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Polynomial interpolation

@ We are going to solve the following problem: given a table of
n + 1 data points (x;,y;),

x || x| v || |

ylwlwmlvl - T

we seek a polynomial p;, of lowest possible degree for which
po(xi) =yi (0 <i<n)

® Such a polynomial p,(x) is said to interpolate the data.
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Theorem on polynomial interpolation

Ifxo,x1, -+, xn are n + 1 distinct real (or complex) numbers, then for
arbitrary n + 1 values yo,y1, - - - Yn, there exists a unique polynomial p,, of
degree at most n such that

pa(xi) =yi (0<i<n).
Proof: (uniqueness)
Suppose there were two such polynomials p;, and g;.

Then (p, —gn)(x;) =0for 0 <i <n.

Since the degree of p, — g, can be at most #, this polynomial can have
at most n zeros if it is not the 0 polynomial.

Since the x; are distinct, p, — g, has n + 1 zeros.
Therefore , it must be 0, namely, p, =¢q,. U
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Theorem on polynomial interpolation (cont’d)

Proof: (existence) We will use the mathematical induction on 7.

@ For n = 0, we take pgp = yo. Then pg(xg) = yo.

@ Suppose that it is true for n = k — 1, i.e., 3 a polynomial p;_4 of
degree < k — 1 with py_1(x;) = y; for 0 < i < k — 1. We wish to
prove that it is true for n = k.

(i) We try to construct py in the form

Pre(x) = pr1(x) +c(x —x0) (x —x1) -+ - (x — x_1),
where ¢ need to be determined.
(ii) Note that deg(px) < k and py(x;) = pr_1(x;) = y; for
0 <i <k —1. We can determine ¢ from the condition
Pr(xk) = Yk, ie.,

Y = Pr—1 () + (e — x0) (v — x1) -+ - (X — X5—1)-

Therefore, we have

. Yk — Pr—1(xx)

(xx — x0) (xk —x1) = (¥ — x%—1)
That is, it is still true forn = k. O
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Newton form of the interpolation polynomial

@ We attempt to translate the constructive existence proof into an
algorithm suitable for a computer program.

@ Consider the first few cases:
po(x) = co=yo,

pi(x) = \Cg_/+c1(x—xo)/
po(x)
p2(x) = co+c1(x—xp) +ca(x —x0)(x —x1),
—_———
p1(x)

In general, we have
Pr(x) = pr—1(x) + o (x — x0) (x —x1) - -+ (x — x5_1).
Thus, we can solve for the coefficients:

Y — Pr—1(x%)
(x — x0) (g —x1) - -+ (0 — X3—1)

C =

© Suh-Yuh Yan 7), Math. Dept., NCU, Taiwan Approximating Functions — 5/80



Newton form of the interpolation polynomial (cont’d)

@ Notice that each py is obtained simply by adding a single term to
px—1 and py has the form (the interpolation polynomials in
Newton’s form),

pk(x) = 0 +C1(X—.‘)C0) +C2(x—x0)(x—xl) R
+ep(x —xo)(x —x1) -+ (x —xq),

or expressed in more compact form,

k i— 1
=) [ [(x—x)

i=0 j=0

i—1
where [ [(x —xj) :=1ifi—1=—1and
=0
6 = Y — Pr1 (%) K> 1
(e — x0) (e —x1) -+ (X = ;1)
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Example

@ Consider the polynomial
f(x) = 4x3 4 35x% — 84x — 954.
Some values of this function are given by

x|5] 7| 6| o0
y [ T| —23| —54 | —954

@ The coefficients computed using the above algorithm are:
o=y =1c=2c=3andcz =4 =
p3(x) =1+4+2(x —=5)+3(x=5)(x+7) +4(x —=5)(x + 7)(x + 6),
which is the Newton form of f(x) = 4x> + 35x? — 84x — 954.
Note that p3 = f.

@ An alternative method is to use divided differences to compute the
coefficients (see next section later).
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Lagrange form of the interpolation polynomial

@ Consider the alternative form expressing p

Pn(x) = ]/OEO(X) nylgl(x) +oee +yn€n(x) - i ykgk(x)/
k=0

where (g, {1, - - - £, are polynomials that depend on the nodes
X0,X1,**+ , Xz, but not on the ordinates o, y1, - - , Yn-

@ (o, /q,... Ly, are cardinal functions with property:
li(x;) = 0.

Recall that the Kronecker delta is defined by

s 1 ifi=j,
P00 ifi#].
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Lagrange form of the interpolation polynomial (cont’d)

@ Let’s consider ¢j. It is a polynomial of degree n that takes the
value 0 at x1,x, - - - , x;, and the value 1 at xj. It must be of the

form:
b(x) =clx—x1)(x —x2) - (x —x) = cﬁ(x = Xj).
j=
n n
® Settingx =xo =>1=c] J(xo—x)orc= H(xo —x;) L.
So, we have a . a
£o(x) :H;_z-

@ Each /; is obtained by similar reasoning:

n X — X;:
li(x) = x-fx]-' 0<i<n.
j=0,j£i Xi X
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Example

x| 5| 7| 6] 0
yHl\ 23\—54\—954
The nodes are 5, —7, —6, 0. So we have
_ (x+7)(x+6)x 1
lo(x) = G751 6)5 @x(x+6)(x+7),
(x—5)(x+6)x -1
hH(x) = 7 -5)(—71 6)(= 7)—8—4x(x—5)(x+6),
bH(x) = = 6( 5)()(212? 5= ;—6x(x—5)(x+7),
(=5 (x+7)(x+6) -1
l3(x) = 0=5) 057056 m(x—5)(x+6)(x+7).

