourier domain can be posed as:
(i S ST o (i), o
207) = argmin (5|t - D23 + §l12 -3 +a?|3),
z

where

~ ~ o~ ~ ~T ~T ~T
_ - / / T
D= [Dy,Dy, - ,Dplxmn, Z=12] 25 20 lynxis

and

~T ~T —T ~T ~T —~T
Py e / ;T =~ __ T4/ / T
y= [yl Yo o Yy ]mnxl/ u= [ul Uy o Uy ]mnxl‘

Note that we drop the scalar factor 1/m in the subproblem.
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Rewriting the subproblems of ADMM

Using the above definitions, we can rewrite the subproblems of
ADMM as:

~(1 : 1 5 N> z 7t 7l
z(l+l) — m}n(i ||x — DZH% + §||z — y(l) + u(l) ||%)/ (131)
z

) n . .
Y = myin(/\||y”1+§Z||]:—1(E(l+l))fy+u(l)|‘%), (13,)
j=1

u(i+l) _ u(i)+‘/~"71(/2\(i+1>)—y(i+l), (133)
where
T T T T T T
Y= v Yy D w= 0wy L
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Solving minimization problem (13;)

First we define

F(z) = 5l — D3+ £z — 97 +al) 3.
To solve min F(Z), we compute

z
VEz) = -D' 7-Dz)+pI(z—5% +a)
= (D'D+pz— (D'z+pF" —a)).

Letting VF(Z) = 0, we have

(D D + pI)mnxng - D X + p(y(l) - u(l)).
Therefore, we obtain the solution

2D = (D' D+p) (D 2+ p@? — ).

© Suh-Yuh Yang (7)), Math. Dept., NCU, Taiwan Sparse Dictionary Learning - 57/ 70



Solving minimization problem (13;)

The way to solve minimization problem (13;) is similar to that for
solving problem (6,).

Finally, we obtain the ADMM iterative scheme as follows:

20— D' D4 (D R+ —a)), (141)
yli = Sh/p (-7:71 (E(iﬂ)) + ”m)' (142)
) = 0 4 1 (E(Hl)) - y(iH)‘ (143)

Next, we will introduce the Sherman-Morrison formula which can be
applied to solve 20+ in a more efficient way.
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The Sherman-Morrison formula: a special case

Let A and B be two 1 x n matrices. In general, (A + B) is not
invertible, even though A is invertible. However, if A is invertible
and B has some certain structure, then (A + B) ! exists.

A special case of the Sherman-Morrison formula: Let I be the n x n
identity matrix and u, v be two given vectors in C". If 1 +v " u # 0, then
I+uv' is invertible and

-
Ituw)yt1=1-"__
(I+uo) 1+0Tu
Proof: We check that
T T T, T
T uv B uv T uv'uv
(I+uo )(I— 1+vTu) =I- 1+vTu tuw - 1+0Tu
I+ —uwo! +uv' +0 uuv’ B wouo’
- 1+0Tu 1+vTu
T, T T, T
=1+ 2 ww oo (v"u:scalar) O
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How to derive the inverse?

Given b € C", we consider the linear system (I +uv " )x = b. Assume
that T+ uv ' is invertible. Then the unique solution x exists.
Letk=v'x€C.Thenx+ku=b = v'x+ko'u=v"b

= k+k(v"u) = v'b, which implies

-
(% b . T
=——— ifl4+90 u#0.
1+0Tu 7
Therefore, we know that ) :
inverse of I4+uv
T T T
v'b uv uv
—b-ku=b——"2% y—p- " (- "0
x " 1+vTuu 14+vTu ( 1—|—vTu>

The Sherman-Morrison formula: Suppose that A € C"*" is an
invertible matrix and u, v € C". Then A +uv' is invertible if and only if
1+v" A" u # 0. In this case, we have

L AlupTA!

A+u' ) l=n1-—" "2
( ) 14+0TA 1
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How to compute (14)?

Recall that
(D' D+pn)z*) = (D' 2+ p" —a)), (141)

where matrix D has the following structure:

ﬁ = [ﬁl,ﬁz,"',ﬁn]mxmn
‘;/1,\1 0 --- 0 d//2\1 0 .- 0
B 0 d/ll\z KT 0 cT’Q\Z
0 0 d,, 0 - 0 dy,
where

1/); = diag(g]’-) (m x m diagonal matrix).
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The structure of matrix D' D + pl

Note that
Dy
T Dy | « - _
D D+pl = “ | [D1,Dy,- - ,Dy] +pI
D,
= AT AT =
Dl Dl +pIm Dl D2 Dl D,
AT =~ T T
. D2 D] D2 D2+p1m Dz Dn
AT AT S
| D,D D,D, -+ D,Dy+plu|,

By re-ordering the equations, the mn x mn system (lA)TlA) + pI)E(iH) =R
can be replaced by m independent linear systems of size n x n, each of which
consists of a rank one component plus a diagonal component, then solved by
the Sherman-Morrison formula, see [Wohlberg 2016, Appendix A].
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Convolutional sparse dictionary learning problem

We now consider the convolutional sparse dictionary learning
problem, where the dictionary D is unknown and needed to be
sought together with the convolutional sparse solution.

