MA 8019: Numerical Analysis I Solving Systems of Linear Equations

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 320317, Taiwan E-mail: syyang@math.ncu.edu.tw http://www.math.ncu.edu.tw/~syyang/

First version: May 04, 2018 Last updated: December 12, 2023

A system of linear equations

We are interested in solving systems of linear equations having the form:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1, a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2, a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3, \vdots \vdots \vdots a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n.$$

This is a system of *n* equations in the *n* unknowns, x_1, x_2, \dots, x_n . The elements a_{ij} and b_i are assumed to be prescribed real numbers.

We can rewrite this system of linear equations in a matrix form:

<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	• • •	<i>a</i> _{1<i>n</i>}	ΙΓ	x_1		b_1	
<i>a</i> ₂₁	a ₂₂	a ₂₃	•••	<i>a</i> _{2<i>n</i>}		<i>x</i> ₂		b_2	
<i>a</i> ₃₁	a ₃₂	<i>a</i> 33	•••	a _{3n}		<i>x</i> 3	=	b_3	
÷	÷	÷	γ_{i_1}	÷		÷		÷	
<i>a</i> _{n1}	a_{n2}	a _{n3}		a _{nn}		x_n		b_n	

We can denote these matrices by *A*, *x*, and *b*, giving the simpler equation:

Ax = b.

Matrix

A matrix is a rectangular array of numbers such as

$$\begin{bmatrix} 3.0 & 1.1 & -0.12 \\ 6.2 & 0.0 & 0.15 \\ 0.6 & -4.0 & 1.3 \\ 9.3 & 2.1 & 8.2 \end{bmatrix}, \begin{bmatrix} 3 & 6 & \frac{11}{7} & -17 \end{bmatrix}, \begin{bmatrix} 3.2 \\ -4.7 \\ 0.11 \end{bmatrix}.$$

 4×3 matrix

 1×4 matrix a row vector

 3×1 matrix a column vector

Matrix properties

- If A is a matrix, the notation a_{ij} , $(A)_{ij}$, or A(i,j) is used to denote the element at the intersection of the *i*th row and the *j*th column. For example, let A be the first matrix on the previous slide. Then $a_{32} = (A)_{32} = A(3,2) = -4.0$.
- The transpose of a matrix is denoted by A[⊤] and is the matrix defined by (A[⊤])_{ij} = a_{ji}. The transpose of the matrix A is:

$$A^{\top} = \begin{bmatrix} 3.0 & 6.2 & 0.6 & 9.3 \\ 1.1 & 0.0 & -4.0 & 2.1 \\ -0.12 & 0.15 & 1.3 & 8.2 \end{bmatrix}.$$

- If $A = A^{\top}$, we say that matrix A is symmetric.
- The $n \times n$ matrix $I := I_n := I_{n \times n} := \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$

is called an identity matrix. Notice that IA = A = AI for any $n \times n$ matrix A.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Linear Equations - 5/147

Algebraic operations

- *Scalar* * *Matrix:* If *A* is a matrix and λ is a scalar, then λA is defined by $(\lambda A)_{ij} = \lambda a_{ij}$.
- *Matrix* + *Matrix*: If $A = (a_{ij})$ and $B = (b_{ij})$ are $m \times n$ matrices, then A + B is defined by $(A + B)_{ij} = a_{ij} + b_{ij}$.
- Matrix * Matrix: If A is an m × p matrix and B is a p × n matrix, then AB is an m × n matrix defined by:

$$(AB)_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}, \qquad 1 \le i \le m, \ 1 \le j \le n.$$

What is the cost of *AB*?

Answer: *mnp* multiplications and mn(p-1) additions.

Right inverse and left inverse

If *A* and *B* are two matrices such that AB = I, then we say that *B* is a right inverse of *A* and that *A* is a left inverse of *B*. For example,

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \alpha & \beta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_{2\times 2}, \quad \forall \alpha, \beta \in \mathbb{R}.$$
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 & \beta \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_{2\times 2}, \quad \forall \alpha, \beta \in \mathbb{R}.$$

Notice that right inverse and left inverse may not unique.

1 Theorem: A square matrix can possess at most one right inverse.

Proof: Let AB = I. Then $\sum_{j=1}^{n} b_{jk}A^{(j)} = I^{(k)}$, $1 \le k \le n$. So, the columns of A form a

basis for \mathbb{R}^n . Therefore, the coefficients b_{jk} above are uniquely determined.

Theorem: If A and B are square matrices such that AB = I, then BA = I.

Proof: Let C = BA - I + B. Then AC = ABA - AI + AB = A - A + I = I. Since right inverse for square matrix is at most one, B = C.

Hence, C = BA - I + B = BA - I + C, i.e., BA = I.

Inverse

- If a square matrix *A* has a right inverse *B*, then *B* is unique and BA = AB = I. We then call *B* the inverse of *A* and say that *A* is invertible or nonsingular. We denote $B = A^{-1}$.
- 2 Example:

$$\begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_{2 \times 2}.$$

- If A is invertible, then the system of equations Ax = b has the solution x = A⁻¹b. If A⁻¹ is not available, then in general, A⁻¹ should not be computed solely for the purpose of obtaining x.
- How do we get this A^{-1} ?

Equivalent systems

Let two linear systems be given, each consisting of *n* equations with *n* unknowns:

Ax = b and Bx = d.

If the two systems have precisely the same solutions, we call them equivalent systems.

- 2 Note that *A* and *B* can be very different.
- Thus, to solve a linear system of equations, we can instead solve any equivalent system. This simple idea is at the heart of our numerical procedures.

Elementary operations

- Let *E_i* denote the *i*-th equation in the system *Ax* = *b*. The following are the elementary operations which can be performed:
 - Interchanging two equations in the system: $\mathcal{E}_i \leftrightarrow \mathcal{E}_j$;
 - Multiplying an equation by a nonzero number: $\lambda \mathcal{E}'_i \rightarrow \mathcal{E}_i$;
 - Adding to an equation a multiple of some other equation:
 E_i + λ*E_j* → *E_i*.

Theorem on equivalent systems: If one system of equations is obtained from another by a finite sequence of elementary operations, then the two systems are equivalent.

Elementary operations (cont'd)

- An elementary matrix is defined to be an n × n matrix that arises when an elementary operation is applied to the n × n identity matrix.
- Let A_i be the *i*-th row of matrix A. The elementary operations expressed in terms of the rows of matrix A are:
 - The interchange of two rows in $A: A_i \leftrightarrow A_j$;
 - Multiplying one row by a nonzero constant: $\lambda A_i \rightarrow A_i$;
 - Adding to one row a multiple of another: $A_i + \lambda A_j \rightarrow A_i$.
- Each elementary row operation on A can be accomplished by multiplying A on the left by an elementary matrix.

Examples

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \\ a_{21} & a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ \lambda a_{21} & \lambda a_{22} & \lambda a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ \lambda a_{21} & \lambda a_{22} & \lambda a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ \lambda a_{21} + a_{31} & \lambda a_{22} + a_{32} & \lambda a_{23} + a_{33} \end{bmatrix}$$

•

Invertible matrix

If matrix A is invertible, then there exists a sequence of elementary row operations can be applied to A, reducing it to I,

 $E_m E_{m-1} \cdots E_2 E_1 \mathbf{A} = \mathbf{I}.$

It is gives us an equation for computing the inverse of a matrix:

 $A^{-1} = E_m E_{m-1} \cdots E_2 E_1 = E_m E_{m-1} \cdots E_2 E_1 I.$

Remark: This is not a practical method to compute A^{-1} .

Eigenvalue and eigenvector

Definition: Let $A \in \mathbb{C}^{n \times n}$ be a square matrix. If there exists a nonzero vector $x \in \mathbb{C}^n$ and a scalar $\lambda \in \mathbb{C}$ such that

 $Ax = \lambda x$,

then λ is called an eigenvalue of A and x is called the corresponding eigenvector of A.

Remark: Computing λ and x is a major task in numerical linear algebra, see Chapter 5.

Theorem on nonsingular matrix properties

For an $n \times n$ real matrix *A*, the following properties are equivalent:

- The inverse of *A* exists; that is, *A* is nonsingular
- 2 The determinant of A is nonzero
- The rows of *A* form a basis for \mathbb{R}^n
- The columns of *A* form a basis for \mathbb{R}^n
- **(**) As a map from \mathbb{R}^n to \mathbb{R}^n , *A* is injective (one to one)
- **(**) As a map from \mathbb{R}^n to \mathbb{R}^n , *A* is surjective (onto)
- The equation Ax = 0 implies x = 0
- So For each $b \in \mathbb{R}^n$, there is exactly one $x \in \mathbb{R}^n$ such that Ax = b
- A is a product of elementary matrices
- 0 0 is not an eigenvalue of A

Note: We can view an $n \times n$ real matrix A as a linear transformation $A : \mathbb{R}^n \to \mathbb{R}^n$. Then by the rank-nullity theorem, we have

 $\dim(\operatorname{kernel}(A)) + \dim(\operatorname{image}(A)) = \dim(\mathbb{R}^n) = n.$

Positive definiteness (review)

- Let $A \in \mathbb{C}^{n \times n}$ be a square matrix and $x, y \in \mathbb{C}^n$. Define $x^* := \overline{x}^\top$, $(x, y) := y^* x \in \mathbb{C}$. Then $(Ax, x) = x^* Ax$ is called a quadratic form.
- **Definition:** Let $A \in \mathbb{C}^{n \times n}$.

A is positive definite \iff (Ax, x) > 0, $\forall 0 \neq x \in \mathbb{C}^{n}$.

- Note 1: $A = A^* (:= \overline{A}^\top) \iff (Ax, x) \in \mathbb{R}, \forall x \in \mathbb{C}^n.$
- Note 2: If $A \in \mathbb{C}^{n \times n}$ is positive definite, then $A = A^*$. (by Note 1)
- Note 3: Let $A \in \mathbb{R}^{n \times n}$. *A* is positive definite $\iff A = A^{\top}$ and $(Ax, x) > 0, \forall 0 \neq x \in \mathbb{R}^{n}$. *Proof:* (\Rightarrow) Trivial! (\Leftarrow) Let $0 \neq x := x_{1} + ix_{2} \in \mathbb{C}^{n}$. Then $x_{1} \neq 0$ or $x_{2} \neq 0$. $\therefore (A(x_{1} + ix_{2}), (x_{1} + ix_{2})) = (Ax_{1}, x_{1}) - i(Ax_{1}, x_{2}) + i(Ax_{2}, x_{1}) + (Ax_{2}, x_{2})$ $\because -i(Ax_{1}, x_{2}) = -i(x_{1}, A^{*}x_{2}) = -i(x_{1}, A^{\top}x_{2}) = -i(x_{1}, Ax_{2}) = -i(Ax_{2}, x_{1})$ $\therefore (A(x_{1} + ix_{2}), (x_{1} + ix_{2})) = (Ax_{1}, x_{1}) + (Ax_{2}, x_{2}) > 0$
- Note 4: Let $A \in \mathbb{C}^{n \times n}$ and $A = A^*$. Then A is positive definite \iff all of its eigenvalues are real and positive.

Example

The following 2×2 real matrix

$$\left[\begin{array}{rrr} 2 & 1 \\ 1 & 2 \end{array}\right]$$

is positive definite since $A = A^{\top}$ and

$$x^{\top}Ax = [x_1, x_2] \begin{bmatrix} 2 & 1\\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = (x_1 + x_2)^2 + x_1^2 + x_2^2 > 0,$$
$$\forall \ 0 \neq (x_1, x_2)^{\top} \in \mathbb{R}^2.$$

Partitioned matrices

Let *A*, *B*, *C* be matrices that have been partitioned into submatrices:

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix}, \quad B = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1k} \\ B_{21} & B_{22} & \cdots & B_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ B_{n1} & B_{n2} & \cdots & B_{nk} \end{bmatrix},$$
$$C = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1k} \\ C_{21} & C_{22} & \cdots & C_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ C_{m1} & C_{m2} & \cdots & C_{mk} \end{bmatrix}.$$

If each product $A_{is}B_{sj}$ can be formed and $C_{ij} = \sum_{s=1}^{n} A_{is}B_{sj}$, then C = AB. (see pp.146-147 for the proof)

Partitioned matrices - an example

$$\begin{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & 1 \\ 0 & 1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 1 \\ 1 & 0 & -1 & 1 \\ -1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 2 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 1 \\ 1 & 2 \\ 0 & 1 \\ -2 & 1 \\ -1 & 1 \end{bmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} \begin{bmatrix} 1 & 2 & 7 \\ -3 & 1 & 3 \\ -3 & 3 & 2 \\ 4 & 0 & -1 \\ 2 & 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 0 & 2 \\ -2 & 1 \\ 0 & 1 \\ 1 & 6 \end{bmatrix} \end{bmatrix}.$$

Some easy-to-solve systems

Diagonal Structure:

We consider
$$\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

The solution is: (provided $a_{ii} \neq 0$ for all $i = 1, 2, \dots, n$)

$$x = \left(\frac{b_1}{a_{11}}, \frac{b_2}{a_{22}}, \cdots, \frac{b_n}{a_{nn}}\right)^\top.$$

- If $a_{ii} = 0$ for some index *i*, and if $b_i = 0$ also, then x_i can be any real number. The number of solutions is infinity.
- If $a_{ii} = 0$ and $b_i \neq 0$, no solution of the system exists.
- What is the complexity of the method? *n* divisions.