Thus, the interpolating polynomial is:
p3(x) = 14y(x) — 2301 (x) — 5405 (x) — 95443(x).
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Other algorithm

@ Assume that
pu(x) = ag + a1x + apx® + - - - + X",

@ The interpolation conditions, p,(x;) = y; for 0 <i < n,lead to a
system of n 4 1 linear equations for determining ag, a1, - - - , an:

1 x x - xf ag Yo

1 x; x% X} M Y1

1 x x5 xy a2 | — | ¥2

1 x4 x% ceeoxp an Yn
X

@ The coefficient matrix X is called the Vandermonde matrix. It is
nonsingular with det X = TTo<;<j<u(xj — x;) # 0, but is often ill
conditioned. Therefore, this approach is not recommended.
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Homework #1

Recall the Vandermonde matrix X in the previous page, and define

2 n
1 x9 Jc8 cee x9l
1 x X R ¢
Va(x) = det :
2 n
T xp L o |
1 x x? X"

@ Show V,(x) is a polynomial of degree 1, and that its roots are
Xo,X1, ** ,X,—1. Obtain the formula

Viu(x) = Vi1 (x0-1) (x — x0) (x — x1) -+ (x = X1).

Hint: expand the last row of Vy,(x) by minors to show Vy(x) is a
polynomial of degree n and to find the coefficient of the term x".

@ Show that
detX =V,(x,) = [] (x—x).

0<i<j<n
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Theorem on polynomial interpolation error

Let f be a given real-valued function in C"*1[a,b], and let p, be the
polynomial of degree at most n that interpolates the function f at n + 1
distinct points (nodes) xo,x1, - - - , X in the interval [a,b]. To each x in [a, ]
there corresponds a point &x € (a,b) such that

1 n

R AR R
Proof: Let x € [a,b] be any point other than x;, i = 0,1, - - - , n. Define
n
w(t) = [J(t—x)  (polynomialin ),
i=0

e(t) = f(t) —pa(t) — Aw(t) (function in ),
A= f&) —pul(x) (a constant that makes ¢(x) = 0).
w(x)
Then ¢ € C"*1a,b] and ¢ vanishes at the n + 2 points x, xo, x1, - - - , X.
By Rolle’s Theorem, ¢’ has at least n + 1 distinct zeros in (a, b).
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Theorem on polynomial interpolation error (cont’d)

Proof: (continued)

(n+1)

Repeating this process, we conclude eventually that ¢ has at

least one zero {x € (a,b).
e () = () —p (1) = A ()
= D) — (n41)1A.
Hence, we have

0=¢t(E) = (&)~ (n+1)A
= F () — (np 1 LBl

w(x)

This completes the proof. [
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Example

If f(x) = sinx is approximated by a polynomial of degree 9 that
interpolates f at 10 points in the interval [0, 1], how large is the error
on this interval?

Since

9
FU9@E) <1 and Jlx—x[ <1,
i=0

we have for all x in [0, 1],

’sinx —po(x)| < 1%)' <2.8x1077.
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Chebyshev polynomials

@ The Chebyshev polynomials (of the first kind) are defined
recursively as follows:

T()Exg = 1,
Ti(x) = «x,
T,Hi(x) = 2xTu(x) — Tp_1(x) forn>1.

@ The explicit forms of the next few T}, are:

To(x) = 2x2-1,

Ta(x) = 4x° —3x,

Tu(x) = 8x*—8x%+1,

Ts(x) = 16x° —20x> + 5x,
Te(x) = 32x% —48x* +18x% — 1.

@ These polynomials arose when Chebyshev was studying the
motion of linkages in a steam locomotive.
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Some Chebyshev polynomials: To, Ty, -- ,T5

1.0

0.5F

Th(x)
2

-0.5 F

—-1.0 L

) Suh-Yuh Yang (15

TT T T T T T
F n=0 ]
Z n=1 ::
E n=4 =
- n=2/ [/l
:: n=23 ::
E n=5 ]
| | | | | | | |
-1.0 -0.5 0.0 0.5 1.0

X

(quoted from wikipedia.org)
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Properties of the Chebyshev polynomials

@ Theorem: For x in the interval [—1,1],
Ty(x) = cos(ncos 1 x) forn > 0.
Proof: Recall the addition formula for the cosine:

cos(n+1)0 = cos6cosnd — sinfsinnb,
cos(n—1)60

cos 8 cos nf) + sin 6 sin n.
Thus, we have cos(n +1)0 = 2cos 6 cosnf — cos(n —1)6. ()
Let § = cos! x. Then x = cos 6. Define
fu(x) = cos(ncos 1 x) = cos(nf).

From (%), we have

folx) =1,

fi(x) X,

fn®) = 266() —foa() forn>1.

Therefore, f, = T, foralln > 0. O
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Properties of the Chebyshev polynomials (cont’d)

@ |T,(x)|<lfor—-1<x<1.

® Ty(cos ™) = (—1) for 0 < i < n, where x; = cos ' are the
location of absolute extreme points of T, on [—1, 1]

@ Ty(cos an ) = 0for1 < i < n, where x; = cos 212;11 7T are the

location of zero roots of T, on [—1,1] (in fact, on R).

1.0 T T T T T T T T T T T T T T
B n=0 E
E fi=1 E
0.5 =
£ n=4 E
E n=2 E
= E E
E 0.0 - 7
F n=3 -
_osE n=5 E
—10f E

| | | | | | | |
=1.0 =0.5 0.0 0.5 1.0
X
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Monic polynomials

A monic polynomial is one in which the term of highest degree
has a coefficient of unity.

From the definition of the Chebyshev polynomials, we see that
in T, (x) the term of highest degree is 2" ~'x" for n > 1.
Therefore, 2! ~"T, is a monic polynomial for n > 1.

Theorem: If p is a monic polynomial of degree n, then

0o 1= > ol-n,
Iplle = _max_ [p(x)] >

Proof: Suppose that |p(x)| < 217" for —1 < x < 1. Let q(x) = 217"T);(x) and
X = cos(%‘), 0 <i < n. Then g is a monic polynomial of degree n. We have
(=D'p(x) < p(x)| <277 = (=1)'q(x;)
— (~1)'(glx) —p(x)) >0, for0<i<n,
This shows that g — p oscillates in sign at least # + 1 times on [—1, 1].

