# MA 8020：Numerical Analysis II Approximating Functions 



## Suh－Yuh Yang（楊肅暟）

Department of Mathematics，National Central University Jhongli District，Taoyuan City 320317，Taiwan

First version：February 17，2019／Last updated：April 15， 2024

## Polynomial interpolation

－We are going to solve the following problem：given a table of $n+1$ data points $\left(x_{i}, y_{i}\right)$ ，

| $x$ | $x_{0}$ | $x_{1}$ | $x_{2}$ | $\cdots$ | $x_{n}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ | $y_{0}$ | $y_{1}$ | $y_{2}$ | $\cdots$ | $y_{n}$ |

we seek a polynomial $p_{n}$ of lowest possible degree for which

$$
p_{n}\left(x_{i}\right)=y_{i} \quad(0 \leq i \leq n) .
$$

－Such a polynomial $p_{n}(x)$ is said to interpolate the data．

## Theorem on polynomial interpolation

If $x_{0}, x_{1}, \cdots, x_{n}$ are $n+1$ distinct real（or complex）numbers，then for arbitrary $n+1$ values $y_{0}, y_{1}, \cdots y_{n}$ ，there exists a unique polynomial $p_{n}$ of degree at most $n$ such that

$$
p_{n}\left(x_{i}\right)=y_{i} \quad(0 \leq i \leq n) .
$$

Proof：（uniqueness）
Suppose there were two such polynomials $p_{n}$ and $q_{n}$ ．
Then $\left(p_{n}-q_{n}\right)\left(x_{i}\right)=0$ for $0 \leq i \leq n$ ．
Since the degree of $p_{n}-q_{n}$ can be at most $n$ ，this polynomial can have at most $n$ zeros if it is not the 0 polynomial．

Since the $x_{i}$ are distinct，$p_{n}-q_{n}$ has $n+1$ zeros．
Therefore ，it must be 0 ，namely，$p_{n} \equiv q_{n}$ ．

## Theorem on polynomial interpolation（cont＇d）

Proof：（existence）We will use the mathematical induction on $n$ ．
－For $n=0$ ，we take $p_{0} \equiv y_{0}$ ．Then $p_{0}\left(x_{0}\right)=y_{0}$ ．
－Suppose that it is true for $n=k-1$ ，i．e．，$\exists$ a polynomial $p_{k-1}$ of degree $\leq k-1$ with $p_{k-1}\left(x_{i}\right)=y_{i}$ for $0 \leq i \leq k-1$ ．We wish to prove that it is true for $n=k$ ．
（i）We try to construct $p_{k}$ in the form

$$
p_{k}(x)=p_{k-1}(x)+c\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right),
$$

where $c$ need to be determined．
（ii）Note that $\operatorname{deg}\left(p_{k}\right) \leq k$ and $p_{k}\left(x_{i}\right)=p_{k-1}\left(x_{i}\right)=y_{i}$ for
$0 \leq i \leq k-1$ ．We can determine $c$ from the condition $p_{k}\left(x_{k}\right)=y_{k}$ ，i．e．，

$$
y_{k}=p_{k-1}\left(x_{k}\right)+c\left(x_{k}-x_{0}\right)\left(x_{k}-x_{1}\right) \cdots\left(x_{k}-x_{k-1}\right) .
$$

Therefore，we have

$$
c=\frac{y_{k}-p_{k-1}\left(x_{k}\right)}{\left(x_{k}-x_{0}\right)\left(x_{k}-x_{1}\right) \cdots\left(x_{k}-x_{k-1}\right)} .
$$

That is，it is still true for $n=k$ ．

## Newton form of the interpolation polynomial

－We attempt to translate the constructive existence proof into an algorithm suitable for a computer program．
－Consider the first few cases：

$$
\begin{aligned}
& p_{0}(x)=c_{0}=y_{0}, \\
& p_{1}(x)=\underbrace{c_{0}}_{p_{0}(x)}+c_{1}\left(x-x_{0}\right), \\
& p_{2}(x)=\underbrace{c_{0}+c_{1}\left(x-x_{0}\right)}_{p_{1}(x)}+c_{2}\left(x-x_{0}\right)\left(x-x_{1}\right),
\end{aligned}
$$

In general，we have

$$
p_{k}(x)=p_{k-1}(x)+c_{k}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right)
$$