Lower triangular systems

We consider $\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$

- If $a_{11} \neq 0$, then we have $x_1 = b_1/a_{11}$. Once we have x_1 , we can simplify the second equation, $x_2 = (b_2 a_{21}x_1)/a_{22}$, provided that $a_{22} \neq 0$. Similarly, we can continue this process.
- In general, to find the solution to this system, we use forward substitution (assume that *a_{ii}* ≠ 0 for all *i*):

input n, (a_{ij}) , $b = (b_1, b_2, \dots, b_n)^{\top}$ for i = 1 to n do

$$x_i \leftarrow \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j\right) / a_{ii}$$

end do

output $x = (x_1, x_2, \cdots, x_n)^\top$

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Linear Equations - 21/147

Lower triangular systems (continued)

- Complexity of forward substitution:
 - *n* divisions; *n* subtractions;
 - the number of multiplications: 0 for x_1 , 1 for x_2 , 2 for x_3 , \cdots $0+1+2+\cdots+(n-1)\approx 1+2+\cdots+n=(n+1)n/2$, \therefore total = $O(n^2)$.
 - the number of additions: same as multiplications = $O(n^2)$.
- The complexity of an algorithm is often measured using the unit called flop:

one flop = one addition + one multiplication.

- Forward substitution is an $O(n^2)$ algorithm.
- **Remark:** forward substitution is a sequential algorithm (not parallel at all).

Upper triangular systems

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}$$

The formal algorithm to solve for *x* is called **backward substitution**. It is also an $O(n^2)$ algorithm. Assume that $a_{ii} \neq 0$ for all *i*:

input
$$n$$
, (a_{ij}) , $b = (b_1, b_2, \cdots, b_n)^{\top}$
for $i = n : -1 : 1$ do
 $x_i \leftarrow (b_i - \sum_{j=i+1}^n a_{ij} x_j) / a_{ii}$

end do output $x = (x_1, x_2, \cdots, x_n)^\top$

Another simple systems

For example, consider the following linear system:

$$\begin{bmatrix} a_{11} & a_{12} & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

If we reorder these equations, we can get a lower triangular system:

$$\begin{bmatrix} a_{31} & 0 & 0 \\ a_{11} & a_{12} & 0 \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_3 \\ b_1 \\ b_2 \end{bmatrix}.$$

Another Simple Systems (continued)

How do we solve Ax = b if A is a permuted lower or upper triangular matrix?

Assuming that the permutation vector (p_1, p_2, \dots, p_n) is known, we modify the forward substitution algorithm for a permuted lower triangular system:

input
$$n$$
, (a_{ij}) , $b = (b_1, b_2, \cdots, b_n)^{\top}$, $(p_1, p_2, \cdots, p_n)^{\top}$
for $i = 1$ to n do
 $x_i \leftarrow \left(b_{p_i} - \sum_{j=1}^{i-1} a_{p_i j} x_j\right) / a_{p_i i}$
end do

output $x = (x_1, x_2, \cdots, x_n)^\top$

LU decomposition (factorization)

• Suppose that *A* can be factored into the product of a lower triangular matrix *L* and an upper triangular matrix *U*:

A = LU.

Then,

$$Ax = LUx = L(Ux).$$

Thus, to solve the system of equations Ax = b, it is enough to solve this problem in two stages:

Lz = b solve for z, Ux = z solve for x.

LU decomposition (continued)

• We begin with an $n \times n$ matrix A and search for matrices:

$$L = \begin{bmatrix} \ell_{11} & 0 & \cdots & 0 \\ \ell_{21} & \ell_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \ell_{n1} & \ell_{n2} & \cdots & \ell_{nn} \end{bmatrix}, U = \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

such that A = LU. When this is possible, we say that A has an *LU* decomposition.

- It turns out if we compare A = LU, we have more unknowns $n^2 + n$ than equations n^2 . Hence, *L* and *U* are not uniquely determined by A = LU.
- One simple choice is to make *L* unit lower triangular (*l_{ii}* = 1 for each *i*). Another obvious choice is to make *U* unit upper triangular (*u_{ii}* = 1 for each *i*).

LU decomposition (continued)

Using the formula for matrix multiplication, we have

$$a_{ij} = \sum_{s=1}^{n} \ell_{is} u_{sj} = \sum_{s=1}^{\min(i,j)} \ell_{is} u_{sj}.$$
 (*)

Notice that $\ell_{is} = 0$ for s > i and $u_{sj} = 0$ for s > j. At each new step k, we know rows $1, 2, \dots, (k-1)$ for U and columns $1, 2, \dots, (k-1)$ for L. We wish to know formulas at k by setting i = j = k, i = k, and j = k in (*), respectively. We obtain

$$a_{kk} = \sum_{s=1}^{k-1} \ell_{ks} u_{sk} + \ell_{kk} u_{kk}, \text{ specify } \ell_{kk} = 1 \text{ or } u_{kk} = 1 \Rightarrow \text{obtain } \ell_{kk} \text{ and } u_{kk}$$
$$a_{kj} = \sum_{s=1}^{k-1} \ell_{ks} u_{sj} + \ell_{kk} u_{kj}, \ k+1 \le j \le n \Rightarrow \text{ obtain } u_{kj}$$

$$a_{ik} = \sum_{s=1}^{n-1} \ell_{is} u_{sk} + \ell_{ik} u_{kk}, \ k+1 \le i \le n \Rightarrow \text{ obtain } \ell_{ik}$$

Note: ℓ_{kk} and $u_{kk} \Longrightarrow u_{kj}$ for $j = k + 1, k + 2, \dots, n$ (*k*th row of *U*) $\Longrightarrow \ell_{ik}$ for $i = k + 1, k + 2, \dots, n$ (*k*th column of *L*)

LU decomposition (continued)

- This algorithm is known as Doolittle's decomposition when *L* is a unit lower triangular and as Crout's decomposition when *U* is a unit upper triangular.
- When $U = L^{\top}$, so that $\ell_{ii} = u_{ii}$ for $1 \le i \le n$, the algorithm is called Cholesky's decomposition (will be discussed later).
- **Homework:** find the Doolittle, Crout, and Cholesky decompositions of the matrix

$$A = \left[\begin{array}{rrr} 1 & 2 \\ 2 & 7 \end{array} \right].$$

The algorithm for the general *LU* decomposition is as follows:

input n, (a_{ii}) for k = 1 to n do specify a nonzero value for either ℓ_{kk} or u_{kk} and compute the other from $\ell_{kk}u_{kk} = a_{kk} - \sum_{c=1}^{k-1} \ell_{ks}u_{sk}$ for j = k + 1 to n do $u_{ki} \leftarrow \left(a_{ki} - \sum_{s=1}^{k-1} \ell_{ks} u_{sj}\right) / \ell_{kk}$ end do for i = k + 1 to n do $\ell_{ik} \leftarrow \left(a_{ik} - \sum_{s=1}^{k-1} \ell_{is} u_{sk}\right) / u_{kk}$ end do end do output $(\ell_{ii}), (u_{ii})$

Operation counts (cf. the algorithm)

• Consider the number of multiplications (\approx additions), k = 1: 0 + ((n-1) * 0) * 2.k = 2: 1 + ((n-2) * 1) * 2. $k = i: 2 + ((n - i) * (i - 1)) * 2. \cdots$ k = n: (n-1) + ((n-n) * (n-1)) * 2. Total = $\sum_{i=1}^{n} (i-1) + 2\sum_{i=1}^{n} (n-i) * (i-1) \approx \sum_{i=1}^{n} i + 2\sum_{i=1}^{n} (n-i) * i$ $= \sum_{i=1}^{n} i + 2n \sum_{i=1}^{n} i - 2 \sum_{i=1}^{n} i^{2} = (2n+1) \sum_{i=1}^{n} i - 2 \sum_{i=1}^{n} i^{2}$ = (2n+1)n(n+1)/2 - 2n(n+1)(2n+1)/6 $= \frac{1}{4}n(n+1)(2n+1) = O(\frac{1}{4}n^3).$

• The number of subtractions = the number of divisions = $n + 2(1 + 2 + \dots + (n - 1)) \approx 2(1 + 2 + \dots + n) = O(n^2).$

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Linear Equations - 31/147

Basic steps for solving a linear system

• Want to solve

$$Ax = b.$$

• Obtain a LU decomposition,

A = LU.

• Solve a lower triangular system

Lz = b.

• Solve an upper triangular system

$$Ux = z$$
.

Total cost

- In the *LU* decomposition phase, the cost is $O(n^3)$.
- In solving triangular systems phases, the cost is $O(n^2)$.
- Total cost is $O(n^3)$ or more precisely

$$O(\frac{1}{3}n^3) + O(n^2).$$

• **Remark:** Once *L* and *U* are obtained, *A* is no longer needed. One can over-write *A* with *L* and *U*.

Theorem on LU decomposition

If all n leading principal submatrices of the n \times *n matrix A are nonsingular, then A has an LU-decomposition, where L is unit lower triangular.*

Proof is omitted. See the textbook, pp. 156-157 (by induction).

Recall that the *k*th leading principal submatrix of the matrix *A* is the matrix:

$$A_k := \begin{bmatrix} a_{11} & a_{22} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \cdots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{bmatrix}.$$

Cholesky Theorem on LL^{\top} **decomposition**

If A is a real, symmetric and positive definite matrix, then it has a unique factorization, $A = LL^{\top}$, in which L is a lower triangular matrix with positive diagonal.

Proof: Some key steps:

- Prove that *A* has an *LU*-decomposition (*L* unit lower triangular) by showing that all leading principal submatrices of *A* are SPD. $(\because x^{\top}Ax > 0 \text{ for all } x = (x_1, \cdots x_k, 0, \cdots, 0)^{\top} \neq 0 \quad \therefore A_k \text{ is SPD})$
- Show that $A = LDL^{\top}$ by considering $LU = A = A^{\top} = U^{\top}L^{\top}$

$$\Longrightarrow \underbrace{U(L^{\top})^{-1}}_{upper\Delta} = \underbrace{L^{-1}U^{\top}}_{lower\Delta} \text{ (p. 158, #1)} \Longrightarrow \exists D \text{ s.t. } D = U(L^{\top})^{-1}$$

 $\Longrightarrow DL^{\top} = U \Longrightarrow A = LU = LDL^{\top}.$

- $\therefore A = LU = LDL^{\top}$ and L is nonsingular
 - \therefore *D* is SPD (cf. p. 160, #26) \therefore $d_{ii} > 0$ for all *i*
 - $\therefore A = LDL^{\top} = LD^{\frac{1}{2}}D^{\frac{1}{2}}L^{\top} := \widetilde{L}\widetilde{L}^{\top}, \widetilde{\ell}_{ii} = \ell_{ii}\sqrt{d_{ii}} = \sqrt{d_{ii}} > 0 \forall i$

• uniqueness (p. 158, #2, L and U are unique $\Rightarrow \tilde{L}$ unique). © Suh-Yuh Yang (陽蕭燈), Math. Dept., NCU, Taiwan MA 8019: Linear Equations – 35/147

Cholesky decomposition for SPD matrices

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} \ell_{11} & & & \\ \ell_{21} & \ell_{22} & & \\ \vdots & \vdots & \ddots & \\ \ell_{n1} & \ell_{n2} & \cdots & \ell_{nn} \end{bmatrix} \begin{bmatrix} \ell_{11} & \ell_{21} & \cdots & \ell_{n1} \\ \ell_{22} & \cdots & \ell_{n2} \\ & & \ddots & \vdots \\ & & & & \ell_{nn} \end{bmatrix}$$

- $\ell_{kk} \neq 1$ in general.
- Need a square root to compute the diagonal entry:

$$\ell_{kk} = \left(a_{kk} - \sum_{s=1}^{k-1} \ell_{ks}^2\right)^{1/2}.$$

• Cost =
$$O(n^3) + O(n^2) + "n$$
 square roots."
Some remarks

• If *A* is SPD, then all the leading principal submatrices of *A* are also SPD.

• Since
$$\ell_{kk} = \left(a_{kk} - \sum_{s=1}^{k-1} \ell_{ks}^2\right)^{1/2}$$
, we have for $j \le k$

$$a_{kk} = \sum_{s=1}^{\kappa} \ell_{ks}^2 \ge \ell_{kj}^2$$

L

and

$$|\ell_{kj}| \le \sqrt{a_{kk}} \qquad (1 \le j \le k).$$

Hence, the elements of *L* do not become large relative to *A* even without any pivoting (pivoting will be explained later).

LDL^{\top} decomposition for SPD matrices

$$A = \begin{bmatrix} 1 & & & \\ \ell_{21} & 1 & & \\ \vdots & \vdots & \vdots & \\ \ell_{n1} & \ell_{n2} & \cdots & 1 \end{bmatrix} \begin{bmatrix} d_{11} & & & \\ & d_{22} & & \\ & & & d_{nn} \end{bmatrix} \begin{bmatrix} 1 & \ell_{21} & \cdots & \ell_{n1} \\ 1 & \cdots & \ell_{n2} \\ & & \vdots & \vdots \\ & & & & 1 \end{bmatrix}$$

No need to compute square roots.

If $A = LDL^{\top}$, then solve Ax = b in three stages: Lz = b, Dw = z, and $L^{\top}x = w$.

How to get $A = LDL^{\top}$? e.g.,

A is tridiagonal & SPD. (why SPD? cf. proof of Cholesky Theorem)

Banded matrices

- $A = (a_{ij})$ with upper bandwidth q and lower bandwidth p: $a_{ij} = 0$ if j > i + q,
 - $a_{ij} = 0$ if i < j + p.
- total bandwidth = p + q + 1.
- **Theorem:** If A has an LU decomposition then U has an upper bandwidth q and L has a lower bandwidth p (L is unit lower triangular).
- **Remark:** Both *L* and *U* can be stored in *A*.

Banded matrices (continued)

- Cost: If $p \le q$, $npq - 1/2pq^2 - 1/6p^3 + pn$.
- **Remark:** If *p* and *q* are much smaller than *n*, then the algorithm is linear in *n*.
- **Remark:** If *A* is banded and SPD, then the cost of Cholesky decomposition is

$$1/2np^2 + p^3 + 3/2(np - p^2) + n$$
 square roots

In the case when *p* is small, the square root calculation can be a significant part of the decomposition. LDL^{\top} is preferred!