Therefore, g — p have at least n roots in (-1, 1).
This is a contradiction since g — p has degree at most n — 1

(Note that x" will not appearing —p). O

© Suh-Yuh'Y Math. Dept., NC Approximating Functions - 20/80



Choosing the nodes

Theorem: If the nodes x; are the roots of the Chebyshev polynomial T, 1,
then the error formula for the interpolation polynomial p,, yields

1
x) =y ()] € ———— max|[ftD()], —1<x<1.
()~ pu()] < gy a0l 1 <x s
Proof: By the error formula of the polynomial interpolation p;, of f,

n

[T(x—x)|.

i=0

max
[x|<1

max () = pu(3)| < o maxlf 0

[x|<1
By the theorem on the previous page, we have

n

max [ J(x—x)| > 27"
[x[<1)ig
2i+1 .
Let x; = cos 2 7t | for 0 < i < n, the roots of T,1. Then we can show that

27Ty (x) = TTiLg(x — x;). Since [T, (x)| < 1for —1 < x < 1, we have

n

max |[ J(x —x;)

max|2 "Tprr(x)| <27 O
Ix[<1 |izo

[x[<1
(cf. pp. 221-229, E. Isaacson and H. B. Keller, Analysis of Numerical Methods, 1966)
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The convergence of interpolating polynomials

Assume that f € C[a, b], and if interpolating polynomials p,, of higher
and higher degree are constructed for f, then the natural expectation is
that these polynomials will converge to f uniformly on [a, b]. i.e.,

IIf = pulleo := max |f(x) —pu(x)| — 0asn — oco.
a<x<b

@ This is true for f(x) = sinx on [0, 1] for any given nodes (p.15).

H% on [—5,5]. If interpolating
polynomials p,, are constructed using equally spaced nodes in

[—5,5], the sequence {a,, := ||f — pnl|oo } is not bounded.

@ Faber’s Theorem: For any prescribed, a < xém < e < x,ﬁ”) <b,

n>0,3f € Cla,b] s.t. the interpolating polynomials for f using these
nodes fail to converge uniformly to f.

@ Runge example: f(x) =

@ Theorem on convergence of interpolants: If f € C|a, b], then 3

a< x(()") < xgn) < e < xs,") <b,n>0,s.t. the interpolating
polynomials p,, for f using these nodes satisfy nlgn If —Pnllec = 0.
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Polynomial interpolants with different sets of nodes

Consider the function f(x) = L for x € [-5,5].
1+ x2

Polynomial interpolant with nine equally spaced nodes Polynomial interpolant with nine Cheybyshev nodes

-2

-3

s 4 3 =2 E o 1 2 3 4 5 s 4 3 2 -1 o 1 2 3 @ 5

The technique for choosing points to minimize the interpolating error
can be extended to a general closed interval [4, b] by using the change
of variables,

X:%((bfa)x+a+b),

to shift the numbers x; in [—1, 1] into the corresponding numbers ¥;.
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Divided differences (¥3Z)

@ Letf be a function whose values are known at points (nodes)
X0, X1, Xn-

@ We assume that these nodes are distinct, but they need not be
ordered.

@ We know there is a unique polynomial p, of degree at most
such that

p(x;) = f(x;) for0<i<n.

@ p;, can be constructed as a linear combination of 1, x, X2, X
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Divided differences (cont’d)

Instead, we should use the Newton form of the interpolating

polynomial:
q0(x) 1,
nx) = (x—xp)
p2(x) = (x—x0)(x —x1),
g3(x) = (x—x0)(x—x1)(x —x2),
gn(x) = (x—x0)(x —x1)(x —x2) - (x = x,-1).

o) = ¥ cigi().
=0
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Divided differences (cont’d)

@ The interpolation conditions give rise to a linear system of
equations for the unknown coefficients:

i)Cfo(Xi) =f(x;) for0<i<n.
=

@ The elements of the coefficient matrix are

a;j = qi(x;) for0<ij<n.

@ The (n+1) x (n+ 1) matrix A = (a;;) is lower triangular
because

-
|
—_

— g =qi(x;) = [[(xi—x) =0 ifi<j—1.
k=0
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Divided differences (cont’d)

@ For example, consider the case of three nodes with
pa(x) = coqo(x) + g1 (x) + caqa(x)
= co+a(x—x) +ca(x —x0)(x — x1).

Setting x = xg, x = x1, and x = xp, we have a lower triangular

system
1 0 0 Co f(xo)
1 (x1—xp) 0 cp | = | flx1)
1 (x2—x0) (x2—x0)(x2—x1) €2 f(x2)

@ Thus, ¢, depends on f at x¢, x1, - - - ,x;;, and define the notation

Cn ::f[xO,X], T /xn]/
which is called a divided difference of f.

n
® f[xo,x1,- -+, X,] is the coefficient of g, when ) _ ¢, interpolates
k=0
fatxo,xy, -, Xn.
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Divided differences (cont’d)

@ Note that

flxo] = flxo),  fliroyz] = LEU =F30)

X1 —Xo

@ Theorem on higher-order divided differences (337): In general,
divided differences satisfy the equation:
f[xlleI e /xn] *f[X(),Xl, tt /xnfl]

f[xolef' LX) = Xy — X .

Proof: Let py denote the polynomial of degree < k that
interpolates f at xg,x1, - - - , x¢. Let g denote the polynomial of
degree < n — 1 that interpolates f at xq,xp, - - - ,x;;. Then we can
check that

x—

" (9(x) = pu-1(x)),

Xn — X0
because the both sides of the equality have the same values at
X0,X1," -+ ,Xn and same degree < n. Examining the coefficient of
x" on the both sides, we arrive at the assertion. [
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Table of divided differences

@ If a table of function values (x;,f(x;)) is given, we can construct
from it a table of divided differences as follows:

xo  flxo] | flxo,xa]  flxo,x1,x2]  flxo, 1, %2, %3]
xp flal | flxuxe] flx,x,xs)

Xy flxa] | flxa, x3]

X3 flxs]

@ Note that the Newton interpolating polynomial can be written

in the form
n k—

pn(x) =Y flxo,x1,- -+, %] " (x —xj).

k=0

—_

T
o

@ The coefficients required in the Newton interpolating
polynomial occupy the top row in the divided difference table.