Thus，we can solve for the coefficients：

$$
c_{k}=\frac{y_{k}-p_{k-1}\left(x_{k}\right)}{\left(x_{k}-x_{0}\right)\left(x_{k}-x_{1}\right) \cdots\left(x_{k}-x_{k-1}\right)} .
$$

## Newton form of the interpolation polynomial（cont＇d）

－Notice that each $p_{k}$ is obtained simply by adding a single term to $p_{k-1}$ and $p_{k}$ has the form（the interpolation polynomials in Newton＇s form），

$$
\begin{aligned}
p_{k}(x)= & c_{0}+c_{1}\left(x-x_{0}\right)+c_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots \\
& +c_{k}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right)
\end{aligned}
$$

or expressed in more compact form，

$$
p_{k}(x)=\sum_{i=0}^{k} c_{i} \prod_{j=0}^{i-1}\left(x-x_{j}\right)
$$

$$
\begin{aligned}
& \text { where } \prod_{j=0}^{i-1}\left(x-x_{j}\right):=1 \text { if } i-1=-1 \text { and } \\
& \qquad c_{k}=\frac{y_{k}-p_{k-1}\left(x_{k}\right)}{\left(x_{k}-x_{0}\right)\left(x_{k}-x_{1}\right) \cdots\left(x_{k}-x_{k-1}\right)}, \quad k \geq 1
\end{aligned}
$$

## Example

－Consider the polynomial

$$
f(x)=4 x^{3}+35 x^{2}-84 x-954
$$

Some values of this function are given by

| $x$ | 5 | -7 | -6 | 0 |
| :--- | :--- | ---: | ---: | ---: |
| $y$ | 1 | -23 | -54 | -954 |

－The coefficients computed using the above algorithm are：
$c_{0}=y_{0}=1, c_{1}=2, c_{2}=3$ and $c_{3}=4 \Longrightarrow$
$p_{3}(x)=1+2(x-5)+3(x-5)(x+7)+4(x-5)(x+7)(x+6)$ ，
which is the Newton form of $f(x)=4 x^{3}+35 x^{2}-84 x-954$ ．
Note that $p_{3} \equiv f$ ．
－An alternative method is to use divided differences to compute the coefficients（see next section later）．

## Lagrange form of the interpolation polynomial

－Consider the alternative form expressing $p$

$$
p_{n}(x)=y_{0} \ell_{0}(x)+y_{1} \ell_{1}(x)+\cdots+y_{n} \ell_{n}(x)=\sum_{k=0}^{n} y_{k} \ell_{k}(x)
$$

where $\ell_{0}, \ell_{1}, \cdots \ell_{n}$ are polynomials that depend on the nodes $x_{0}, x_{1}, \cdots, x_{n}$ ，but not on the ordinates $y_{0}, y_{1}, \cdots, y_{n}$ ．
－$\ell_{0}, \ell_{1}, \ldots \ell_{n}$ are cardinal functions with property：

$$
\ell_{i}\left(x_{j}\right)=\delta_{i j} .
$$

Recall that the Kronecker delta is defined by

$$
\delta_{i j}= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j .\end{cases}
$$

## Lagrange form of the interpolation polynomial（cont＇d）

－Let＇s consider $\ell_{0}$ ．It is a polynomial of degree $n$ that takes the value 0 at $x_{1}, x_{2}, \cdots, x_{n}$ and the value 1 at $x_{0}$ ．It must be of the form：

$$
\ell_{0}(x)=c\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)=c \prod_{j=1}^{n}\left(x-x_{j}\right)
$$

－Setting $x=x_{0} \Longrightarrow 1=c \prod_{j=1}^{n}\left(x_{0}-x_{j}\right)$ or $c=\prod_{j=1}^{n}\left(x_{0}-x_{j}\right)^{-1}$ ．
So，we have

$$
\ell_{0}(x)=\prod_{j=1}^{n} \frac{x-x_{j}}{x_{0}-x_{j}} .
$$

－Each $\ell_{i}$ is obtained by similar reasoning：

$$
\ell_{i}(x)=\prod_{j=0, j \neq i}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}, \quad 0 \leq i \leq n .
$$

## Example

| $x$ | 5 | -7 | -6 | 0 |
| :--- | ---: | ---: | ---: | ---: |
| $y$ | 1 | -23 | -54 | -954 |