Tridiagonal & SPD matrices

Find the LDL^{\top} decomposition of a tridiagonal SPD matrix *A*:

$$A = \begin{bmatrix} a_{11} & a_{21} & & \\ a_{21} & a_{22} & a_{23} & \\ & \ddots & \ddots & \ddots \\ & & & a_{n,n-1} & a_{nn} \end{bmatrix}$$

Suppose that

$$A = \begin{bmatrix} 1 & & & \\ e_1 & 1 & & \\ & \ddots & \ddots & \\ & & e_{n-1} & 1 \end{bmatrix} \begin{bmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \end{bmatrix} \begin{bmatrix} 1 & e_1 & & \\ & 1 & e_2 & \\ & & \ddots & \ddots \\ & & & 1 \end{bmatrix}.$$

Tridiagonal & SPD matrices (continued)

Then we have

$$A = \begin{bmatrix} 1 & & \\ e_{1} & 1 & & \\ & \ddots & \ddots & \\ & & e_{n-1} & 1 \end{bmatrix} \begin{bmatrix} d_{1} & d_{1}e_{1} & & \\ & d_{2} & d_{2}e_{2} & & \\ & & \ddots & \ddots & \\ & & & d_{n} \end{bmatrix}$$
$$= \begin{bmatrix} d_{1} & d_{1}e_{1} & & \\ e_{1}d_{1} & d_{2} + d_{1}e_{1}^{2} & d_{2}e_{2} & & \\ & & \ddots & \ddots & \\ & & & \ddots & d_{n} + d_{n-1}e_{n-1}^{2} \end{bmatrix}.$$

Tridiagonal & SPD matrices (continued)

- Comparing with the elements in *A*, we obtain: $a_{11} = d_1$. $a_{kk-1} = e_{k-1}d_{k-1}$. $a_{kk} = d_k + d_{k-1}e_{k-1}^2$.
- A simple observation:

 $a_{kk} = d_k + d_{k-1}e_{k-1}^2 = d_k + (d_{k-1}e_{k-1})e_{k-1} = d_k + a_{kk-1}e_{k-1}.$

• Algorithm:

$$d_1 = a_{11}.$$

for $k = 2, \dots, n.$
 $e_{k-1} = a_{kk-1}/d_{k-1}.$
 $d_k = a_{kk} - e_{k-1}a_{kk-1}.$
end do

• Total cost $\approx n$ multiplications + n divisions + n subtractions.

Tridiagonal & SPD matrices (continued)

- Solving a tridiagonal & SPD system:
 - step 1: obtain the LDL^{\top} decomposition ($\approx 2n$ flops).
 - step 2: solve the lower triangular system (*n* flops).
 - step 3: solve the diagonal system (*n* divisions \approx *n* flops).
 - step 4: solve the upper triangular system (*n* flops).
- Total cost $\approx 5n$ flops.

Basic Gaussian elimination

Let $A^{(1)} = (a_{ij}^{(1)}) = A = (a_{ij})$ and $b^{(1)} = b$. Consider the following linear system Ax = b:

$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 12 & -8 & 6 & 10 \\ 3 & -13 & 9 & 3 \\ -6 & 4 & 1 & -18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 34 \\ 27 \\ -38 \end{bmatrix}$$

pivot row = row1. pivot element: $a_{11}^{(1)} = 6$. row2 - (12/6)*row1 \rightarrow row2. row3 - (3/6)*row1 \rightarrow row3. row4 - (-6/6)*row1 \rightarrow row4.

$$\implies \begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & -12 & 8 & 1 \\ 0 & 2 & 3 & -14 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 10 \\ 21 \\ -26 \end{bmatrix}$$

multipliers: 12/6, 3/6, -6/6.

Basic Gaussian elimination (continued)

We have the following equivalent system $A^{(2)}x = b^{(2)}$:

$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & -12 & 8 & 1 \\ 0 & 2 & 3 & -14 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 10 \\ 21 \\ -26 \end{bmatrix}$$

.

pivot row = row2. pivot element $a_{22}^{(2)} = -4$. row3 - (-12/-4)*row2 \rightarrow row3. row4 - (2/-4)*row2 \rightarrow row4.

$$\implies \begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 4 & -13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 10 \\ -9 \\ -21 \end{bmatrix}$$

multiplier: -12/-4, 2/-4.

Basic Gaussian elimination (continued)

We have the following equivalent system $A^{(3)}x = b^{(3)}$:

$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 4 & -13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 10 \\ -9 \\ -21 \end{bmatrix}$$

•

.

pivot row = row3.
pivot element
$$a_{33}^{(3)} = 2$$
.
row4 - (4/2)*row3 \rightarrow row4.

$$\implies \begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 10 \\ -9 \\ -3 \end{bmatrix}$$

multiplier: 4/2.

Basic Gaussian elimination (continued)

Finally, we have the following equivalent upper triangular system $A^{(4)}x = b^{(4)}$:

$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 10 \\ -9 \\ -3 \end{bmatrix}.$$

Using the backward substitution, we have

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ -2 \\ 1 \end{bmatrix}$$

.

The *LU* decomposition

Display the multipliers in an unit lower triangular matrix $L = (\ell_{ij})$:

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ \frac{1}{2} & 3 & 1 & 0 \\ -1 & -\frac{1}{2} & 2 & 1 \end{bmatrix}$$

Let $U = (u_{ij})$ be the final upper triangular matrix $A^{(4)}$. Then we have

$$U = \begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 0 & -3 \end{bmatrix}$$

and one can check that A = LU (the Doolittle Decomposition).

Some remarks

- The entire elimination process will break down if any of the pivot elements are 0.
- The total number of arithmetic operations:

$$M/D = \frac{n^3}{3} + n^2 - \frac{n}{3};$$
$$A/S = \frac{n^3}{3} + \frac{n^2}{2} - \frac{5n}{6}.$$

: The GE is an $O(n^3)$ algorithm.

Pivoting

For example, the above technique doesn't work if we have

$$\left[\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 1 \\ 2 \end{array}\right]$$

and works incorrectly if we have ($\varepsilon > 0$ is sufficiently small)

$$\left[\begin{array}{cc} \varepsilon & 1 \\ 1 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 1 \\ 2 \end{array}\right].$$

Using the above case as an example: row2 - $(1/\varepsilon)$ *row1 \rightarrow row2, we have

$$\begin{bmatrix} \varepsilon & 1 \\ 0 & 1 - 1/\varepsilon \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 - 1/\varepsilon \end{bmatrix}$$

Example

$$\left[\begin{array}{cc} \varepsilon & 1\\ 0 & 1-1/\varepsilon \end{array}\right] \left[\begin{array}{c} x_1\\ x_2 \end{array}\right] = \left[\begin{array}{c} 1\\ 2-1/\varepsilon \end{array}\right].$$

• Using the backward substitution, we have

$$x_2 = \frac{2 - 1/\varepsilon}{1 - 1/\varepsilon}, \qquad x_1 = \frac{1 - x_2}{\varepsilon}$$

If we let $0 < \varepsilon \ll 1$, then $(1/\varepsilon) \gg 1$, and then x_2 goes to 1 and x_1 goes to 0.

• However, the exact solution should be close to $x_1 = 1$ and $x_2 = 1$. What's wrong?

Example (continued)

• Maybe that is because the pivot element $a_{11} = \varepsilon$ is too small. So we multiply row1 by $1/\varepsilon$ before perform GE.

$$\left[\begin{array}{rr} 1 & 1/\varepsilon \\ 1 & 1 \end{array}\right] \left[\begin{array}{r} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{r} 1/\varepsilon \\ 2 \end{array}\right]$$

• However, it does not help too much since

$$x_2 = \frac{2-1/\varepsilon}{1-1/\varepsilon} \approx 1, \qquad x_1 = \frac{1}{\varepsilon} - \frac{x_2}{\varepsilon} \approx 0.$$

• In fact, it is not actually the smallness of the coefficient *a*₁₁ that is causing trouble. Rather, it is the smallness of *a*₁₁ relative to the other elements in its row.

Example (continued)

• An equivalent linear system: exchanging equations 1 and 2, we have

$$\begin{bmatrix} 1 & 1 \\ \varepsilon & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

• Using the same algorithm, we obtain $x_2 = (1 - 2\varepsilon)/(1 - \varepsilon)$, which is close to 1 and $x_1 = 2 - x_2$ is also close to 1.

Partial pivoting and complete pivoting

- GE with partial pivoting: select the largest element (in | · |) in the column as the pivot element (⇒ exchange rows).
- **GE with complete pivoting:** select the largest element (in | · |) in the whole matrix as the pivot element (⇒ exchange rows and columns).
- After the first round of elimination, we obtain an
 (*n*−1) × (*n*−1) linear system to solve. The same idea is used
 for this subsystem, and so on.

Gaussian elimination with scaled row pivoting

- The algorithm consists of two parts:
 - a factorization phase (also called forward elimination);
 - a solution phase (involving updating and backward substitution).
- In a factorization phase, first compute the scale of each row

$$s_i = \max_{1 \le j \le n} |a_{ij}| = \max\{|a_{i1}|, |a_{i2}|, \cdots, |a_{in}|\}.$$

Do it for $1 \le i \le n$.

- To get started, we choose the pivot row for which $|a_{i1}|/s_i$ is largest. The index p_1 is associated to the index *i*, where $|a_{p_11}|/s_{p_1} \ge |a_{i1}|/s_i$ for $1 \le i \le n$.
- Zeros are created by subtracting multiples of row *p*₁ and so on (see next example).
- The permutation vector (1, 2, · · · , n) ⇒ (p₁, p₂, · · · , p_n) and we obtain a permutation matrix *P* according to the permutation vector (p₁, p₂, · · · , p_n).

Example

$$A = \left[\begin{array}{rrr} 2 & 3 & -6 \\ 1 & -6 & 8 \\ 3 & -2 & 1 \end{array} \right].$$

- First compute the scales s = (6, 8, 3) and initialize $p = (p_1, p_2, p_3) = (1, 2, 3)$.
- Select the first pivot row from ratios, $\{2/6, 1/8, 3/3\}$. Since 3th row has the largest ratio, the row3 is selected to be the first pivot. Change the permutation vector by $p_1 \leftrightarrow p_3$ and then $p = (p_1, p_2, p_3) = (3, 2, 1)$.
- Perform row1-(2/3)row3 and row2-(1/3)row3, we have

$$\begin{bmatrix} 0 & 13/3 & -20/3 \\ 0 & -16/3 & 23/3 \\ 3 & -2 & 1 \end{bmatrix}$$

Example (continued)

• From the previous page, s = (6, 8, 3), $p = (p_1, p_2, p_3) = (3, 2, 1)$,

$$\left[\begin{array}{rrrr} 0 & 13/3 & -20/3 \\ 0 & -16/3 & 23/3 \\ 3 & -2 & 1 \end{array}\right]$$

- Select the next pivot row from ratios, $\left\{\frac{16/3}{8}, \frac{13/3}{6}\right\} = \left\{\frac{2}{3}, \frac{13}{18}\right\}$. Since $p_3(=1)$ th row has the largest ratio, the row p_3 (row 1) is selected to be the pivot row and $p_2 \leftrightarrow p_3$. Then $p = (p_1, p_2, p_3) = (3, 1, 2)$.
- Perform row2–(–16/13)row1 to obtain

$$\left[\begin{array}{rrrr} 0 & 13/3 & -20/3 \\ 0 & 0 & -7/13 \\ 3 & -2 & 1 \end{array}\right]$$

Example (continued)

At the end, we have a decomposition for PA = LU, where

$$PA = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 3 & -6 \\ 1 & -6 & 8 \\ 3 & -2 & 1 \end{bmatrix},$$
$$LU = \begin{bmatrix} 1 & 0 & 0 \\ 2/3 & 1 & 0 \\ 1/3 & -16/13 & 1 \end{bmatrix} \begin{bmatrix} 3 & -2 & 1 \\ 0 & 13/3 & -20/3 \\ 0 & 0 & -7/13 \end{bmatrix}$$

٠

 $\therefore Ax = b.$ $\therefore PAx = Pb.$

In the solution phase, we consider two equations: Lz = Pb and Ux = z.

 $Pb \rightarrow b \Longrightarrow$ solve $Lz = b \Longrightarrow z \rightarrow b \Longrightarrow$ solve Ux = b. This procedure is called updating *b*.

Vector norm

Let *V* be a vector space over \mathbb{R} , e.g., $V = \mathbb{R}^n$. A norm is a real-valued function $\|\cdot\| : V \to \mathbb{R}$ that satisfies

•
$$||x|| \ge 0$$
, $\forall x \in V$, and $||x|| = 0$ if and only if $x = 0$;

•
$$\|\lambda x\| = |\lambda| \|x\|, \forall x \in V \text{ and } \lambda \in \mathbb{R};$$

• $||x + y|| \le ||x|| + ||y||, \forall x, y \in V$ (triangle inequality).

Note: ||x|| is called the norm of *x*, the length or magnitude of *x*.

Some vector norms on \mathbb{R}^n

Let
$$x = (x_1, x_2, \cdots, x_n)^\top \in \mathbb{R}^n$$
:

• The 2-norm (Euclidean norm, or ℓ^2 norm):

$$\|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

• The infinity norm (ℓ^{∞} -norm):

$$\|x\|_{\infty} = \max_{1 \le i \le n} |x_i|.$$

• The 1-norm (ℓ^1 -norm):

$$||x||_1 = \sum_{i=1}^n |x_i|.$$

The difference between the above norms

• Take three vectors $x = (4, 4, -4, 4)^{\top}$, $v = (0, 5, 5, 5)^{\top}$, $w = (6, 0, 0, 0)^{\top}$:

	$\ \cdot\ _1$	$\ \cdot\ _2$	$\ \cdot\ _{\infty}$
x	16	8	4
v	15	8.66	5
w	6	6	6

- What is the unit ball $\{x \in \mathbb{R}^2 : ||x|| \le 1\}$ for the three norms above?
 - 2-norm: a circle
 - ∞-norm: a square
 - 1-norm: a diamond

Matrix norm

Let *A* be an $n \times n$ real matrix. If $\|\cdot\|$ is any norm on \mathbb{R}^n , then

$$\|A\| := \sup\{\|Ax\| : x \in \mathbb{R}^n, \|x\| = 1\} \Leftrightarrow \|A\| := \sup\{\frac{\|Ax\|}{\|x\|} : x \in \mathbb{R}^n, x \neq 0\}$$

defines a norm on the vector space of all $n \times n$ real matrices. (This is called the matrix norm associated with the given vector norm)

Proof:

•
$$\therefore$$
 $||Ax|| \ge 0 \ \forall x \in \mathbb{R}^n$, $||x|| = 1$. \therefore $||A|| \ge 0$.
Exercise: $||A|| = 0$ if and only if $A = 0$.