© Suh-Yuh Yan [&), Math. Dept., NCU, Taiwan Approximating Functions —29/80



Example

@ Compute a divided difference table from

Solution:

5 22
6 4|

@ The Newton interpolating polynomial can be written as

o) = 142(x—3) — S (x=3)(x— 1) + 1 (x—3)(x —~1)(x —5).
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Properties of divided differences

@ Theorem A: If (zg,z1, - - zn) is a permutation of (xo,x1, - - - Xy ), then

f[ZOIzll' t /ZTL] :f[xO/xl/' t /xl/l}'

@ Theorem B (Theorem on the interpolation error): Let p,, be the
polynomial of degree < n that interpolates f at n + 1 distinct nodes
X0, X1, ,Xp. Ift #x;,i=0,1---,n, then

n

f(&) = pu(t) = flxo,x1, -+, xn, 1] H(t = %)-
j=0
@ Theorem C (Theorem on derivatives and divided differences):
Iff € C"[a,b] and xo,x1,- - - , X are distinct points in [a,b], there
exists a point ¢ € (a,b) such that

f[x()le/' o /xi’l] =
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Proof of Theorem A

® flzo,21,- -+ ,2n] is the coefficient of x" in the polynomial of
degree < n that interpolates f at the nodes zg, z1, - - - , zp.

@ flxg,x1,- -, Xy is the coefficient of x”* in the polynomial of
degree < n that interpolates f at the nodes xg,x1, - - -, xy.

@ These two polynomials are the same. This leads to the conclusion. [
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Proof of Theorem B

Let g be the polynomial of degree < n + 1 that interpolates f at the
nodes xg, X1, - -+, Xy, t. Then

9(x) = pa(®) + flxo, 11,3, 1] :O(x _x).
Since g(t) = f(t), we obtain
£(6) = qt) = pa(t) + Flxo, 31, 1] :o(t 3.
Therefore,
£ = plt) = o+ 5 [T =)
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Proof of Theorem C

Let p,_1 be the polynomial of degree < n — 1 that interpolates f at
X0,X1,** ,Xy—1. By the Theorem on Polynomial Interpolation Error on
page 13, 3¢ € (a,b) such that

F) — pua () = £ (@) T (00— 7).
On the other hand, by Theorem B with t = x,,, we have
f(xn) _pnfl(xn) :f[xO/xl,' : H

Therefore, we have

f[x0/x1/' e /xn] = *'f(n) (C) O
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Hermite interpolation

@ Regular interpolation (Lagrange interpolation) refers to the
interpolation of a function at a set of nodes:

f(x;),i=0,1,---,n, aregiven.

@ Hermite interpolation refers to the interpolation of a function
and some of its derivatives at a set of nodes:

f(xi),i=0,1,---,n, aregiven,

and
some off’(xi),i =0,1,---,n, aregiven.
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Basic concepts

@ Given f and its derivative f’ at two distinct points, say x and x1,
find a polynomial with the lowest degree such that

p(xi)) =f(x;) and p'(x;) =f'(x;)) fori=0,1.

@ What degree? Since there are four conditions, a polynomial of
degree 3 seems reasonable; i.e., find a, b, c, d such that

p(x) = a+ bx + cx® +dx°
satisfies all the four conditions. Notice that
p'(x) = b+ 2cx + 3dx>.

@ (a,b,c,d) is the solution of the following system:

p(xo) = a+bxo+cxd+dxg =f(xo),
plxy) = a+bx1+cx%+dx% = f(x1),
p(xg) = b+ 2cxg+3dxd = f(x),
pl(x1) = b+2cx+3dxt = f'(x1).

@ Does this have a solution? Unique? How to solve it?
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Basic concepts (cont’d)

@ A better form of a polynomial of degree 3
p(x) = a+b(x —xg) +c(x —x0)* +d(x — x0)*(x — x7)
and
P (x) = b+ 2c(x — x0) +2d(x — x0) (x — x1) +d(x — x)%.

@ The four conditions on p can now be written in the form

f(xo) = a,
f'(xo) = b,
f(x1) = a+bhtch?,
fl(x1) = b+2ch+dH?,

where I := x1 — xp.
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Some difficulties

@ How general is this linear system approach?

@ An example: find a polynomial p that assumes these values:
p(0)=0,p(1) =1,p'(3) =2

p(x) = a+ bx +cx’.

(1) p(0) =0leads toa = 0.
(2) the other two conditions lead to

1 = p(l):b+cr
2 = p’(%)zb—l—c.

@ It doesn’t work!
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Birkhoff interpolation

@ Let us try a cubic polynomial
p(x) = a+ bx + cx® + dx>.

We discover that a solution exists but not unique.

(1) notice thata =0 (.- p(0) =0).
(2) the remaining conditions are

1 = b+c+d (-p(1)=1),
2 = b+c+2d (op(

@ The solution of this system is d = —4 and b + ¢ = 5 (infinitely
many solution).
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Hermite interpolation

@ In a Hermite interpolation, it is assumed that whenever a
derivative pU) (x;) is prescribed at note x;, then pU=1) (x;),
pU=2)(x;), - - -, p'(x;) and p(x;) will also be prescribed.

That is at node x;, k; := j + 1 interpolation conditions are
prescribed. Notice that k; may vary with i.

@ Letnodes be xg, x1, - - - ,x,. Suppose that at node x; these
interpolation conditions are given:

p(j)(xi) = Cjj for0<j<ki—1land0<i<n.

@ The total number of conditions on p denoted by m + 1, i.e.,

m4+1:=kg+ki+--+k
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Theorem on Hermite interpolation

There exists a unique polynomial p € 11y, fulfilling the Hermite
interpolation conditions, where 11,, is the space containing all polynomials
of degree less than or equal to m.

Sketch of the proof:

From the interpolation conditions, we have an associated linear
system problem, say Ax = b, where A is an (m + 1) x (m + 1) matrix.