The nodes are $5,-7,-6,0$ ．So we have

$$
\begin{aligned}
& \ell_{0}(x)=\frac{(x+7)(x+6) x}{(5+7)(5+6) 5}=\frac{1}{660} x(x+6)(x+7) \\
& \ell_{1}(x)=\frac{(x-5)(x+6) x}{(-7-5)(-7+6)(-7)}=\frac{-1}{84} x(x-5)(x+6) \\
& \ell_{2}(x)=\frac{(x-5)(x+7) x}{(-6-5)(-6+7)(-6)}=\frac{-1}{66} x(x-5)(x+7) \\
& \ell_{3}(x)=\frac{(x-5)(x+7)(x+6)}{(0-5)(0+7)(0+6)}=\frac{-1}{210}(x-5)(x+6)(x+7)
\end{aligned}
$$

Thus，the interpolating polynomial is：

$$
p_{3}(x)=1 \ell_{0}(x)-23 \ell_{1}(x)-54 \ell_{2}(x)-954 \ell_{3}(x) .
$$

## Other algorithm

－Assume that

$$
p_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

－The interpolation conditions，$p_{n}\left(x_{i}\right)=y_{i}$ for $0 \leq i \leq n$ ，lead to a system of $n+1$ linear equations for determining $a_{0}, a_{1}, \cdots, a_{n}$ ：

$$
\underbrace{\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n}
\end{array}\right]}_{X}\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] .
$$

－The coefficient matrix $X$ is called the Vandermonde matrix．It is nonsingular with $\operatorname{det} X=\prod_{0 \leq i<j \leq n}\left(x_{j}-x_{i}\right) \neq 0$ ，but is often ill conditioned．Therefore，this approach is not recommended．

## Homework \＃1

Recall the Vandermonde matrix $X$ in the previous page，and define

$$
V_{n}(x)=\operatorname{det}\left[\begin{array}{lllll}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
\vdots & \vdots & \ddots & & \vdots \\
1 & x_{n-1} & x_{n-1}^{2} & \cdots & x_{n-1}^{n} \\
1 & x & x^{2} & \cdots & x^{n}
\end{array}\right]
$$

－Show $V_{n}(x)$ is a polynomial of degree $n$ ，and that its roots are $x_{0}, x_{1}, \cdots, x_{n-1}$ ．Obtain the formula

$$
V_{n}(x)=V_{n-1}\left(x_{n-1}\right)\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right) .
$$

Hint：expand the last row of $V_{n}(x)$ by minors to show $V_{n}(x)$ is a polynomial of degree $n$ and to find the coefficient of the term $x^{n}$ ．
－Show that

$$
\operatorname{det} X=V_{n}\left(x_{n}\right)=\prod_{0 \leq i<j \leq n}\left(x_{j}-x_{i}\right)
$$

## Theorem on polynomial interpolation error

Let $f$ be a given real－valued function in $C^{n+1}[a, b]$ ，and let $p_{n}$ be the polynomial of degree at most $n$ that interpolates the function $f$ at $n+1$ distinct points（nodes）$x_{0}, x_{1}, \cdots, x_{n}$ in the interval $[a, b]$ ．To each $x$ in $[a, b]$ there corresponds a point $\xi_{x} \in(a, b)$ such that

$$
f(x)-p_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}\left(\xi_{x}\right) \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

Proof：Let $x \in[a, b]$ be any point other than $x_{i}, i=0,1, \cdots, n$ ．Define

$$
\begin{aligned}
w(t) & \left.=\prod_{i=0}^{n}\left(t-x_{i}\right) \quad \text { (polynomial in } t\right), \\
\varphi(t) & \left.=f(t)-p_{n}(t)-\lambda w(t) \quad \text { (function in } t\right), \\
\lambda & \left.=\frac{f(x)-p_{n}(x)}{w(x)} \quad \text { (a constant that makes } \varphi(x)=0\right) .
\end{aligned}
$$

Then $\varphi \in C^{n+1}[a, b]$ and $\varphi$ vanishes at the $n+2$ points $x, x_{0}, x_{1}, \cdots, x_{n}$ ． By Rolle＇s Theorem，$\varphi^{\prime}$ has at least $n+1$ distinct zeros in $(a, b)$ ．