•
$$\|\lambda A\| = \sup\{\|\lambda Ax\| : \|x\| = 1\} = \sup\{|\lambda| \|Ax\| : \|x\| = 1\}$$

= $|\lambda| \sup\{\|Ax\| : \|x\| = 1\} = |\lambda| \|A\|.$

•
$$||A + B|| = \sup\{||(A + B)x|| : ||x|| = 1\} \le \sup\{||Ax|| + ||Bx|| : ||x|| = 1\}$$

 $\le \sup\{||Ax|| : ||x|| = 1\} + \sup\{||Bx|| : ||x|| = 1\} = ||A|| + ||B||.$

Some additional properties

•
$$||Ax|| \le ||A|| ||x||, \forall x \in \mathbb{R}^n$$
.
Proof:
Let $x \ne 0$. Then $v = \frac{x}{||x||}$ is of norm 1.
 $\therefore ||A|| \ge ||Av|| = \frac{||Ax||}{||x||}$.

- ||I|| = 1.
- $||AB|| \le ||A|| ||B||.$

Proof:

$$||AB|| := \sup\{||(AB)x|| : x \in \mathbb{R}^n, ||x|| = 1\}$$

 $\leq \sup\{||A|| ||Bx|| : x \in \mathbb{R}^n, ||x|| = 1\}$
 $\leq \sup\{||A|| ||B|| ||x|| : x \in \mathbb{R}^n, ||x|| = 1\} = ||A|| ||B||$

•

Some matrix norms

Let $A_{n \times n} = (a_{ij})$ be an $n \times n$ real matrix. Then

• The ∞-matrix norm:

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

• The 1-matrix norm:

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|.$$

• The 2-matrix norm (ℓ^2 -matrix norm):

$$||A||_2 = \sup_{||x||_2=1} ||Ax||_2.$$

The 2-matrix norm

- $||A||_2$ is not easy to compute.
- Since A^TA is symmetric, A^TA has *n* real eigenvalues, λ₁, λ₂, · · · , λ_n ∈ ℝ. Moreover, one can prove that they are all nonnegative. Then

$$\rho(A^{\top}A) := \max_{1 \le i \le n} \{\lambda_i\} \ge 0.$$

is called the spectral radius of $A^{\top}A$.

• Then the ℓ^2 -matrix norm of *A* is given by

$$\|A\|_2 = \sqrt{\rho(A^\top A)}.$$

• The ℓ^2 -matrix norm is also called the spectral norm.

ℓ^2 -matrix norm of A

Singular value decomposition (SVD): Let $A \in \mathbb{R}^{m \times n}$. Then we have

 $A = U\Sigma V^{\top} := \begin{bmatrix} u_1 & u_2 & \dots & u_m \end{bmatrix}_{m \times m} \Sigma \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}_{n \times n},$ where U and V are orthogonal matrices,

$$UU^{\top} = U^{\top}U = I_{m \times m}, \quad VV^{\top} = V^{\top}V = I_{n \times n},$$

 $\Sigma = diag(\sigma_1, \ldots, \sigma_r, 0 \ldots, 0) \in \mathbb{R}^{m \times n}$ with

$$\sigma_1 \geq \cdots \geq \sigma_r > 0 = \sigma_{r+1} = \cdots = \sigma_{\min\{m,n\}}$$

is a diagonal matrix of singular values, and
$$r = \operatorname{rank}(A)$$
.
Given $x = \sum_{i=1}^{n} \alpha_i v_i \in \mathbb{R}^n$ with $||x||_2 = 1$, then $1 = ||x||_2^2 = \sum_{i=1}^{n} \alpha_i^2$ and
 $Ax = \sum_{i=1}^{n} \alpha_i A v_i = \sum_{i=1}^{r} \alpha_i \sigma_i u_i \Rightarrow ||Ax||_2^2 = \sum_{i=1}^{r} \alpha_i^2 \sigma_i^2 \le \sigma_1^2 \sum_{i=1}^{r} \alpha_i^2 \le \sigma_1^2$.

Moreover, we have $||Av_1||_2 = ||\sigma_1 u_1||_2 = \sigma_1$. Therefore,

$$||A||_2 := \max_{||x||_2=1} ||Ax||_2 = \sigma_1 = \sqrt{\rho(A^{\top}A)}.$$

Some error analysis

- Suppose that we want to solve the linear system Ax = b, but b is somehow perturbed to b (this may happen when we convert a real b to a floating-point b).
- Then actual solution would satisfy a slightly different linear system

$$A\widetilde{x} = \widetilde{b}.$$

• **Question**: Is \tilde{x} very different from the desired solution *x* of the original system?

The answer should depend on how good the matrix *A* is.

- Let $\|\cdot\|$ be a vector norm, we consider two types of errors:
 - absolute error: $||x \tilde{x}||$?
 - relative error: $||x \tilde{x}|| / ||x||$?

The absolute error

For the absolute error, we have

$$||x - \widetilde{x}|| = ||A^{-1}b - A^{-1}\widetilde{b}|| = ||A^{-1}(b - \widetilde{b})|| \le ||A^{-1}|| ||b - \widetilde{b}||.$$

Therefore, the absolute error of *x* depends on two factors: the absolute error of *b* and the matrix norm of A^{-1} .

The relative error

For the relative error, we have

$$\begin{aligned} \|x - \widetilde{x}\| &= \|A^{-1}b - A^{-1}\widetilde{b}\| = \|A^{-1}(b - \widetilde{b})\| \\ &\leq \|A^{-1}\| \|b - \widetilde{b}\| = \|A^{-1}\| \|Ax\| \frac{\|b - \widetilde{b}\|}{\|b\|} \\ &\leq \|A^{-1}\| \|A\| \|x\| \frac{\|b - \widetilde{b}\|}{\|b\|}. \end{aligned}$$

That is

$$\frac{\|x - \tilde{x}\|}{\|x\|} \le \|A^{-1}\| \|A\| \ \frac{\|b - \tilde{b}\|}{\|b\|}.$$

Therefore, the relative error of *x* depends on two factors: the relative error of *b* and $||A|| ||A^{-1}||$.

Condition number

• Therefore, we define a condition number of the matrix *A* as

$$\kappa(A) := \|A\| \|A^{-1}\|.$$

 $\kappa(A)$ measures how good the matrix *A* is.

• Example: Let $\varepsilon > 0$ and

$$A = \begin{bmatrix} 1 & 1+\varepsilon \\ 1-\varepsilon & 1 \end{bmatrix} \Longrightarrow A^{-1} = \varepsilon^{-2} \begin{bmatrix} 1 & -1-\varepsilon \\ -1+\varepsilon & 1 \end{bmatrix}.$$

Then
$$||A||_{\infty} = 2 + \varepsilon$$
, $||A^{-1}||_{\infty} = \varepsilon^{-2}(2 + \varepsilon)$, and
 $\kappa(A) = \left(\frac{2+\varepsilon}{\varepsilon}\right)^2 \ge \frac{4}{\varepsilon^2}.$

Condition number (continued)

- For example, if $\varepsilon = 0.01$, then $\kappa(A) \ge 40000$.
- What does this mean?

It means that the relative error in *x* can be 40000 times greater than the relative error in *b*.

- If κ(A) is large, we say that A is ill-conditioned, otherwise A is well-conditioned.
- In the ill-conditioned case, the solution is very sensitive to the small changes in the right-hand vector *b* (higher precision in *b* may be needed).
Another way to measure the error

Consider the linear system Ax = b. Let \tilde{x} be a computed solution (an approximation to *x*).

Residual vector:

$$r = b - A\widetilde{x}.$$

• Error vector:

$$e = x - \tilde{x}.$$

• They satisfy

$$Ae = r$$

- (Proof: $Ae = Ax A\tilde{x} = b A\tilde{x} = r$)
- Moreover, we have

$$\frac{1}{\kappa(A)} \ \frac{\|r\|}{\|b\|} \le \frac{\|e\|}{\|x\|} \le \kappa(A) \ \frac{\|r\|}{\|b\|}.$$

(Theorem on bounds involving condition number)

Proof of the Theorem

$$\therefore Ae = r.$$

$$\therefore e = A^{-1}r.$$

$$\therefore \|e\| \|b\| = \|A^{-1}r\| \|Ax\| \le \|A^{-1}\| \|r\| \|A\| \|x\|.$$

$$\therefore \frac{\|e\|}{\|x\|} \le \kappa(A) \frac{\|r\|}{\|b\|}.$$

On the other hand, we have

$$\begin{aligned} \|r\| \|x\| &= \|Ae\| \|A^{-1}b\| \le \|A\| \|e\| \|A^{-1}\| \|b\| \\ \therefore \frac{1}{\kappa(A)} \ \frac{\|r\|}{\|b\|} \le \frac{\|e\|}{\|x\|}. \end{aligned}$$

Concept of convergence in a vector space

- If a vector space V is assigned a norm || · ||, then the pair (V, || · ||) is a normed linear space.
- Consider a sequence of vectors v⁽¹⁾, v⁽²⁾, · · · in a normed space (V, || · ||). Then we say that the given sequence converges to a vector v ∈ V if

$$\lim_{k\to\infty}\|v^{(k)}-v\|=0.$$

- **Theorem:** Any two norms on a finite-dimensional vector space lead to the same concept of convergence.
- **Caution:** This theorem does not apply in infinite-dimensional normed linear spaces. (See Problem 4.5.20, p. 206, for an example)

An example in \mathbb{R}^4

• Let

$$v^{(k)} = \begin{bmatrix} 3-k^{-1} \\ -2+k^{-1/2} \\ (k+1)k^{-1} \\ e^{-k} \end{bmatrix} \quad \text{and} \quad v = \begin{bmatrix} 3 \\ -2 \\ 1 \\ 0 \end{bmatrix}.$$

Then

$$v^{(k)} - v = \left[egin{array}{c} -k^{-1} \ k^{-1/2} \ k^{-1} \ e^{-k} \end{array}
ight].$$

• Then $\lim_{k\to\infty} \|v^{(k)} - v\|_{\infty} = 0.$

Neumann series

Theorem on Neumann series: *If* A *is an* $n \times n$ *matrix such that* ||A|| < 1 *then* I - A *is invertible and*

$$(I-A)^{-1} = \sum_{k=0}^{\infty} A^k.$$

Proof: Suppose that *I* − *A* is not invertible. Then $\exists 0 \neq x$ with ||x|| = 1 such that (I - A)x = 0. $\therefore 1 = ||x|| = ||Ax|| \le ||A|| ||x|| = ||A||$, a contradiction! Claim: $\sum_{k=0}^{\infty} A^k = (I - A)^{-1}$, i.e., $\lim_{m \to \infty} (I - A) \sum_{k=0}^{m} A^k = I$. $\therefore (I - A) \sum_{k=0}^{m} A^k = \sum_{k=0}^{m} (A^k - A^{k+1}) = A^0 - A^{m+1} = I - A^{m+1}$ $\therefore 0 \le ||(I - A) \sum_{k=0}^{m} A^k - I|| = || - A^{m+1}|| \le ||A||^{m+1} \to 0$ as $m \to \infty$

Iterative refinement

• Let *x*⁽⁰⁾ be an approximate solution of

$$Ax = b.$$

Then the residual vector is

$$r^{(0)} = b - Ax^{(0)}.$$

and the error vector is

$$e^{(0)} = x - x^{(0)}.$$

• Since
$$Ae^{(0)} = Ax - Ax^{(0)} = b - Ax^{(0)} = r^{(0)}$$
, we have
 $Ae^{(0)} = r^{(0)}$,

which is not too expensive to solve at this point. Why? We also know that the exact solution

$$x = x^{(0)} + e^{(0)}$$

Iterative refinement (continued)

Consider the linear system: Ax = b. Let $x^{(0)}$ be an approximation to the exact solution x. Then

$$r^{(0)} = b - Ax^{(0)},$$

 $Ae^{(0)} = r^{(0)}.$

Let $\tilde{e}^{(0)}$ be an approximate solution of $e^{(0)}$. Then define $x^{(1)} := x^{(0)} + \tilde{e}^{(0)}$. Repeat this process, we have $x^{(2)}, x^{(3)}, \cdots$

Example

Consider the linear system:

$$\begin{bmatrix} 420 & 210 & 140 & 105\\ 210 & 140 & 105 & 84\\ 140 & 105 & 84 & 70\\ 105 & 84 & 70 & 60 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix} = \begin{bmatrix} 875\\ 539\\ 399\\ 319 \end{bmatrix}$$

- Exact solution $x = (1, 1, 1, 1)^{\top}$.
- GE with partial pivoting:
 - $x^{(0)} = (0.999988, 1.000137, 0.999670, 1.000215)^{\top},$
 - $x^{(1)} = (0.999994, 1.000069, 0.999831, 1.000110)^{\top},$
 - $x^{(2)} = (0.999996, 1.000046, 0.999891, 1.000070)^{\top},$

$$x^{(3)} = (0.999993, 1.000080, 0.999812, 1.000121)^{\top},$$

$$\mathbf{x}^{(4)} = (1.000000, 1.000006, 0.999984, 1.000010)^{\top}.$$

A comparison

- We have been studying direct methods for solving the matrix problem Ax = b, e.g., LU-decomposition and GE.
 - large operation count.
 - needs lot of memory.
 - hard to do on parallel machines.
 - a solution will be found, and we know how long and how much memory it takes.
- Iterative methods produce a sequence of vectors that ideally converges to the solution.
 - much smaller operation counts.
 - needs much less memory.
 - a lot easier to implement on parallel computers.
 - not as reliable or predicable (the number of iterations is not known in advance).