To prove that A is nonsingular, it suffices to prove that Ax = 0 has
only the 0 solution.

That is, we need to show that if p € I, such that
p(i)(xi) =0 for0<j<ki—1and0<i<m,

then p(x) = 0. Such polynomial has a zero of multiplicity k; at x; for
0 < i < n. Therefore, p must be a multiple of g(x) := [T, (x — x;)k.

Since degree(q) = Y.y ki=m+1, wehavep(x) =0. O
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Remark

What happens in Hermite interpolation when there is only one node?
In this case, we require a polynomial p of degree k, for which

p(/) (x0) =coj for0<j<k
The solution is the Taylor polynomial:

¢
(x—x0)2 + -+ X (x —xp).

Co2
T k!

p(x) = coo + co1(x — xo) o
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Newton form of Hermite interpolation

Suppose that we are going to find a quadratic polynomial of the form
p(x) = co+ci(x —x0) +c2(x —x0)?,
which satisfies the requirements:
p(xo) =f(x0), p'(x0) =f'(x0) and p(x1) =f(x1).

Then
P (x) =1 +20(x — xp)

and we have a lower triangular system

1 0 0 ] [ Co ] [ f(XO) ]
0 1 0 C1 = f’(XO) .
1 (0 —x) (x1—x0) € fx1)

Thus, ¢g = f(x0) = f[xo0], c1 depends on f'(xp), and ¢, depends on
f(x0), f'(x0), and f(x1).
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Newton form of Hermite interpolation (cont’d)

@ Since limy_,y, f[xg, x] = limy_, J%{C(OXO) = f'(xp), we define

flxo, x0] := f'(x0).

Then ¢; = f'(x9) = f[xo, x0]. From

flo ] = FE) =fx0).
X1 — Xo

we have

flo 10,1 = TR0 xl —fox] _ fln) —flo) e
v X1~ Xo (x1 —x0)%  x1—xp

@ We can check that

p(x) = f(x0) + flxo, o] (x — x0) + f[x0, X0, 1] (x — o).
(see Problem 6.3.5)

© Suh-Yuh Yang ( ), Math. Dept., NCU, Taiwan Approximating Functions — 44 /80



Remarks

@ We write the divided difference table in this form:

xo  flxo] | flxo,x0] ?
xo  f[xo] ?

x1 flx]

The question marks stand for entries that are not yet computed.
Observe that xg appears twice and the prescribed value of
f'(x0) (= f[x0, x0]) has been placed in the column of first-order
divided differences.

@ From Theorem C (page 31),
1
fleo,xy, -+ 1] = 59 (@),

where ¢ belongs to the open interval containing xg, x1, - - - , Xk.
Hence, we define

1
= 2 (x).
Notice that when k > 2 need to include 1/k! in the table.

f[x()/xO/' c /xo] :
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Example

@ Use the extended Newton divided difference algorithm to
determine a polynomial that that takes these values:

p(1)=2, p'(1)=3, p)=6, p'(2)=7 and p"(2)=8.

1 23 7 ? 2 1 213 1 2 -1
1 217 ? ? 1 214 3 1
2 6|7 8/2 2 6|7 4

2 6 2 6

2 6 2 6

@ The interpolating polynomial is

p(x) =24+3(x—1)+ (x—1)* +2(x —1)?(x —2) — (x — 1)*(x — 2)%.
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Lagrange form of Hermite interpolation

Let us try to satisfy

p(xi) =co and p'(xj) =cy, 0<i<n
by a polynomial of the form

Z CloA + Z CllB
Similar to the Lagrange formula, we w1sh the following properties:
{ Al(xj) = 51']', { Bl(x]) = 0,
Af(x]) = 0 B;(x]) = 51]
Recall the notation "
X — X]'
K,-(x) = P
=04 T
Then, A; and B; can be defined as follows
Ai(x) = [1=2(x—x)li(x;)]3(x) 0<i<m,
Bi(x) = (x—x)(x) 0<i<n.
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Lagrange form of Hermite interpolation (cont’d)

Take a two-point case:

p(x) = f(x0)Ao(x) + f(x1)A1(x) +f'(x0)Bo(x) +f'(x1)B1(x),

where

Ap(x) = (1 —2(x—x0)ly(x0)) E5(x),
Ar(x) = (1-2(x—x1)t ()G (),
Bo(x) = (x—x0)(5(x),
Bi(x) = (x—x1)(x),

and
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Theorem on Hermite interpolation error estimate

Let xo,x1,- - - , Xy be distinct nodes in [a,b] and let f € C*"*2[a,b]. If pppi1
is the polynomial of degree at most 2n + 1 such that

pan+1 (%) = f(xi),  Phura(xi) =f'(xi) for0<i<n,
then to each x in [a, b] there corresponds a point & in (a,b) such that

7f(271+2)(§) n
f(x) — P2n+1 (x) - W i=0

(x — x;).

Sketch of the proof: The proof is similar to the proof of Theorem on
Lagrange interpolation error estimate, pp. 13-14.

Let x € [a,b] be any point other than x;,i = 0,1, - - ,n. Define

w(t) = ﬁ(t —x;)? (polynomial in f),
i=0
p(t) = f(t) —pas1(t) — Aw(t) (function in ),

A= W (a constant that makes ¢(x) =0). O
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Spline interpolation (B f&1FH1E)

@ A spline function consists of polynomial pieces on subintervals
joined together with certain continuity conditions. Formally,
suppose that n + 1 points (knots) tg,t1, - - - ,t, have been
specified and satisfy tg < t; < -+ < ty.

@ A spline function of degree k is a function S such that

(1) oneachinterval [t;_1,t;), S is a polynomial of degree < k.
(2) Shasa continuous (k — 1)st derivative on [fg, t,].