## Theorem on polynomial interpolation error（cont＇d）

Proof：（continued）
Repeating this process，we conclude eventually that $\varphi^{(n+1)}$ has at least one zero $\xi_{x} \in(a, b)$ ．

$$
\begin{aligned}
\varphi^{(n+1)}(t) & =f^{(n+1)}(t)-p_{n}^{(n+1)}(t)-\lambda w^{(n+1)}(t) \\
& =f^{(n+1)}(t)-(n+1)!\lambda
\end{aligned}
$$

Hence，we have

$$
\begin{aligned}
0=\varphi^{(n+1)}\left(\xi_{x}\right) & =f^{(n+1)}\left(\xi_{x}\right)-(n+1)!\lambda \\
& =f^{(n+1)}\left(\xi_{x}\right)-(n+1)!\frac{f(x)-p_{n}(x)}{w(x)}
\end{aligned}
$$

This completes the proof．

## Example

If $f(x)=\sin x$ is approximated by a polynomial of degree 9 that interpolates $f$ at 10 points in the interval $[0,1]$ ，how large is the error on this interval？

Since

$$
\left|f^{(10)}\left(\xi_{x}\right)\right| \leq 1 \quad \text { and } \quad \prod_{i=0}^{9}\left|x-x_{i}\right| \leq 1
$$

we have for all $x$ in $[0,1]$ ，

$$
\left|\sin x-p_{9}(x)\right| \leq \frac{1}{10!}<2.8 \times 10^{-7}
$$

## Chebyshev polynomials

－The Chebyshev polynomials（of the first kind）are defined recursively as follows：

$$
\left\{\begin{aligned}
T_{0}(x) & =1 \\
T_{1}(x) & =x \\
T_{n+1}(x) & =2 x T_{n}(x)-T_{n-1}(x) \quad \text { for } n \geq 1
\end{aligned}\right.
$$

－The explicit forms of the next few $T_{n}$ are：

$$
\begin{aligned}
& T_{2}(x)=2 x^{2}-1 \\
& T_{3}(x)=4 x^{3}-3 x \\
& T_{4}(x)=8 x^{4}-8 x^{2}+1 \\
& T_{5}(x)=16 x^{5}-20 x^{3}+5 x \\
& T_{6}(x)=32 x^{6}-48 x^{4}+18 x^{2}-1
\end{aligned}
$$

－These polynomials arose when Chebyshev was studying the motion of linkages in a steam locomotive．

Some Chebyshev polynomials：$T_{0}, T_{1}, \cdots, T_{5}$

（quoted from wikipedia．org）

## Properties of the Chebyshev polynomials

－Theorem：For $x$ in the interval $[-1,1]$ ，

$$
T_{n}(x)=\cos \left(n \cos ^{-1} x\right) \quad \text { for } n \geq 0
$$

Proof：Recall the addition formula for the cosine：

$$
\begin{aligned}
\cos (n+1) \theta & =\cos \theta \cos n \theta-\sin \theta \sin n \theta \\
\cos (n-1) \theta & =\cos \theta \cos n \theta+\sin \theta \sin n \theta .
\end{aligned}
$$

Thus，we have $\cos (n+1) \theta=2 \cos \theta \cos n \theta-\cos (n-1) \theta$ ．（＊）
Let $\theta=\cos ^{-1} x$ ．Then $x=\cos \theta$ ．Define

$$
f_{n}(x)=\cos \left(n \cos ^{-1} x\right)=\cos (n \theta)
$$

From（ $\star$ ），we have

$$
\left\{\begin{aligned}
f_{0}(x) & =1 \\
f_{1}(x) & =x \\
f_{n+1}(x) & =2 x f_{n}(x)-f_{n-1}(x) \quad \text { for } n \geq 1 .
\end{aligned}\right.
$$

Therefore，$f_{n}=T_{n}$ for all $n \geq 0$ ．

## Properties of the Chebyshev polynomials（cont＇d）

－$\left|T_{n}(x)\right| \leq 1$ for $-1 \leq x \leq 1$ ．
－$T_{n}\left(\cos \frac{i \pi}{n}\right)=(-1)^{i}$ for $0 \leq i \leq n$ ，where $x_{i}=\cos \frac{i \pi}{n}$ are the location of absolute extreme points of $T_{n}$ on $[-1,1]$ ．
－$T_{n}\left(\cos \frac{2 i-1}{2 n} \pi\right)=0$ for $1 \leq i \leq n$ ，where $x_{i}=\cos \frac{2 i-1}{2 n} \pi$ are the location of zero roots of $T_{n}$ on $[-1,1]$（in fact，on $\mathbb{R}$ ）．