Example

$$\begin{bmatrix} 7 & -6 \\ -8 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}.$$

How can this be solved by an iterative process?

Rewrite the system of equations as

$$x_1 = \frac{6}{7}x_2 + \frac{3}{7},$$

$$x_2 = \frac{8}{9}x_1 - \frac{4}{9}.$$

Jacobi method

$$\begin{array}{rcl} x_1^{(k)} & = & \frac{6}{7} x_2^{(k-1)} + \frac{3}{7}, \\ \\ x_2^{(k)} & = & \frac{8}{9} x_1^{(k-1)} - \frac{4}{9}. \end{array}$$

Here are some values of the iterates of the Jacobi method for this example:

k	$x_1^{(k)}$	$x_{2}^{(k)}$
0	0.00000	0.00000
10	0.14865	-0.19820
20	0.18682	-0.24909
30	0.19662	-0.26215
40	0.19913	-0.26637
50	0.19978	-0.26637

Gauss-Seidel method

$$\begin{array}{rcl} x_1^{(k)} & = & \displaystyle \frac{6}{7} x_2^{(k-1)} + \frac{3}{7}, \\ \\ x_2^{(k)} & = & \displaystyle \frac{8}{9} x_1^{(k)} - \frac{4}{9}. \end{array}$$

Some output from this method:

k	$x_1^{(k)}$	$x_{2}^{(k)}$
0	0.00000	0.00000
10	0.21978	-0.24909
20	0.20130	-0.26531
30	0.20009	-0.26659
40	0.20001	-0.26666
50	0.20000	-0.26667

In general, to solve the system

Ax = b

using an iterative process, we prescribe a matrix *Q*, called the splitting matrix. We can rewrite the original system of equations as:

Qx = (Q - A)x + b.

The iterations are defined as follows:

$$Qx^{(k)} = (Q - A)x^{(k-1)} + b$$
 $(k \ge 1),$

where $x^{(0)}$ is an initial vector. The goal is to choose Q so that the following conditions hold:

- The sequence $\{x^{(k)}\}$ is easily computed.
- The sequence $\{x^{(k)}\}$ converges rapidly to a solution.

Theoretical analysis

$$x^{(k)} = (I - Q^{-1}A)x^{(k-1)} + Q^{-1}b.$$
 (*)

The actual solution *x* satisfies

$$x = (I - Q^{-1}A)x + Q^{-1}b.$$
 (**)

Thus, *x* is a fixed point of the mapping

$$x\longmapsto (I-Q^{-1}A)x+Q^{-1}b.$$

Subtracting (**) from (*) yields

$$x^{(k)} - x = (I - Q^{-1}A)(x^{(k-1)} - x).$$

Theoretical analysis (continued)

Using a convenient vector norm and its associated matrix norm,

$$||x^{(k)} - x|| \le ||I - Q^{-1}A|| ||x^{(k-1)} - x||.$$

Repeating this step, we obtain

$$||x^{(k)} - x|| \le ||I - Q^{-1}A||^k ||x^{(0)} - x||.$$

Thus, if $||I - Q^{-1}A|| < 1$ then

$$\lim_{k\to\infty}\|x^{(k)}-x\|=0$$

for any initial vector $x^{(0)}$.

Note: According to Theorem on Neumann series, $||I - Q^{-1}A|| < 1$ implies the invertibility of $Q^{-1}A$ and of A.

Theorem on iterative method convergence

If $||I - Q^{-1}A|| < 1$ for some vector induced matrix norm (also called subordinate matrix norm), then the sequence produced by

$$Qx^{(k)} = (Q - A)x^{(k-1)} + b$$

converges to the solution of Ax = b for any initial vector $x^{(0)}$.

Note: If $\{x^{(k)}\}$ converges, it converges in any norm.

Richardson method

• *Q* is chosen to be the identity matrix. In this case, the iterates are given by:

$$x^{(k)} = (I - A)x^{(k-1)} + b = x^{(k-1)} + r^{(k-1)},$$

where $r^{(k-1)}$ is the residual vector, $r^{(k-1)} := b - Ax^{(k-1)}$.

- According to the above theorem, Richardson method will converges to solution of Ax = b if ||I A|| < 1 for some vector induced matrix norm.
- There are two classes of matrices having the required property (cf. page 229, problems 2 & 3):
 - unit row strictly diagonally dominant matrices:

 $a_{ii} = 1 > \sum_{j=1, j \neq i}^{n} |a_{ij}|$ $(1 \le i \le n) \Longrightarrow ||I - A||_{\infty} < 1$

• unit column strictly diagonally dominant matrices:

$$a_{jj} = 1 > \sum_{i=1, i \neq j}^{n} |a_{ij}|$$
 $(1 \le j \le n) \Longrightarrow ||I - A||_1 < 1$

An example

Compute 100 iterates using the Richardson method, starting with $x = (0, 0, 0)^{\top}$.

$$\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{3} & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{11}{18} \\ \frac{11}{18} \\ \frac{11}{18} \\ \frac{11}{18} \end{bmatrix}.$$

A few of the iterates:

$$\begin{array}{rcl} x^{(0)} &=& (0.00000, 0.00000, 0.00000)^{\top}, \\ x^{(1)} &=& (0.61111, 0.61111, 0.61111)^{\top}, \\ x^{(10)} &=& (0.27950, 0.27950, 0.27950)^{\top}, \\ &\vdots \\ x^{(40)} &=& (0.33311, 0.33311, 0.33311)^{\top}, \\ &\vdots \\ x^{(80)} &=& (0.33333, 0.33333, 0.33333)^{\top}. \end{array}$$

Diagonally dominant matrices

• **Definition:** The *n* × *n* matrix *A* = (*a*_{*ij*}) is called strictly diagonally dominant if

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}| \qquad (1 \le i \le n).$$

• Example:

is strictly diagonally dominant.

Jacobi method

- In the Jacobi iteration, *Q* is a diagonal matrix whose diagonal entries are the same as those in the matrix *A*.
- One can verify that

$$||I - Q^{-1}A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1, j \ne i}^{n} |\frac{a_{ij}}{a_{ii}}|.$$

Theorem on Convergence of Jacobi Method:

If A is strictly diagonally dominant, then the sequence produced by the Jacobi iteration converges to the solution of Ax = b for any starting vector.

Algorithm for the Jacobi method

input n, (a_{ij}) , (b_i) , (x_i) , Mfor k = 1 to M do for i = 1 to n do

$$u_i \leftarrow \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j\right) \middle/ a_{ii}$$

end do for i = 1 to n do $x_i \leftarrow u_i$ end do output k, (x_i) end do

Some remarks

• Some divisions can be avoided by preprocessing the system.

for
$$i = 1$$
 to n do
 $d = 1/a_{ii}$
 $b_i \leftarrow db_i$
for $j = 1$ to n do
 $a_{ij} = da_{ij}$
end do

end do

Then the replacement statement for u_i becomes simply

$$u_i \leftarrow b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j.$$

• Another way to interpret this is that the original system *Ax* = *b* has been replaced by:

$$D^{-1}Ax = D^{-1}b,$$

where $D = \text{diag}(a_{ii})$.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Linear Equations - 94/147

How to stop the iterations?

- Residual norm: ||r|| = ||b Ax||.
- Where is *r_i* in the computer program? (if without preprocessing)

$$r_i = b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j - a_{ii} x_i = a_{ii} u_i - a_{ii} x_i.$$

• Or, one can implement the Jacobi algorithm differently:

$$x^{(k+1)} = (I - Q^{-1}A)x^{(k)} + Q^{-1}b.$$

is the same as

$$x^{(k+1)} = x^{(k)} - Q^{-1}(b - Ax^{(k)}) = x^{(k)} - Q^{-1}r^{(k)}$$

Spectral radius

• The spectral radius of *A* is defined by

 $\rho(A) = \max\{|\lambda| : \det(A - \lambda I) = 0\}.$

- Thus, ρ(A) is the smallest number such that a circle with that radius centered at 0 in the complex plane will contain all the eigenvalues of A.
- **Theorem on Spectral Radius:** *The spectral radius function satisfies the equation:*

 $\rho(A) = \inf_{\|\cdot\|} \|A\|,$

in which the infimum is taken over all subordinate matrix norms.

Proof: see pp. 214-215.

- Corollary on Spectral Radius:
 - $\rho(A) \leq ||A||$, for any subordinate matrix norm.
 - If ρ(A) < 1 then ||A|| < 1 for some subordinate matrix norm.

Analysis

In general, an iterative method defined by

 $Qx^{(k)} = (Q - A)x^{(k-1)} + b.$

Let $G = I - Q^{-1}A$ and $c = Q^{-1}b$. Then we consider the iterative process in the following form:

 $x^{(k)} = Gx^{(k-1)} + c.$

Suppose that it converges, then the solution must satisfy

x = Gx + c,

or

$$(I-G)x=c,$$

or

$$x = (I - G)^{-1}c.$$

Necessary and sufficient conditions for convergence

For the iteration formula

$$x^{(k)} = Gx^{(k-1)} + c$$

to produce a sequence converging to $(I - G)^{-1}c$, for any starting vector $x^{(0)}$, it is necessary and sufficient that the spectral radius of G be less than 1, i.e., $\rho(G) < 1$.

Proof of the Theorem

Suppose that $\rho(G) < 1$. Then there is a subordinate matrix norm such that ||G|| < 1. From the iteration formula, we have

$$\begin{array}{rcl} x^{(1)} & = & Gx^{(0)} + c, \\ x^{(2)} & = & G^2x^{(0)} + Gc + c, \\ & \ddots & \\ & & \\ x^{(k)} & = & G^kx^{(0)} + \sum^{k-1}G^jc. \quad (\star) \end{array}$$

Using the matrix norm (and corresponding vector norm) that satisfies the spectral radius theorem:

$$||G^k x^{(0)}|| \le ||G^k|| ||x^{(0)}|| \le ||G||^k ||x^{(0)}|| \to 0 \quad as \quad k \to \infty.$$

The second term on RHS of (\star) as $k \to \infty$ is given by

$$\sum_{j=0}^{\infty}G^{j}c=(I-G)^{-1}c,$$

when ||G|| < 1 by Neumann series. Thus, by letting $k \to \infty$, we obtain

$$\lim_{k \to \infty} x^{(k)} = (I - G)^{-1}c.$$

Proof of the Theorem (continued)

For the converse, suppose that $\rho(G) \ge 1$. Select *u* and λ so that

 $Gu = \lambda u$,

where $|\lambda| \ge 1$ and $u \ne 0$. Recall that $x^{(k)} = G^k x^{(0)} + \sum_{j=0}^{k-1} G^j c$. Let c = u

and $x^{(0)} = 0$. Then we have

$$x^{(k)} = \sum_{j=0}^{k-1} G^j u = \sum_{j=0}^{k-1} \lambda^j u.$$

• If $\lambda = 1$, $x^{(k)} = ku$, this diverges as $k \to \infty$.

• If $\lambda \neq 1$, $x^{(k)} = (\lambda^k - 1)(\lambda - 1)^{-1}u$, this diverges as $k \to \infty$ and this diverges also because $\lim_{k\to\infty} \lambda^k$ does not exist.

For both cases, $\{x^{(k)}\}$ diverges, a contradiction! Therefore, $\rho(G) < 1$.

Gauss-Seidel method

- In the Gauss-Seidel iteration, *Q* is the lower triangular part of *A*, including the diagonal.
- Theorem on Gauss-Seidel Method Convergence:

If A is strictly diagonally dominant, then the Gauss-Seidel method converges for any starting vector.

Proof: It suffices to prove that $\rho(I - Q^{-1}A) < 1$. Let λ be any eigenvalue of $I - Q^{-1}A$ and let x be a corresponding eigenvector. Without loss of generality, we assume that $||x||_{\infty} = 1$. Then $(I - Q^{-1}A)x = \lambda x$ or $Qx - Ax = \lambda Qx$.

$$-\sum_{j=i+1}^n a_{ij}x_j = \lambda \sum_{j=1}^i a_{ij}x_j, \qquad (1 \le i \le n).$$

By transposing terms in this equation, we obtain

$$\lambda a_{ii} x_i = -\lambda \sum_{j=1}^{i-1} a_{ij} x_j - \sum_{j=i+1}^n a_{ij} x_j, \qquad (1 \le i \le n).$$

Theorem on Gauss-Seidel method convergence (continued)

Since $||x||_{\infty} = 1$, we can select an index *i* such that $|x_i| = 1 \ge |x_j|$ for all *j*. Then

$$|\lambda||a_{ii}| \le |\lambda| \sum_{j=1}^{i-1} |a_{ij}| + \sum_{j=i+1}^{n} |a_{ij}|.$$

Solving for $|\lambda|$ and using the strictly diagonal dominance of *A*, we have

$$|\lambda| \le rac{\sum_{j=i+1}^{n} |a_{ij}|}{|a_{ii}| - \sum_{j=1}^{i-1} |a_{ij}|} < 1.$$

Therefore, $\rho(I - Q^{-1}A) < 1$.