Convolutional SDL problem: Let {x;}} | C R be a given dataset of
signals. We seek a dictionary matrix D = [dq,dy, - -+ ,dp] € RM gpnd
the coefficient matrices {Z;}N | C ROMwith Z; = (21,204, -+ , zm,]
and m = { +k — 1 such that D and {Z;}} | solve the following
minimization problem:

1 N N M
(5 Xl - Zd w23+ A YY" lziilh)
{d }] 1/{2]1}] 1,i=1 =1 i:1j:1

subject to || dil2<1 Vj=12,---,M,

where A > 0 is a given penalty parameter.
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Toeplitz matrix

@ Define D = [Dl D, --. DM] with each D; is the Toeplitz
matrix defined with respect to d; as before.
T
Define z; = {ZL z;- z;\rm} fori=1,2,---,N, where

each z; is the coefficient vector with respect to the data x;.
DefineZ = [z; z -+ zyJandX=1[x; x --- 2xn].

@ The convolutional SDL problem can be simplified as

l,1>

subjectto [|dj[2 <1 Vj=1,2,---,M,

1 ~
min (5 |1X — DZ|} + A2
D,z \2

where ||Z||1 1 is defined as before.
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How to solve the convolutional SDL problem?

Though we can still use the ADMM iterative scheme to solve

. (1 ~
min (51X ~ DZ| + A[1Z]11)
D, Z
subjectto ||djl[2 <1 Vj=1,2,---,M,

the sizes of the involved matrices are too large. Thus, we will use the
DFT and the Sherman-Morrison formula to deal with this problem.
The steps are similar to the CSR problem, but more complicated.

Recall the convolutional SDL problem:

N

(5 % i - Zd ez B ALY Izl )

{d} 1{2]1}j 1,i=1 i=1 i=1j=1
sub]ectto||dj||2§1 Vi=1,2---,M.

For solving this problem, we split it into two parts.
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Step 1: Solving the coefficient Z

For solving the convolutional SDL problem, we first give an initial
dictionary D = [dy,dy, - - - , d)] to solve coefficient Z and then further
use ADMM algorithm to split this problem into three subproblems:

, M
2~ argmin} an, ydozE+? ZZII R
=1 1 1j=1
» N M
y(+D) — argmm(?\zz 1yl + 5 ZZ [ y],+u,1||2>
i=1j=1 l 1/=1

u+y) = gl ¢ 1y _yli),

with
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Rewritten in a compact form

For convenience, we can rewrite these subproblems as follows:

~(i 1 ~ PN . (i (i
Z(Hl) = argmin(i | X — DZ||% + gHZ — Ym + U(l) lef)r
Z
yli+l)  — argmin()\HY 11+ %)H]:_l(z(iﬂ)) —-Y+ ﬁ(i)H%),
Y
U(i+1) _ U(l) + J—_'f] (2(i+1)) o Y(i+l),
with R R o -
X = [ﬁ/-@r"’r@]r D = [DerZ/"’/DM]r
and
/ / /
Yi1 Yim Uy q Ui m
Y = : . , u —
/ / / /
Yni 0 YnmMm Ui 0 UNmMm

Using the similar ways as that for solving CSR problem, we can solve
the above subproblems.
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Step 2: Solving the dictionary D

Recall the convolutional SDL problem:

M N M
( lexl Y dixzill5+A Y Y |z

)
{d }] 1 {z]z = 1, 1 = j=1 i=1j=1
subject to [|dj; <1 Vj=1,2,--- ,M.

When the coefficient Z is obtained, the blue term is a given number.
Solving the dictionary D is equivalent to solve

Z subject to ldill. <1, Vj=12,---,M.

.1
min iZ:Hx, Zd * Zj

{d;}i2, < i=1 j=1
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Using ADMM algorithm to solve Step 2

We use the ADMM algorithm to solve the above problem:

. XN
DO = argmin(; ) i - zd w33+ 5 2 ;- g+ O13),
=
G(i+l) — projg(c) {D(i+l) }/
g+ — g L pli+h) _ G(i+1)/
and then use the Fourier transform and similar ways as before,
(i1 R e (O B0
pi = argAmm(iZHx,-fX:d;@z]’-H%JrgZHd]{fg; +h//« ||%),
D i=1 j=1 j=1
i . _1,a0+1
G = projy {F D"},
H#+Y = HO 4 7D (1+1)) _ gl
where

FUD) = [FHd), F N dy), -, F Ndy)).

(© Suh-Yuh Yang ( ), Math. Dept., NCU, Taiwan Sparse Dictionary Learning — 69/ 70



References

[1] H. Bristow, A. Eriksson, and S. Lucey, Fast convolutional sparse
coding, 2013 IEEE CVPR, pp. 391-398.

[2] E. Heide, W. Heidrich, and G. Wetzstein, Fast and flexible
convolutional sparse coding, 2015 IEEE CVPR, pp. 5135-5143.

[3] H. Sreter and R. Giryes, Learned convolutional sparse coding,
2018 IEEE ICASSP, pp. 2191-2195.

[4] B. Wohlberg, Efficient convolutional sparse coding, 2014 IEEE
ICASSP, pp. 7173-7177.

[5] B. Wohlberg, Efficient algorithms for convolutional sparse
representations, IEEE Transactions on Image Processing, 25 (2016),
pp. 301-315.

[6] J. Xiong , P. Richtarik, and W. Heidrich, Stochastic convolutional
sparse coding, Vision, Modeling, and Visualization, 2019.

© Suh-Yuh Yang (7)), Math. Dept., NCU, Taiwan Sparse Dictionary Learning - 70/ 70