## Monic polynomials

－A monic polynomial is one in which the term of highest degree has a coefficient of unity．
－From the definition of the Chebyshev polynomials，we see that in $T_{n}(x)$ the term of highest degree is $2^{n-1} x^{n}$ for $n \geq 1$ ．
Therefore， $2^{1-n} T_{n}$ is a monic polynomial for $n \geq 1$ ．
－Theorem：If $p$ is a monic polynomial of degree $n$ ，then

$$
\|p\|_{\infty}:=\max _{-1 \leq x \leq 1}|p(x)| \geq 2^{1-n} .
$$

Proof：Suppose that $|p(x)|<2^{1-n}$ for $-1 \leq x \leq 1$ ．Let $q(x)=2^{1-n} T_{n}(x)$ and $x_{i}=\cos \left(\frac{i \pi}{n}\right), 0 \leq i \leq n$ ．Then $q$ is a monic polynomial of degree $n$ ．We have

$$
\begin{aligned}
(-1)^{i} p\left(x_{i}\right) & \leq\left|p\left(x_{i}\right)\right|<2^{1-n}=(-1)^{i} q\left(x_{i}\right) \\
& \Longrightarrow(-1)^{i}\left(q\left(x_{i}\right)-p\left(x_{i}\right)\right)>0, \quad \text { for } 0 \leq i \leq n .
\end{aligned}
$$

This shows that $q-p$ oscillates in sign at least $n+1$ times on $[-1,1]$ ． Therefore，$q-p$ have at least $n$ roots in $(-1,1)$ ．
This is a contradiction since $q-p$ has degree at most $n-1$
（Note that $x^{n}$ will not appear in $q-p$ ）．

## Choosing the nodes

Theorem：If the nodes $x_{i}$ are the roots of the Chebyshev polynomial $T_{n+1}$ ， then the error formula for the interpolation polynomial $p_{n}$ yields

$$
\left|f(x)-p_{n}(x)\right| \leq \frac{1}{2^{n}(n+1)!} \max _{|t| \leq 1}\left|f^{(n+1)}(t)\right|, \quad-1 \leq x \leq 1 .
$$

Proof：By the error formula of the polynomial interpolation $p_{n}$ of $f$ ，

$$
\max _{|x| \leq 1}\left|f(x)-p_{n}(x)\right| \leq \frac{1}{(n+1)!} \max _{|t| \leq 1}\left|f^{(n+1)}(t)\right| \max _{|x| \leq 1}\left|\prod_{i=0}^{n}\left(x-x_{i}\right)\right| .
$$

By the theorem on the previous page，we have

$$
\max _{|x| \leq 1}\left|\prod_{i=0}^{n}\left(x-x_{i}\right)\right| \geq 2^{-n}
$$

Let $x_{i}=\cos \left(\frac{2 i+1}{2 n+2} \pi\right)$ for $0 \leq i \leq n$ ，the roots of $T_{n+1}$ ．Then we can show that $2^{-n} T_{n+1}(x)=\prod_{i=0}^{n}\left(x-x_{i}\right)$ ．Since $\left|T_{n}(x)\right| \leq 1$ for $-1 \leq x \leq 1$ ，we have

$$
\max _{|x| \leq 1}\left|\prod_{i=0}^{n}\left(x-x_{i}\right)\right|=\max _{|x| \leq 1}\left|2^{-n} T_{n+1}(x)\right| \leq 2^{-n} .
$$

（cf．pp．221－229，E．Isaacson and H．B．Keller，Analysis of Numerical Methods，1966）

## The convergence of interpolating polynomials

Assume that $f \in C[a, b]$ ，and if interpolating polynomials $p_{n}$ of higher and higher degree are constructed for $f$ ，then the natural expectation is that these polynomials will converge to $f$ uniformly on $[a, b]$ ．i．e．，

$$
\left\|f-p_{n}\right\|_{\infty}:=\max _{a \leq x \leq b}\left|f(x)-p_{n}(x)\right| \rightarrow 0 \text { as } n \rightarrow \infty .
$$