Algorithm for the Gauss-Seidel iteration

input n, (a_{ij}) , (b_i) , (x_i) , Mfor k = 1 to M do for i = 1 to n do

$$x_i \leftarrow \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j\right) / a_{ii}$$

end do
output
$$k$$
, (x_i)
end do

Example

Consider the linear system:

$$\begin{bmatrix} 2 & -1 & 0 \\ 1 & 6 & -2 \\ 4 & -3 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -4 \\ 5 \end{bmatrix}$$

Start with $x^{(0)} = (0, 0, 0)^{\top}$. Scaling using the equation $D^{-1}Ax = D^{-1}b$ where D = diag(A), we obtain:

$$\begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ \frac{1}{6} & 1 & -\frac{1}{3} \\ \frac{1}{2} & -\frac{3}{8} & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -\frac{2}{3} \\ \frac{5}{8} \end{bmatrix}$$

•

Example (continued)

Referring to this system as Ax = b, we take Q to be the lower triangular part of A. The Gauss-Seidel iteration is given by:

$$Qx^{(k)} = (Q - A)x^{(k-1)} + b$$

or

$$\begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{6} & 1 & 0 \\ \frac{1}{2} & -\frac{3}{8} & 1 \end{bmatrix} \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \\ x_3^{(k)} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1^{(k-1)} \\ x_2^{(k-1)} \\ x_3^{(k-1)} \end{bmatrix} + \begin{bmatrix} 1 \\ -\frac{2}{3} \\ \frac{5}{8} \end{bmatrix}$$

Example (continued)

We obtain $x^{(k)}$ by solving a lower triangular system:

$$\begin{array}{rcl} x_1^{(k)} & = & \frac{1}{2} x_2^{(k-1)} + 1, \\ x_2^{(k)} & = & -\frac{1}{6} x_1^{(k)} + \frac{1}{3} x_3^{(k-1)} - \frac{2}{3}, \\ x_3^{(k)} & = & -\frac{1}{2} x_1^{(k)} + \frac{3}{8} x_2^{(k)} + \frac{5}{8}. \end{array}$$

The following iterates are obtained ($x^{(13)}$ is the correct solution):

$$\begin{aligned} x^{(1)} &= (1.000000, -0.833333, -0.187500)^{\top}, \\ \vdots \\ x^{(5)} &= (0.622836, -0.760042, 0.028566)^{\top}, \\ \vdots \\ x^{(10)} &= (0.620001, -0.760003, 0.029998)^{\top}, \\ \vdots \\ x^{(13)} &= (0.620000, -0.760000, 0.030000)^{\top}. \end{aligned}$$

Basic iterative methods

For any nonsingular matrix *Q*, the system

$$Ax = b$$

can be rewritten as:

$$Qx = (Q - A)x + b.$$

An iterative method can be defined as follows:

$$Qx^{(k)} = (Q - A)x^{(k-1)} + b$$

or

$$x^{(k)} = (I - Q^{-1}A)x^{(k-1)} + Q^{-1}b.$$

Here $G = I - Q^{-1}A$ is called the iteration matrix.

More about iteration matrices

Suppose *A* is partitioned into

$$A=D-C_L-C_U,$$

where D = diag(A), C_L is the negative of the strictly lower part of A, and C_U is the negative of the strictly upper part of A.

• Richardson:

$$\begin{cases} Q = I, \quad (splitting matrix) \\ G = I - A. \quad (iteration matrix) \end{cases}$$

$$x^{(k)} = (I - A)x^{(k-1)} + b.$$
More about iteration matrices (continued)

• Jacobi:

$$\begin{cases} Q = D, \quad (splitting matrix) \\ G = D^{-1}(C_L + C_U). \quad (iteration matrix) \\ Dx^{(k)} = (C_L + C_U)x^{(k-1)} + b. \end{cases}$$

• Gauss-Seidel:

$$\begin{cases} Q = D - C_L, \quad (splitting matrix) \\ G = (D - C_L)^{-1}C_U. \quad (iteration matrix) \\ (D - C_L)x^{(k)} = C_U x^{(k-1)} + b. \end{cases}$$

• Successive over-relaxation (SOR):

$$\begin{cases} Q = \omega^{-1}(D - \omega C_L), & (splitting matrix) \\ G = (D - \omega C_L)^{-1} ((1 - \omega)D + \omega C_U). & (iteration matrix) \\ (D - \omega C_L)x^{(k)} = ((1 - \omega)D + \omega C_U)x^{(k-1)} + \omega b. \end{cases}$$

Another viewpoint of SOR

 $x_i^{(k)}$ is obtained by a weighted sum of $x_i^{(k-1)}$ and the GS iteration: $x_i^{(k)} = (1 - \omega)x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{i=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{i=i+1}^n a_{ij} x_j^{(k-1)} \right)$ $\iff a_{ii}x_i^{(k)} + \omega \sum_{i=1}^{l-1} a_{ij}x_j^{(k)} = (1-\omega)a_{ii}x_i^{(k-1)} - \omega \sum_{i=l+1}^n a_{ij}x_j^{(k-1)} + \omega b_i$ $\iff (D - \omega C_L) x^{(k)} = ((1 - \omega)D + \omega C_U) x^{(k-1)} + \omega b$ $\iff x^{(k)} = (D - \omega C_L)^{-1} ((1 - \omega)D + \omega C_U) x^{(k-1)} + \omega (D - \omega C_L)^{-1} b$

Remarks:

- 0 < ω < 1: under-relaxation methods and can be used to obtain convergence of some systems that are not convergent by the GS.
- 1 < ω: over-relaxation methods, which are used to accelerate the convergence for systems that are convergent by the GS.
- Methods are abbreviated SOR (successive over-relaxation).

Recall - linear algebra

- Let $\gamma \in \mathbb{C}$ and be written as $\gamma = \alpha + i\beta$, where α and β are real and $i^2 = -1$. The conjugate of γ is defined to be $\bar{\gamma} = \alpha i\beta$.
- The inner product, $\langle x, y \rangle = y^* x = \sum_{i=1}^n x_i \overline{y}_i$. Here y^* is the conjugate transpose of y, i.e., $y^* = \overline{y}^\top$.
- Some properties: $x, y, z \in \mathbb{C}^n$, $\alpha, \beta, \lambda \in \mathbb{C}$, $A \in \mathbb{C}^{n \times n}$.

•
$$< x, x >> 0,$$
 (if $x \neq 0$).
• $< x, \lambda y >= \overline{\lambda} < x, y >$.
• $< x, y >= \overline{\langle y, x \rangle}.$
• $< \alpha x + \beta y, z >= \alpha < x, z > +\beta < y, z >$.
• $< x, Ay >= < A^*x, y >$.
• $||x||_2 = \sqrt{< x, x >} = \sqrt{x^*x}.$

- *A* is Hermitian, if $A^* = A$. A^* is the conjugate transpose of A.
- *A* is positive definite, if $\langle Ax, x \rangle > 0$ for all $0 \neq x \in \mathbb{C}^n$.
- If *A* is Hermitian, then $\langle Ax, y \rangle = \langle x, Ay \rangle$.

A general theory for SOR

Theorem on SOR convergence: *A* is Hermitian and positive definite In the SOR method, suppose that the splitting matrix *Q* is chosen to be $\alpha D - C$, where α is a real parameter, *D* is any positive definite Hermitian matrix, and *C* is any matrix satisfying $C + C^* = D - A$. If *A* is positive definite Hermitian, if *Q* is nonsingular, and if $\alpha > \frac{1}{2}$, then the SOR iteration converges for any starting vector.

Proof: Let $G := I - Q^{-1}A$ be the iteration matrix. We wish to show that $\rho(G) < 1$. Let λ be an eigenvalue of G and x be a corresponding eigenvector. Let y = (I - G)x. Then we have

$$y = x - Gx = x - \lambda x = Q^{-1}Ax,$$
 (1)

$$Q - A = (\alpha D - C) - (D - C - C^*) = \alpha D - D + C^*.$$
 (2)

From (1), we have

$$(\alpha D - C)y = Qy = Ax. \tag{3}$$

By (1), (2), (3), we obtain $(\alpha D - D + C^*)y = (Q - A)y = A(x - y) = A(x - Q^{-1}Ax) = AGx.$ (4) © Suh-Yuh Yang (楊肅經), Math. Dept., NCU, Taiwan MA 8019: Linear Equations - 112/147

A general theory for SOR (continued)

From (3) and (4), we have

$$\begin{aligned} \alpha &< Dy, y > - < Cy, y > = < Ax, y >, \\ \alpha &< y, Dy > - < y, Dy > + < y, C^*y > = < y, AGx >. \end{aligned}$$
 (6)

On adding (5) and (6), we have

$$2\alpha < Dy, y > - < y, Dy > = + < y, AGx >,$$

which implies

$$(2\alpha - 1) < Dy, y > = < Ax, y > + < y, AGx > .$$
(7)

Since $y = (1 - \lambda)x$ and $Gx = \lambda x$, equation (7) yields

$$\begin{aligned} &(2\alpha-1)|1-\lambda|^2 < Dx, x >= (1-\overline{\lambda}) < Ax, x > +\overline{\lambda}(1-\lambda) < x, Ax > \\ &= (1-|\lambda|^2) < Ax, x > . \end{aligned}$$

If $\lambda \neq 1$ then LHS is positive, RHS must be positive and $|\lambda| < 1$. If $\lambda = 1$ then $y = x - \lambda x = 0 = Q^{-1}Ax$. So, Ax = 0. This is a contradiction, since $\langle Ax, x \rangle > 0$. Therefore, we have $\rho(G) < 1$.

A general theory for SOR (continued)

• In practice, we let *D* be the diagonal of *A*, and -C be the strictly lower triangular part of *A*, i.e., $C = C_L$.

• In the most popular SOR method,

$$Q = \omega^{-1}(D - \omega C_L) = \alpha D - C_L.$$

This implies that $\omega^{-1} = \alpha$. Therefore, $\alpha > 1/2 \iff 0 < \omega < 2$.

• $\omega = 1$, we have the Gauss-Seidel method.

Homework

Consider the linear system Ax = b, where

$$A = \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & -1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 2 & -1 \\ & & & & & -1 & 2 \end{bmatrix}_{10 \times 10} , \quad b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}_{10 \times 1}$$

Using $x^{(0)} = (1, 0, 0, \dots, 0)^{\top}$ as an initial vector, write Matlab files for the Jacobi, Gauss-Seidel, SOR with $\omega = 1.25$ to solve the system.

Extrapolation

- The extrapolation technique can be used to improve the convergence properties of a linear iterative process.
- Consider the iteration formula:

$$x^{(k)} = Gx^{(k-1)} + c.$$
 (*)

• We introduce a parameter, $\gamma \neq 0$ and consider

$$\begin{array}{rcl} x^{(k)} & = & \gamma(Gx^{(k-1)}+c)+(1-\gamma)x^{(k-1)} \\ & = & G_{\gamma}x^{(k-1)}+\gamma c, \end{array}$$

where

$$G_{\gamma} = \gamma G + (1 - \gamma)I.$$

• Notice that when $\gamma = 1$, we recover the original iteration (*).

Extrapolation (continued)

• If the iteration converges,

$$x = \gamma(Gx + c) + (1 - \gamma)x.$$

or

$$x = Gx + c,$$

since $\gamma \neq 0$.

• If $G = I - QA^{-1}$ and $c = Q^{-1}b$, then this iteration corresponds to solving Ax = b.

Extrapolation (continued)

- Theorem on Eigenvalues of p(A): If λ is an eigenvalue of a matrix A and if p is a polynomial, then p(λ) is an eigenvalue of p(A).
- The convergence of the extrapolated method is guaranteed if ρ(G_γ) < 1.

$$egin{array}{rcl}
ho(G_\gamma) &=& \max_{\lambda\in\Lambda(G_\gamma)}|\lambda| = \max_{\lambda\in\Lambda(G)}|\gamma\lambda+1-\gamma| \ &\leq& \max_{a\leq\lambda\leq b}|\gamma\lambda+1-\gamma|, \end{array}$$

if we know only an interval $[a, b] \subseteq \mathbb{R}$ that contain all eigenvalues of *G*.

• We can prove that if $1 \notin [a, b]$ then γ can be chosen so that $\rho(G_{\gamma}) < 1$. The best choice for γ is 2/(2 - a - b), and in such case $\rho(G_{\gamma}) \leq 1 - |\gamma|d$, *d* is the distance from 1 to [a, b] (see pp. 222-223).

An example

If *A* is a matrix whose eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_n$ are all real, define

$$m(A) = \min_i \lambda_i$$
 $M(A) = \max_i \lambda_i.$

Example: Determine the spectral radius of the optimal extrapolated Richardson method.

In Richardson iteration, Q = I and G = I - A.

$$M(G) = 1 - m(A)$$
 $m(G) = 1 - M(A).$

The optimal γ is:

$$\gamma = 2/(m(A) + M(A)).$$

The resulting spectral radius is:

$$\rho(G_{\gamma}) = (M(A) - m(A))/(M(A) + m(A)).$$

SPD linear systems

- Let $A \in \mathbb{C}^{n \times n}$ be a square matrix and $x, y \in \mathbb{C}^n$. Define $x^* := \overline{x}^\top$, $(x, y) := y^* x \in \mathbb{C}$. Then $(Ax, x) = x^* Ax$ is called a quadratic form.
- **Definition:** Let $A \in \mathbb{C}^{n \times n}$.

A is positive definite $\iff (Ax, x) > 0, \quad \forall \ 0 \neq x \in \mathbb{C}^n.$

- Note 1: $A = A^* (:= \overline{A}^\top) \iff (Ax, x) \in \mathbb{R}, \forall x \in \mathbb{C}^n.$
- Note 2: If $A \in \mathbb{C}^{n \times n}$ is positive definite, then $A = A^*$. (by Note 1)
- Note 3: Let $A \in \mathbb{R}^{n \times n}$. *A* is positive definite $\iff A = A^{\top}$ and $(Ax, x) > 0, \forall 0 \neq x \in \mathbb{R}^{n}$.
- Note 4: Let $A \in \mathbb{C}^{n \times n}$ and $A = A^*$. Then A is positive definite \iff all of its eigenvalues are real and positive.

SPD linear systems (continued)

Let $A \in \mathbb{R}^{M \times M}$ be a SPD sparse matrix. Define $f : \mathbb{R}^M : \to \mathbb{R}$ by

$$f(\eta) = \frac{1}{2}\eta \cdot A\eta - b \cdot \eta.$$

- **Problem** (1): Find $\xi \in \mathbb{R}^M$ such that $f(\xi) = \min_{\eta \in \mathbb{R}^M} f(\eta)$.
- **Problem** (2): Find $\xi \in \mathbb{R}^M$ such that $A\xi = b$.