@ Example: A spline of degree 0 is a piecewise constant function.
A spline of degree 0 can be given explicitly in the form:

So(x
Sl (X

= (p X € [to,tl),
=0 X € [tl,tz),

— —

Snfl(x) =Cn—1 X e [tnfl/tn]-
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A spline of degree 1

A spline function of degree 1 takes the following form:

So(x) = apx + by x € [to, 1),
S1(x) = a1x+ by x € [t,t),
S(x) = ) )

Sn—1 (X) =0y—1X + bnfl X e [l’n,1, tn}-

@ Note that when k = 1, the k — 1 derivative has to be continuous,
i.e., S(x) has to be continuous on [ty, t,].

@ The pieces are not independent. They have to satisfy the
conditions

Si(tiv1) = Siz1(tiv1) fori=0,1,---,n—2.
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Cubic splines (k = 3)

@ Cubic splines are most famous and often used in practice.
@ We assume that a table of value has been given

x| to |
vyl

tl"" ‘ t,
yi o [y

On each interval [ty, t1], [t1, 2], -, [tu—1, tn], S is given by a
different cubic polynomial.

@ Let S; be the cubic polynomial that represent S on [t;, t;+1]. Thus,

Sp(x) x € [to, 1],
S1 (x) X € [tl,tz],

Snfl (x) x e [tnflrtn}
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Cubic splines (cont’d)

@ The polynomials S;_; and S; interpolate the same value at the
point ¢; and therefore

Sicq1(ti) =yi=Si(t;)) for1<i<n-—1.
This implies that S(x) is continuous.

@ Now), since k = 3, we also need to have both S'(x) and S” (x) to
be continuous.

@ How do we satisfy these conditions?

(1) we have 4n coefficients for n cubic polynomials.

(2) on each subinterval [t;, t;,1], we have 2 interpolation
conditions: S(t;) = y; and S(t;41) = y;11 = 2n conditions.

(3) continuity of S’ = one condition at each knot:
Si_,(t;) = Si(t;) = n — 1 conditions.

(4) similarly for S” = n — 1 conditions.

(5) total: 4n — 2 conditions, 4n coefficients. = two degrees of
freedom.
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Derive the equation for S;(x) on [t;,t; 1]

@ Letz; :=S5"(t;) for 0 <i < n. §"(x) is continuous everywhere
including the nodes

limS”(x) =z =limS"(x) for1 <i<n-—1.
X\Lti thi
@ Since S; is a cubic polynomial on [t;, t;1], S (x) is a degree 1
polynomial (linear function) satisfying S/ (t;) = z; and
S/ (ti+1) = ziy1. Then

Zigg Zit1,..
hi(tl+1 x)+ hz (.X t)

5/(x) =
where h; = tj 1 — t;.
@ Taking the integral twice to obtain §; itself,

z; z
6;1 (tip1 —x)% + ZH( t)® + C(x — t;) + D(tjz1 — x),

Si(x) = ol

where C and D are integration constants.
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Derive the equation for S;(x) on [t;,t;,1] (cont’d)

@ We need to use other conditions to determine C and D.

@ Using the interpolation conditions

Si(t) =y; and Si(tii1) = Yit1,

we obtain
zZ; z;
Silx) = g (i =07+ g = 1)
Vie1  Zigthiy, vz
(el gy (B,

@ Note: We still do not know the values of z; and z; 1.

© Suh-Yuh Yang ( Math. Dept., NCU, Taiwan Approximating Functions - 55/80



Derive the equation for S;(x) on [t;,t;,1] (cont’d)

@ Let us use the condition that S’ is continuous. This means

i1(t) = Si(t),
h; h; ;
S;(ti) - glzz 6 —Zi+1 — Zi + yz}:l ’
h. h - .
/ ) et § l i— 1 yl 1 Yi
i1(ti) ¢ 41T 3 L + o

@ Hence, we have

6
hi—1zi—1+2(hi+hi_1)zi +hiziy = E(%’Jrl yi) — (yi—vi-1),
1

1—1

where z;_1, z; and z;; 1 are the unknowns, everything else is
known.

@ The above equation is valid only for points t1, 5, - - ,t,_1. Why?

@ Boundary conditions: For zy and z,,, we can pick any values.
natural cubic spline: zy = z, = 0.
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A linear system

@ Putting all the conditions togethers, fori =1,2,--- ,n —1, we

have
[wg Iy 11 z1 ] [ v ]
hy up hy Zo v
hy wus  h3 z3 U3
. - . 7
hy—1 up—2 hy—o Zp—2 Un—2
L o tp1 | [ zZo1 | | On1 |
where

hi=tiy1 —ti, up=2(hi+hiq),

6
b = E(ym —Yi), vi=Dbi—bi1.
1

@ The matrix is strictly diagonally dominant, therefore it is
nonsingular!
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Smoothness properties

@ Theorem on optimality of natural cubic splines: If f" is
continuous in [a, b], then

b b
| 8" < [ ).
a a
Proof: See Textbook, page 355. U

@ Recall, the curvature of a smooth function f : R — R is
'@+ (F(x)2) 2 2 (0] i f(x) is small.

@ The natural cubic spline function has a curvature “smaller” than
that of f over an interval [a, b].
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A classical problem in best approximation

@ Problem: A continuous function f is defined on an interval [a, b].
For a fixed n, we ask for a polynomial p of degree at most n such
that

B s minimized.
argggxb If(x) —p(x)| is minimize

@ Remarks:

e Interpolations use pointwise values, e.g., Lagrange
interpolation: p(x;) = f(x;).
e Approximations use global information.
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Some backgrounds

Consider a normed linear space (E, | - ||) and a subspace G in E.

@ For any f € E, the distance from f to G is defined as

dist(f,G) = inf ||f — ¢||.
ist(f,G) glgc\lf gll

@ If an element g* € G has the property
If =&l = dist(f, G) = inf |If =g,
geG

then ¢* achieves this minimum deviation. It is a best
approximation of f from G.

The meaning of best approximation thus depends on the norm
chosen for the problem.
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Some backgrounds (cont’d)

@ In the classic problem mentioned on page 59, the normed space
isE := C[a, b], the space of all continuous functions defined on
[a,b], and the norm is defined by

[flleo := max [f(x)[  for f € Cla,b].

a<x<b

The subspace G is the space I1,, of all polynomials of degree < n.