－This is true for $f(x)=\sin x$ on $[0,1]$ for any given nodes（p．15）．
－Runge example：$f(x)=\frac{1}{1+x^{2}}$ on $[-5,5]$ ．If interpolating polynomials $p_{n}$ are constructed using equally spaced nodes in $[-5,5]$ ，the sequence $\left\{a_{n}:=\left\|f-p_{n}\right\|_{\infty}\right\}$ is not bounded．
－Faber＇s Theorem：For any prescribed，$a \leq x_{0}^{(n)}<\cdots<x_{n}^{(n)} \leq b$ ， $n \geq 0, \exists f \in C[a, b]$ s．t．the interpolating polynomials for $f$ using these nodes fail to converge uniformly to $f$ ．
－Theorem on convergence of interpolants：Iff $\in C[a, b]$ ，then $\exists$ $a \leq x_{0}^{(n)}<x_{1}^{(n)}<\cdots<x_{n}^{(n)} \leq b, n \geq 0$ ，s．t．the interpolating polynomials $p_{n}$ for $f$ using these nodes satisfy $\lim _{n \rightarrow \infty}\left\|f-p_{n}\right\|_{\infty}=0$ ．

## Polynomial interpolants with different sets of nodes

Consider the function $f(x)=\frac{1}{1+x^{2}}$ for $x \in[-5,5]$ ．


The technique for choosing points to minimize the interpolating error can be extended to a general closed interval $[a, b]$ by using the change of variables，

$$
\tilde{x}=\frac{1}{2}((b-a) x+a+b),
$$

to shift the numbers $x_{i}$ in $[-1,1]$ into the corresponding numbers $\widetilde{x}_{i}$ ．

## Divided differences（均差）

－Let $f$ be a function whose values are known at points（nodes） $x_{0}, x_{1}, \cdots x_{n}$.
－We assume that these nodes are distinct，but they need not be ordered．
－We know there is a unique polynomial $p_{n}$ of degree at most $n$ such that

$$
p\left(x_{i}\right)=f\left(x_{i}\right) \quad \text { for } 0 \leq i \leq n .
$$

－$p_{n}$ can be constructed as a linear combination of $1, x, x^{2}, \cdots, x^{n}$ ．

## Divided differences（cont＇d）

Instead，we should use the Newton form of the interpolating polynomial：

$$
\begin{aligned}
q_{0}(x) & =1 \\
q_{1}(x) & =\left(x-x_{0}\right) \\
q_{2}(x) & =\left(x-x_{0}\right)\left(x-x_{1}\right) \\
q_{3}(x)= & \left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \\
& \vdots \\
q_{n}(x)= & \left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n-1}\right) . \\
& \quad p_{n}(x)=\sum_{j=0}^{n} c_{j} q_{j}(x) .
\end{aligned}
$$

## Divided differences（cont＇d）

－The interpolation conditions give rise to a linear system of equations for the unknown coefficients：

$$
\sum_{j=0}^{n} c_{j} q_{j}\left(x_{i}\right)=f\left(x_{i}\right) \quad \text { for } 0 \leq i \leq n
$$

－The elements of the coefficient matrix are

$$
a_{i j}=q_{j}\left(x_{i}\right) \quad \text { for } 0 \leq i, j \leq n .
$$

－The $(n+1) \times(n+1)$ matrix $A=\left(a_{i j}\right)$ is lower triangular because

$$
\begin{aligned}
& q_{j}(x)=\prod_{k=0}^{j-1}\left(x-x_{k}\right) \\
& \Longrightarrow a_{i j}=q_{j}\left(x_{i}\right)=\prod_{k=0}^{j-1}\left(x_{i}-x_{k}\right)=0 \quad \text { if } i \leq j-1 .
\end{aligned}
$$

## Divided differences（cont＇d）

－For example，consider the case of three nodes with

$$
\begin{aligned}
p_{2}(x) & =c_{0} q_{0}(x)+c_{1} q_{1}(x)+c_{2} q_{2}(x) \\
& =c_{0}+c_{1}\left(x-x_{0}\right)+c_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)
\end{aligned}
$$

Setting $x=x_{0}, x=x_{1}$ ，and $x=x_{2}$ ，we have a lower triangular system

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & \left(x_{1}-x_{0}\right) & 0 \\
1 & \left(x_{2}-x_{0}\right) & \left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
f\left(x_{0}\right) \\
f\left(x_{1}\right) \\
f\left(x_{2}\right)
\end{array}\right] .
$$