Note: \exists ! solution ξ such that $A\xi = b$, since A is SPD.

Theorem: Problem $(1) \iff$ Problem (2).

See next two pages for the proof.

Proof of the Theorem

• Problem (1) (\Longrightarrow) Problem (2):

Let $\xi \in \mathbb{R}^M$ be such that $f(\xi) = \min_{\eta \in \mathbb{R}^M} f(\eta)$. Given $0 \neq \eta \in \mathbb{R}^M$, we have

$$\begin{split} g(\varepsilon) &:= f(\xi + \varepsilon\eta) = \frac{1}{2}(\xi + \varepsilon\eta) \cdot A(\xi + \varepsilon\eta) - b \cdot (\xi + \varepsilon\eta) \\ &= \frac{1}{2}\xi \cdot A\xi + \frac{1}{2}\varepsilon\xi \cdot A\eta + \frac{1}{2}\varepsilon\eta \cdot A\xi + \frac{1}{2}\varepsilon^2\eta \cdot A\eta - b \cdot \xi - \varepsilon b \cdot \eta \\ &= \frac{1}{2}\varepsilon^2\eta \cdot A\eta + \varepsilon\eta \cdot A\xi - \varepsilon b \cdot \eta + \frac{1}{2}\xi \cdot A\xi - b \cdot \xi, \end{split}$$

where we use

 $\xi \cdot A\eta = (\xi, A\eta) = (A^{\top}\xi, \eta) = (A\xi, \eta) = (\eta, A\xi) = \eta \cdot A\xi.$

 $\therefore g \text{ is a quadratic poly. in } \varepsilon \text{ with leading coefficient } \frac{1}{2}\eta \cdot A\eta > 0$ $\therefore g(0) = f(\xi) = \min_{\eta \in \mathbb{R}^M} f(\eta) \quad \therefore g'(0) = 0 \text{ (by Fermat's Thm)}$ $\therefore 0 = g'(0) = (\varepsilon \eta \cdot A\eta + \eta \cdot A\xi - b \cdot \eta)|_{\varepsilon=0} = \eta \cdot (A\xi - b)$ $\therefore A\xi = b$

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Linear Equations - 122/147

Proof of the Theorem (continued)

• Problem (2) (\Longrightarrow) Problem (1):

Assume that $A\xi = b$. Let $\eta \in \mathbb{R}^M$. Define $w := \eta - \xi$. Then $\eta = w + \xi$. We have

$$\begin{split} f(\eta) &= \frac{1}{2}\eta \cdot A\eta - b \cdot \eta = \frac{1}{2}(w + \xi) \cdot A(w + \xi) - b \cdot (w + \xi) \\ &= \frac{1}{2}w \cdot Aw + w \cdot A\xi + \frac{1}{2}\xi \cdot A\xi - b \cdot w - b \cdot \xi \\ &= \frac{1}{2}w \cdot Aw + w \cdot A\xi - b \cdot w + f(\xi) \\ &\geq w \cdot A\xi - b \cdot w + f(\xi) \quad (\because A \text{ is } SPD \therefore \frac{1}{2}w \cdot Aw \ge 0) \\ &= w \cdot b - b \cdot w + f(\xi) = f(\xi). \\ \therefore f(\xi) &= \min_{\eta \in \mathbb{R}^M} f(\eta). \end{split}$$

Minimization algorithms

Given an initial approximation $\xi^0 \in \mathbb{R}^M$ of the exact solution ξ , find $\xi^k \in \mathbb{R}^M$, $k = 1, 2, \cdots$ of the form

$$\xi^{k+1} = \xi^k + \alpha_k d^k, \quad k = 0, 1, \cdots,$$

where $d^k \in \mathbb{R}^M$ is the search direction, $\alpha_k > 0$ is the step size (length).

We will focus on two methods:

- The gradient method
- The conjugate gradient method

Some notation

Let $g : \mathbb{R}^M \to \mathbb{R}$ be a smooth function and $\eta \in \mathbb{R}^M$.

• gradient of g at η

$$=g'(\eta):=\nabla g(\eta):=\left(\tfrac{\partial g}{\partial \eta_1}(\eta), \tfrac{\partial g}{\partial \eta_2}(\eta), \cdots, \tfrac{\partial g}{\partial \eta_M}(\eta)\right)^\top.$$

• Hessian of g at η ,

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Linear Equations – 125/147

Homework

Assume that $A \in \mathbb{R}^{M \times M}$ is a symmetric matrix, $b \in \mathbb{R}^{M}$ is a given vector, and $f : \mathbb{R}^{M} \to \mathbb{R}$ is defined by $f(\eta) := \frac{1}{2}\eta \cdot A\eta - b \cdot \eta$.

Prove that $\forall \eta \in \mathbb{R}^M$,

f'(η) = Aη - b;
f''(η) = A.

Hint:

•
$$\eta \cdot A\eta = \eta_1(A_1 \cdot \eta) + \eta_2(A_2 \cdot \eta) + \dots + \eta_M(A_M \cdot \eta).$$

• $f''(\eta) = \nabla(\nabla f(\eta)^\top) = \nabla((A\eta - b)^\top) = \nabla(A_1 \cdot \eta - b_1, \dots, A_M \cdot \eta - b_M).$

Taylor's expansion of a smooth function g **at** ξ^k

Let $g : \mathbb{R}^M \to \mathbb{R}$ be a smooth function. By Taylor's expansion,

$$g(\xi^{k+1}) = g(\xi^{k}) + \nabla g(\xi^{k}) \cdot (\xi^{k+1} - \xi^{k}) + (\xi^{k+1} - \xi^{k}) \cdot \frac{g''(\eta)}{2!} (\xi^{k+1} - \xi^{k}),$$

for some $\eta \in \overline{\xi^{k}\xi^{k+1}}.$
$$= g(\xi^{k}) + \alpha_{k}g'(\xi^{k}) \cdot d^{k} + \frac{\alpha_{k}^{2}}{2!}d^{k} \cdot g''(\eta)d^{k}, \quad if \ \xi^{k+1} = \xi^{k} + \alpha_{k}d^{k}.$$

 $\therefore g(\xi^{k+1}) = g(\xi^k) + \alpha_k g'(\xi^k) \cdot d^k + O(\alpha_k^2), \text{ if the entries in } g''(\eta) \text{ are bounded in a neighborhood containing } \overline{\xi^k \xi^{k+1}}.$

∴ If $g'(\xi^k) \cdot d^k < 0$ and $\alpha_k > 0$ is sufficiently small, $g(\xi^{k+1}) < g(\xi^k)$. In this case, we call d^k a descent direction.

The gradient method

Let us go back to the case of g = f, where $f(\eta) := \frac{1}{2}\eta \cdot A\eta - b \cdot \eta$ and *A* is SPD.

If we choose $d^k = -f'(\xi^k) = -(A\xi^k - b)$ and if $f'(\xi^k) \neq 0$,

then we have $f'(\xi^k) \cdot d^k = -\|f'(\xi^k)\|_2^2 < 0.$

We obtain the so-called gradient method or the steepest descent method.

Note: If $f'(\xi^k) = 0$ then $A\xi^k - b = 0 \Longrightarrow A\xi^k = b \Longrightarrow \xi^k$ is the exact solution.

How to choose $\alpha_k > 0$ in the gradient method?

Determine optimal α_k such that $f(\xi^k + \alpha_k d^k) = \min_{\alpha \in \mathbb{R}} f(\xi^k + \alpha d^k)$. Notice that $f(\xi^k + \alpha d^k)$ can be viewed as a quadratic function in α with positive leading coefficient.

If
$$\alpha_k$$
 is optimal, then $\frac{d}{d\alpha}f(\xi^k + \alpha d^k)\Big|_{\alpha = \alpha_k} = 0.$
 $\therefore f'(\xi^k + \alpha d^k) \cdot d^k\Big|_{\alpha = \alpha_k} = 0. \quad \therefore f'(\xi^k + \alpha_k d^k) \cdot d^k = 0.$
 $\implies 0 = f'(\xi^k + \alpha_k d^k) \cdot d^k = (A(\xi^k + \alpha_k d^k) - b) \cdot d^k$
 $= (A\xi^k - b) \cdot d^k + \alpha_k d^k \cdot Ad^k.$
 $\therefore \alpha_k = -\frac{(A\xi^k - b) \cdot d^k}{d^k \cdot Ad^k} = \frac{d^k \cdot d^k}{d^k \cdot Ad^k}, \text{ provided}$
 $d^k = -f'(\xi^k) = -(A\xi^k - b) \neq 0$
 $\therefore A \text{ is SPD } \therefore d^k \cdot Ad^k > 0, \text{ provided } d^k = -f'(\xi^k) = -(A\xi^k - b) \neq 0$
 $\therefore \alpha_k > 0, \text{ provided } d^k = -f'(\xi^k) = -(A\xi^k - b) \neq 0$

The gradient method with optimal step length α_k

Given $\xi^0 \in \mathbb{R}^M$, define $\xi^{k+1} = \xi^k + \alpha_k d^k$, $k = 0, 1, \cdots$ $d^k = -(A\xi^k - b)$. $\alpha_k = \frac{d^k \cdot d^k}{d^k \cdot A d^k}$.

Recall of the condition number

Let $A \in \mathbb{R}^{M \times M}$ be a SPD matrix. Let $0 < \lambda_1 \le \lambda_2 \le \dots \le \lambda_M$ be the eigenvalues of A. Then $0 < \frac{1}{\lambda_M} \le \frac{1}{\lambda_{M-1}} \le \dots \le \frac{1}{\lambda_1}$ are the eigenvalues of A^{-1} . Let $\rho(A)$ denote the spectral radius of A, i.e., the maximum size of the eigenvalues of A. That is, $\rho(A) = \max_{\lambda \text{ is an e.v. of } A} |\lambda|$ condition number $\kappa(A)$

$$:= \|A\|_2 \|A^{-1}\|_2 = \sqrt{\rho(A^*A)} \sqrt{\rho((A^{-1})^*A^{-1})}$$

$$= \sqrt{\rho(A^\top A)} \sqrt{\rho((A^{-1})^\top A^{-1})} = \sqrt{\rho(A^2)} \sqrt{\rho((A^{-1})^2)}$$

$$= \sqrt{\lambda_M^2} \sqrt{\frac{1}{\lambda_1^2}} = \frac{\lambda_M}{\lambda_1}.$$

$$\therefore \kappa(A) = \frac{\lambda_{\max}}{\lambda_{\min}}.$$

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan

The gradient method with constant step length

Given ξ_0 , $\alpha > 0$ sufficiently small.

$$\xi^{k+1} = \xi^k + \alpha d^k, k = 0, 1, \cdots$$

 $d^k = -f'(\xi^k) = -(A\xi^k - b).$

Let ξ be the exact solution, $A\xi = b$. $\Longrightarrow \xi = \xi - \alpha(A\xi - b)$. Let $e^k := \xi - \xi^k$. $\Longrightarrow e^{k+1} = e^k - \alpha(Ae^k) = (I - \alpha A)e^k$, $k = 0, 1, 2 \cdots$ $\therefore e^{k+1} = (I - \alpha A)^{k+1}e^0$. $\lim_{k \to \infty} e^{k+1} = 0$ for every $e^0 \iff \lim_{k \to \infty} (I - \alpha A)^{k+1}e^0 = 0$ for every e^0 $\iff \rho(I - \alpha A) < 1 \iff \max_j |1 - \alpha \lambda_j| < 1$ $\iff -1 < 1 - \alpha \lambda_j < 1$, $j = 1, 2, \cdots, M$ $\iff 1 - \alpha \lambda_{\max} > -1 \iff \alpha \lambda_{\max} < 2$.

The gradient method with constant step length (continued)

If we choose
$$\alpha = \frac{1}{\lambda_{\max}} > 0$$
, then we have
 $\|e^{k+1}\|_2 = \|(I - \alpha A)e^k\|_2 \le \|I - \alpha A\|_2 \|e^k\|_2 \le \left(1 - \frac{1}{\lambda_{\max}}\lambda_{\min}\right)\|e^k\|_2$
 $= \left(1 - \frac{1}{\kappa(A)}\right)\|e^k\|_2.$
 $\therefore \|e^k\|_2 \le \left(1 - \frac{1}{\kappa(A)}\right)^k \|e^0\|_2$ (small $\kappa(A)$ is better).
Given $0 < \varepsilon < 1$, find the smallest n such that $\|e^n\|_2 \le \varepsilon \|e^0\|_2.$

$$\therefore$$
 We require $\left(1 - \frac{1}{\kappa(A)}\right)^n \leq \varepsilon$.

The gradient method with constant step length (continued)

$$\left(1 - \frac{1}{\kappa(A)}\right)^n \le \varepsilon \iff n \ln\left(1 - \frac{1}{\kappa(A)}\right) \le \ln(\varepsilon)$$

$$\iff n\Big(-\ln\Big(1-\frac{1}{\kappa(A)}\Big)\Big) \ge \ln\Big(\frac{1}{\varepsilon}\Big) \iff n \ge \frac{\ln\Big(\frac{1}{\varepsilon}\Big)}{-\ln\Big(1-\frac{1}{\kappa(A)}\Big)}.$$

$$\therefore -\ln(1-x) = \sum_{i=1}^{\infty} \frac{x^i}{i} > x \text{ for } 0 < x < 1.$$

$$\therefore -\ln\Bigl(1-\frac{1}{\kappa(A)}\Bigr) > \frac{1}{\kappa(A)}.$$

 \therefore We take $n \ge \kappa(A) \ln\left(\frac{1}{\varepsilon}\right)$.

 \therefore The required number of iterations in the gradient method is proportional to the condition number $\kappa(A)$. If $\kappa(A)$ is large, then the gradient method is not efficient.