@ In general, best approximations are not unique. For example, let
f(x) =cosxon [0,77/2]. Then f € C[0, r/2]. Let G = span{x},
then G is a finite-dimensional subspace of C[0, 7r/2]. Then
g(x) = Ax are best approximations forall0 < A <2/min || - ||

Solution: By definition, we have

dist(f, G) =

mf If =8lleo = inf max [f(x) —g(x)]

8€G0<x<m/2

1nf max |cosx —Ax| =1,
AR 0<x<7/2

and ||f —Ax[[eo =1, V0 <A <2/m.
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Theorem on existence of best approximation

If G is a finite-dimensional subspace in a normed linear space E, then each
point of E possesses at least one best approximation in G.

Sketch of the proof:

Letf € E. If g € G is a best approximation of f, then
If =gl < IIf = 0 = [If[| (since 0 & G).
Define K = {h € G: ||f —h|| <|[f||}. Then K is closed and bounded.

Since G is a finite-dimensional space and K C G, K is compact.

(Note: A normed linear space is finite-dimensional if and only if
every bounded subset is “relatively compact”)

" The function F : G — R defined by F(h) := ||f — k|| is continuous.
.. F attains minimum on the compact set K.

.3 g € Ksuch that ||f — g|| = minyeg ||f — h||( infyeq |If —h). O

—
(why?)
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Inner product spaces

@ A real inner product space is a real linear space E with an inner
product (-, -) : E x E — R satisfying the following properties:
foranyf,g € E,

(1) (f.f) > 0and (f,f) = 0if and only if f = 0.
) (f,h) = f).
(3) (f,ah+ Bg) = a(f,h) + B(f,g), forany a, B € R.

@ A natural norm associated with the inner product is defined as

Il = V. 1)

@ We write f Lgif (f,g) =0. WewritefLGifflgforallg € G.
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Examples

Two important inner-product spaces are
@ R" with

n
(v, y) =Y xiyi.
i=1
@ Cyla, b], the space of continuous functions on [4, b], with

1.9 = [ Fog@o

where w(x) is a fixed continuous positive function (for example,
w(x) = 1).
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Lemma on inner product space properties

In an inner product space, we have
n n
<Zazfi,g> =i {fiu8)-
i=1 i=1
IF + 811> = IIF11* + 24, 8) + i8>
IffLg, then ||f +g||* = |If|*>+ |Igl|* (Pythagorean law).
(£, &) < IfIligll (Schwarz inequality).

If + 811> + IIf = 811> = 20l 11> + 2Ig]I.
Proof: see Textbook, page 395. U
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Theorem on characterizing best approximation

Let G be a subspace in an inner product space E. For f € Eand g € G, the
following two properties are equivalent:

@ ¢ is a best approximation to f in G.

Q@ (f—9lG.
Proof: (2) = (1):If f — g LG, then for any & € G we have, by the
Pythagorean law,

If =Rl = 11(f =) + (g =W)I* = If = glI* + g — 1lI* = IIf — g

. we have (1).
(1)= (2): Leth € Gand A > 0. Then

0 < |f—g+Anl—Ilf —gl?
= |If = gl* +2A4f — g by + A% |l1]> — |If - gII?
= M2(f —g ) +Allnl*}.
Letting A — 0", we obtain (f — g, k) > 0. Replacing h by —h, we have
(f — g, —h) > 0. Therefore (f — g, h) = 0. Since h is arbitrary in G,
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Example

@ Determine the best approximation of the function f(x) = sinx
by a polynomial ¢(x) = c1x + cx° + c3x° on the interval [—1, 1]
using the inner product:

(.9) = [ fstdy vfger(-11)

@ The optimal function g has the property (f — ) LG. G is the
space generated by g1 (x) = x, g2(x) = ¥, and g3(x) = x°. Thus,
(¢ —f,8i) = 0isrequired fori =1,2,3.

c1(g1,8i) + c2(g2,8i) +¢3(83,8i) = {f,gi) fori=1,2,3.

@ These are called the normal equations.
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Example (cont’d)

@ Putting in the details, we have

1 0 1 .4 1 1 .
1 filx dx + ¢ filx dx +c3 fi1x6dx = lexsmxdx,
o [Lyxtdx+op [C x8dx+ o3 [T 2%y = [ x®sinxdx,
0 fil xOdx + ¢, fil xBdx 4¢3 j}l xdy = jil x° sin xdx.

@ Resultsina 3 x 3 linear system:

55 7 [a a—p
. o | =] -3a+58 |,
;s u 3 650 — 1018

where &« = sin1 and 8 = cos 1. Solving this system, we obtain
c1 ~ —0.99998, c; ~ —0.16652, and c3 ~ 0.00802.

@ This coefficient matrix is an example of the ill-conditioned
Hilbert matrix.
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The Gram matrix

@ Let {uy,uy,- -+ ,uy} be any basis for a subspace U. In order that
an element u € U be the best approximation to f, it is necessary
and sufficient that u — f | U by the Theorem on characterizing best
approximation (cf. page 66).

@ An equivalent condition is that (1 — f,u;) =0for1 <i <n.

Setting u = 2;1:1 cjuj, we find

n
Zq(uj, u)) = (f,u;) forl<i<n.
=1

@ These are the normal equations: 7 linear equations in the n
unknowns ¢y, ¢, - - -, ¢;. The coefficient matrix G is called a
Gram matrix, where G;; = (u;, u;) = (uj, ;).

@ Lemma on Gram matrix: If {uq,up,- -+, uy,} is linearly
independent, then its Gram matrix is nonsingular (see page 403).
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Orthonormal systems

@ A sequence of vectors fi, f», - - - in an inner product space is
(1) orthogonalif (f;,f;) =0 fori# j.
(2) orthonormalif (f;,f;) = d;; foralli,;j.