The conjugate gradient method

- Roughly speaking, the conjugate gradient method ≈ the gradient method + optimal step length, but with different search direction.
- Let *A* be a SPD real $M \times M$ matrix. Define $\langle \zeta, \eta \rangle := \zeta \cdot A\eta$, $\forall \zeta, \eta \in \mathbb{R}^{M}$. Then $\langle \cdot, \cdot \rangle$ is a scalar product on \mathbb{R}^{M} . *Proof:* check
 - it is a symmetric bilinear form;
 - $\langle v, v \rangle \geq 0 \ \forall v \in \mathbb{R}^M$, and $\langle v, v \rangle = 0 \iff v = 0$.
- Define the energy norm: $\|\eta\|_A := \langle \eta, \eta \rangle^{1/2}, \forall \eta \in \mathbb{R}^M$.

The conjugate gradient method (continued)

Given
$$\xi^0 \in \mathbb{R}^M$$
, $d^0 := -r^0 := -f'(\xi^0) = -(A\xi^0 - b)$,
find $\xi^1 \& d^1$, $\xi^2 \& d^2$, ..., such that for $k = 0, 1, ...$,

$$\begin{aligned} \xi^{k+1} &= \xi^k + \alpha_k d^k, \\ \alpha_k &= -\frac{r^k \cdot d^k}{\langle d^k, d^k \rangle} \quad (optimal \ step \ length), \\ d^{k+1} &= -r^{k+1} + \beta_k d^k \quad (for \ next \ step), \end{aligned}$$

where

$$r^k := f'(\xi^k) = A\xi^k - b,$$

 $\beta_k := rac{< r^{k+1}, d^k >}{< d^k, d^k >}.$

Some remarks

- The new search direction d^{k+1} is a linear combination of r^{k+1} and the old search direction d^k .
- Notice that

$$\beta_k = \frac{\langle r^{k+1}, d^k \rangle}{\langle d^k, d^k \rangle} \iff \beta_k \langle d^k, d^k \rangle - \langle r^{k+1}, d^k \rangle = 0 \iff \langle -r^{k+1} + \beta_k d^k, d^k \rangle = \langle d^{k+1}, d^k \rangle = 0.$$

• Suppose that
$$d^0, d^1, \dots, d^{k-1} \neq 0$$
. If $d^k = 0$ then
 $-r^k + \beta_{k-1}d^{k-1} = 0 \Longrightarrow r^k = \beta_{k-1}d^{k-1} = \frac{\langle r^k, d^{k-1} \rangle}{\langle d^{k-1}, d^{k-1} \rangle}d^{k-1}$
 $\Longrightarrow \dots \Longrightarrow r^k = 0$?

• α_k is the optimal step length.

Lemma 1

Notation: Let $\eta^0, \eta^1, \cdots, \eta^m \in \mathbb{R}^M$. Define $[\eta^0, \eta^1, \cdots, \eta^m] := \operatorname{span}\{\eta^0, \eta^1, \cdots, \eta^m\}.$

Lemma 1: For $m = 0, 1, \cdots$, we have

$$[d^0, d^1, \cdots, d^m] = [r^0, r^1, \cdots, r^m] = [r^0, Ar^0, \cdots, A^m r^0].$$

Proof: We will use the induction to prove the assertion. m = 0: It is trivial, since $[d^0] = [-r^0] = [r^0] = [A^0 r^0]$. Suppose that the assertion holds for $m \le k$. Consider the case m = k, we have $[d^0, d^1, \dots, d^k] = [r^0, r^1, \dots, r^k] = [r^0, Ar^0, \dots, A^k r^0]$. $\therefore \xi^{k+1} = \xi^k + \alpha_k d^k$. $\therefore A\xi^{k+1} = A\xi^k + \alpha_k Ad^k$. $\therefore A\xi^{k+1} - b = A\xi^k - b + \alpha_k Ad^k$. $\therefore r^{k+1} = r^k + \alpha_k Ad^k$.

Proof of Lemma 1 (continued)

$$\therefore d^{k} \in [r^{0}, Ar^{0}, \dots, A^{k}r^{0}] \text{ and } r^{k} \in [r^{0}, Ar^{0}, \dots, A^{k}r^{0}].$$

$$\therefore Ad^{k} \in [r^{0}, Ar^{0}, \dots, A^{k+1}r^{0}] \text{ and}$$

$$r^{k+1} = r^{k} + \alpha_{k}Ad^{k} \in [r^{0}, Ar^{0}, \dots, A^{k+1}r^{0}].$$

$$\therefore [r^{0}, r^{1}, \dots, r^{k+1}] \subseteq [r^{0}, Ar^{0}, \dots, A^{k+1}r^{0}].$$

$$\therefore A^{k}r^{0} \in [d^{0}, d^{1}, \dots, d^{k}] = [r^{0}, r^{1}, \dots, r^{k}] = [r^{0}, A^{1}r^{0}, \dots, A^{k}r^{0}].$$

$$\therefore A^{k+1}r^{0} \in [Ad^{0}, Ad^{1}, \dots, Ad^{k}].$$

Notice that $d^{0} \in [r^{0}] \Rightarrow Ad^{0} \in [r^{0}, Ar^{0}] = [r^{0}, r^{1}].$
Similarly, $Ad^{1} \in [r^{0}, r^{1}, r^{2}], \dots, Ad^{k-1} \in [r^{0}, r^{1}, \dots, r^{k}],$
and $r^{k+1} = r^{k} + \alpha_{k}Ad^{k}$ implies $Ad^{k} \in [r^{k}, r^{k+1}].$

$$\therefore A^{k+1}r^{0} \in [r^{0}, r^{1}, \dots, r^{k+1}].$$

On the other hand,

$$\therefore [r^0, r^1, \cdots, r^k] = [d^0, d^1, \cdots, d^k] \text{ and } d^{k+1} = -r^{k+1} + \beta_k d^k.$$

$$\therefore [r^0, r^1, \cdots, r^{k+1}] = [d^0, d^1, \cdots, d^{k+1}].$$

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Linear Equations - 139/147

Lemma 2

- $r^i \cdot r^j = 0$ if $i \neq j$ (orthogonal).
- $< d^i, d^j >= 0$ if $i \neq j$ (conjugate).

Proof: We use induction on n ($i, j \le n$).

n = 1:

•
$$:: r^{1} = r^{0} + \alpha_{0}Ad^{0}$$
 with $\alpha_{0} = \frac{-r^{0} \cdot d^{0}}{\langle d^{0}, d^{0} \rangle}, r^{0} = -d^{0}.$
 $:: r^{1} \cdot r^{0} = (-d^{0}) \cdot (-d^{0}) - \frac{-d^{0} \cdot d^{0}}{\langle d^{0}, d^{0} \rangle}Ad^{0} \cdot (-d^{0}) =$
 $d^{0} \cdot d^{0} - (d^{0} \cdot d^{0}) = 0.$
• $\langle d^{1}, d^{0} \rangle = \langle -r^{1} + \beta_{0}d^{0}, d^{0} \rangle = \langle -r^{1}, d^{0} \rangle + \beta_{0} \langle d^{0}, d^{0} \rangle =$
 $- \langle r^{1}, d^{0} \rangle + \frac{\langle r^{1}, d^{0} \rangle}{\langle d^{0}, d^{0} \rangle} \langle d^{0}, d^{0} \rangle = 0.$
Note: If $\langle d^{0}, d^{0} \rangle = 0 \iff d^{0} \cdot Ad^{0} = 0 \iff d^{0} = 0 \iff r^{0} =$
 $0 \iff A\xi^{0} - b = 0 \iff A\xi^{0} = b.$

Proof of Lemma 2 (continued)

Suppose that these two properties hold for $n \le k$. $\therefore [d^0, d^1, \cdots, d^{k-1}] = [r^0, r^1, \cdots, r^{k-1}]$ $\therefore r^k \cdot d^j = 0$ for $j = 0, 1, \cdots, k-1$ $\therefore r^{k+1} = r^k + \alpha_k + Ad^k$ \therefore For $j = 0, 1, \cdots, k-1, r^{k+1} \cdot d^j = r^k \cdot d^j + \alpha_k < d^k, d^j >= 0$ Notice that

$$r^{k+1} \cdot d^{k} = f'(\xi^{k+1}) \cdot d^{k} = f'(\xi^{k} + \alpha_{k}d^{k}) \cdot d^{k}$$
$$= \frac{d}{d\alpha}f(\xi^{k} + \alpha d^{k})|_{\alpha = \alpha_{k}} = 0 \quad (\because \alpha_{k} \text{ is optimal}).$$

 $\therefore r^{k+1} \cdot d^j = 0 \text{ for } j = 0, 1, \cdots, k$ $\therefore [r^0, r^1, \cdots, r^k] = [d^0, d^1, \cdots, d^k]$ $\therefore r^{k+1} \cdot r^j = 0 \text{ for } j = 0, 1, \cdots, k. \text{ That is, the first property holds.}$

Proof of Lemma 2 (continued)

$$\therefore r^{k+1} = r^k + \alpha_k + Ad^k.$$

$$\therefore Ad^j \in [r^0, r^1, \cdots, r^{j+1}] \text{ for any } j = 0, 1, \cdots$$

$$\therefore r^{k+1} \cdot Ad^j = < r^{k+1}, d^j >= 0 \text{ for } j = 0, 1, \cdots, k - 1.$$

$$\therefore < d^{k+1}, d^j >= < -r^{k+1}, d^j > +\beta_k < d^k, d^j >= 0 + 0 = 0 \text{ for } j = 0, 1, \cdots, k - 1.$$

$$\therefore < d^{k+1}, d^k >= < -r^{k+1} + \beta_k d^k, d^k >= - < r^{k+1}, d^k > +\beta_k < d^k, d^k > = - < r^{k+1}, d^k > +\beta_k < d^k, d^k > = - < r^{k+1}, d^k > + \frac{< r^{k+1}, d^k >}{< d^k, d^k >} < d^k, d^k >= 0.$$

$$\therefore < d^{k+1}, d^j >= 0 \text{ for } j = 0, 1, \cdots, k.$$

 \therefore The second property holds.

Theorem on the conjugate gradient method

 $\exists m \leq M \text{ such that } A\xi^m = b.$

Proof:

∴ r^{j} , $j = 0, 1, 2, \cdots$ are pairwise orthogonal (⇒ linearly independent if nonzero) and dim $\mathbb{R}^{M} = M$ ∴ $\exists r^{m} \in \{r^{0}, r^{1}, \cdots, r^{M}\}, 0 \leq m \leq M$, such that $r^{m} = 0$ ∴ $A\xi^{m} - b = 0 \Rightarrow A\xi^{m} = b$

Theorem on the conjugate gradient method (continued)

• **Theorem:** Let x be the exact solution, then

$$\|x - x^k\|_A \le 2\left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}\right)^k \|x - x_0\|_A.$$

In order to have

$$\|x-x^k\|_A \leq \varepsilon \|x-x^0\|_A,$$

for some given ϵ , we must have

$$n \ge \frac{1}{2}\sqrt{\kappa(A)}\ln\frac{2}{\varepsilon}.$$

• Compare with the gradient method with constant step length

$$n \ge \kappa(A) \ln \frac{1}{\varepsilon}.$$

The number of iterations is large for ill-conditioned matrices.

• Can we change the condition number without changing the solution of a given system?

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan MA 8019: Linear Equations – 144/147
Preconditioning

(1)
$$\min_{\eta \in \mathbb{R}^M} f(\eta) = \min_{\eta \in \mathbb{R}^M} \left(\frac{1}{2} \eta \cdot A\eta - b \cdot \eta \right).$$

The gradient method with constant step length α is

$$\eta^{k+1} = \eta^k - \alpha (A\eta^k - b).$$

Let *E* be a nonsingular $M \times M$ matrix. Let $\zeta = E\eta \Longrightarrow \eta = E^{-1}\zeta$. Then

$$\begin{split} \widetilde{f}(\zeta) &:= f(\eta) = f(E^{-1}\zeta) = \frac{1}{2}(E^{-1}\zeta) \cdot A(E^{-1}\zeta) - b \cdot E^{-1}\zeta \\ &= \frac{1}{2}\zeta \cdot E^{-\top}AE^{-1}\zeta - E^{-\top}b \cdot \zeta = \frac{1}{2}\zeta \cdot \widetilde{A}\zeta - \widetilde{b} \cdot \zeta, \end{split}$$

where $\widetilde{A} := E^{-\top}AE^{-1}$ and $\widetilde{b} := E^{-\top}b$.

Preconditioning (continued)

(2)
$$\min_{\zeta \in \mathbb{R}^M} \left(\frac{1}{2} \zeta \cdot \widetilde{A} \zeta - \widetilde{b} \cdot \zeta \right).$$

The gradient method with constant step length α is

$$\zeta^{k+1} = \zeta^k - \alpha (\widetilde{A}\zeta^k - \widetilde{b}).$$

If $\kappa(\widetilde{A}) \ll \kappa(A)$ then the gradient method for problem (2) will converge much faster than the same method applied to problem (1).

Preconditioning (continued)

$$\therefore \zeta = E\eta.$$

$$\therefore E\eta^{k+1} = E\eta^k - \alpha(\widetilde{A}E\eta^k - \widetilde{b}).$$

$$\vdots.$$

$$\eta^{k+1} = \eta^k - \alpha E^{-1}(E^{-\top}AE^{-1}E\eta^k - E^{-\top}b) = \eta^k - \alpha E^{-1}E^{-\top}(A\eta^k - b).$$

Let $C := E^{\top}E$. Then $C^{-1} = E^{-1}E^{-\top}$ and

$$\eta^{k+1} = \eta^k - \alpha C^{-1}(A\eta^k - b).$$

This is the preconditioned version of the gradient method for problem (1) with preconditioner *C*.

To compute η^{k+1} from η^k , we have to solve

$$C\theta^k = (A\eta^k - b).$$

Note that do not need the explicit form of C^{-1} .