@ Theorem on constructing best approximation: Let {g1, -, gn}
be an orthonormal system in an inner product space E. The best
approximation of f by an element )" ¢;g; is obtained if and only if
¢i = (f,&i)-

Proof: Let G = span{g1,82,- - ,n}- Then

n
Y cigi is a best approximation of f in G
i=1

n n
= (f-Y cg) LG (f—=) cg) Lgiforj=12,--,n
i=1 i=1

0= <f— iclgi,g]’> =) — ici<gi/8j> ={f8) —¢ O
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Example

We reconsider the previous example: sinx ~ c1x + cox® + c3x°.
It is known that an orthonormal basis for our three-dimensional
subspace is provided by three Legendre polynomials as follows:

X
4 (x) = \/27%/
(x) - 5x3 — 3x
sV = a7
63x° — 70x3 + 15x
g:;(X) = 8\/27 .
/11
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Example (cont’d)

The solution is then the polynomial Y3 _; ¢;g;, where ¢; = {f,g;).
g = M/jl xsinxdx = 2\/?%(0( - B),
o = %\/ﬁ/jl sinx(5x° — 3x)dx = V/7/2(—18a + 28B),
= %\/ﬁ ./;11 sinx(63x° — 70x> + 15x)dx

1
= V117243200 — 6728p),

where & = sin1 and = cos 1. The approximate solution is
c1 ~0.738,cr =~ —3.37 x 1072, and c3 ~ 4.34 x 1074,
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Theorem on Gram-Schmidt process

Let {v1,v2, -+ ,vn} be a basis for a subspace U in an inner-product space.
Define recursively

-1 i1

—1
2 v;, U v,-—Z(vi,uj)uj fori=1,2,---,n
=1

=1

Then {uq,uy, - - ,uy} is an orthonormal base for U.

Proof: see Textbook, page 399. [
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Theorem on orthogonal polynomials

The sequence of polynomial defined inductively as following is orthogonal

pn(x) = (x —an)pn-1(x) — bupn—2(x) forn >2,
with po(x) =1, p1(x) = x —ay, and

(Xpn-1,Pn-1)/Pn-1,Pn-1) forn=>1,
<xpnflxpn—2>/<Pn—2/pn—2> fOVTl 2 2/

ay =
by =
where (-, -) is any inner product provided it has the property:
g,y = (f.gh), eg (f,8) = [ FR)g(x)w(x)dx.
Proof: Since each p; is a monic polynomial of degree i, (p;, p;) # 0 for
all i. We show by induction on n that

{pn,piy =0, fori=0,1,---,n—1

n=1: (p1,po) = ((x —a1)po,po) = {xpo,po) — a1{po, po) = 0.
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Proof of the theorem on orthogonal polynomials (cont’d)

Suppose that the assertion holds for n — 1. We wish to prove that it is
still true for 7.

<Pn/Pn71> = <xPn71/Pn71> — 0y (Pn71,Pn71> —by <Pn72/ Pn71> =0,
<Pnrpn—2> = <xPn71,Pn—2> —an <p17flrpn—2> — by <Pn—2/ Pn—2> =0.
Fori=0,1,--- ,n— 3, we have

(pnpi) = (XPu—1,Pi) — an(Pu-1,Pi) — bu(Pn—2,pi) = (Pn—1,xpi)
= A(pu—1,Pip1 +ai1pi + biyapi—1) = 0.
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Legendre polynomials

Combining the inner product (f,g) := f}l f(x)g(x)dx with the
theorem above, we have the Legendre polynomials:

po(x) =1.
a1 = (xpo, po)/ (po, po) = 0.
p1(x) = x.
ay = (xp1,p1)/ (p1, ;1) = 0.
by = (xp1,po)/ {po, po) = 3-

pa(x) = x* — %

Similarly, we have

pa(x) =20 — 3x.
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Chebyshev polynomials

The Chebyshev polynomials form an orthogonal system on [—1, 1]
using the following inner product:

/f 1—x'

Solution: Changing of variable x = cos 6, we have

) :/Onf(COSG)g(COSQ)dG.

Since Ty, (x) = cos(ncos™! x), we have for n # m,

T 7T
(Tn, Twm) = / cos(n@) cos(mf)do = % / cos(n + m)6 + cos(n — m)6do
0 0
1 [sin(n +m)f n sin(n — m)G} T
2 n+m n—m 0o
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Least squares problems

@ Given a dataset {(x;,f;),i=1,2,--- ,m}. We would like to
approximate the data set using functions in the following space:

F = span{¢1(x), ¢2(x),- -, ¢n(x) }, where ¢y (x), $a(x), - - -, Pn(x)

are the basis functions. In general, m >> n.
Functions in F take the form ¢(x) = c1¢1(x) + - - - + cnpn(x).

@ Question: can we find a ¢(x) € F, such as all conditions in the
data set are satisfied:

(P(xl) :](1/1 — 1/2/' ce,m,

which is the same as saying the following

adr(x1) +ada(x1) + - +enpu(x1) = fi,
cipr(x2) + 2o (x2) + -+ cupu(x2) = fo,

g (xm) + oo (xm) + -+ nn (xm) = fm-

@ This is not a square system, and usually has no solution.
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Least squares problems (cont’d)

@ No solution in the classical sense, but we can define a least
squares solution.

@ Define d; = f; — (c1¢1(x;) + coa(x;) + - - + cnpu(xi)),
i=1,2,---,m.

@ If we can’t make all d; = 0, can we make all of them small?

@ Define a vectord = (dq,dp, - - - ,dm)T, and
min ||d||%.
Using the 2-norm, we have

min(d? +d3 + - - +d2).
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Least squares problems (cont’d)

@ Define

m n

¥(cy, e, 0n) = ||d||5 = Z(fl - ZC]'(Pj(xi))z

i=1 j=1

@ Want to find ¢, ¢y, - -, ¢y such that ¥(cy,cp, - -+, c) is

minimized. 57
a—C[ =0, fort=12---,n

This leads to a linear system problem:
Gec=b.

Here G is an n x n Gram matrix.

uh-Yuh Yang ( ), Math. Dept., NCU, Taiw Approximating Functions — 80/80