－Thus，$c_{n}$ depends on $f$ at $x_{0}, x_{1}, \cdots, x_{n}$ ，and define the notation

$$
c_{n}:=f\left[x_{0}, x_{1}, \cdots, x_{n}\right],
$$

which is called a divided difference of $f$ ．
－$f\left[x_{0}, x_{1}, \cdots, x_{n}\right]$ is the coefficient of $q_{n}$ when $\sum_{k=0}^{n} c_{k} q_{k}$ interpolates $f$ at $x_{0}, x_{1}, \cdots, x_{n}$ ．

## Divided differences（cont＇d）

－Note that

$$
f\left[x_{0}\right]=f\left(x_{0}\right), \quad f\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

－Theorem on higher－order divided differences（均差）：In general， divided differences satisfy the equation：

$$
f\left[x_{0}, x_{1}, \cdots, x_{n}\right]=\frac{f\left[x_{1}, x_{2}, \cdots, x_{n}\right]-f\left[x_{0}, x_{1}, \cdots, x_{n-1}\right]}{x_{n}-x_{0}} .
$$

Proof：Let $p_{k}$ denote the polynomial of degree $\leq k$ that interpolates $f$ at $x_{0}, x_{1}, \cdots, x_{k}$ ．Let $q$ denote the polynomial of degree $\leq n-1$ that interpolates $f$ at $x_{1}, x_{2}, \cdots, x_{n}$ ．Then we can check that

$$
p_{n}(x)=q(x)+\frac{x-x_{n}}{x_{n}-x_{0}}\left(q(x)-p_{n-1}(x)\right)
$$

because the both sides of the equality have the same values at $x_{0}, x_{1}, \cdots, x_{n}$ and same degree $\leq n$ ．Examining the coefficient of $x^{n}$ on the both sides，we arrive at the assertion．

## Table of divided differences

－If a table of function values $\left(x_{i}, f\left(x_{i}\right)\right)$ is given，we can construct from it a table of divided differences as follows：

$$
\begin{array}{ll|lll}
\hline x_{0} & f\left[x_{0}\right] & f\left[x_{0}, x_{1}\right] & f\left[x_{0}, x_{1}, x_{2}\right] & f\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \\
x_{1} & f\left[x_{1}\right] & f\left[x_{1}, x_{2}\right] & f\left[x_{1}, x_{2}, x_{3}\right] & \\
x_{2} & f\left[x_{2}\right] & f\left[x_{2}, x_{3}\right] & & \\
x_{3} & f\left[x_{3}\right] & & & \\
\hline
\end{array}
$$

－Note that the Newton interpolating polynomial can be written in the form

$$
p_{n}(x)=\sum_{k=0}^{n} f\left[x_{0}, x_{1}, \cdots, x_{k}\right] \prod_{j=0}^{k-1}\left(x-x_{j}\right)
$$

－The coefficients required in the Newton interpolating polynomial occupy the top row in the divided difference table．

## Example

－Compute a divided difference table from

| $x_{i}$ | 3 | 1 | 5 | 6 |
| :---: | ---: | ---: | ---: | ---: |
| $f\left(x_{i}\right)$ | 1 | -3 | 2 | 4 |

Solution：

$$
\begin{array}{ll|lll}
3 & 1 & 2 & -\frac{3}{8} & \frac{7}{40} \\
1 & -3 & \frac{5}{4} & \frac{3}{20} & \\
5 & 2 \mid & 2 & \\
6 & 4 & & & \\
& &
\end{array}
$$

－The Newton interpolating polynomial can be written as

$$
p_{3}(x)=1+2(x-3)-\frac{3}{8}(x-3)(x-1)+\frac{7}{40}(x-3)(x-1)(x-5) .
$$

## Properties of divided differences

－Theorem A：If $\left(z_{0}, z_{1}, \cdots z_{n}\right)$ is a permutation of $\left(x_{0}, x_{1}, \cdots x_{n}\right)$ ，then

$$
f\left[z_{0}, z_{1}, \cdots, z_{n}\right]=f\left[x_{0}, x_{1}, \cdots, x_{n}\right] .
$$

－Theorem B（Theorem on the interpolation error）：Let $p_{n}$ be the polynomial of degree $\leq n$ that interpolates $f$ at $n+1$ distinct nodes $x_{0}, x_{1}, \cdots, x_{n}$ ．If $t \neq x_{i}, i=0,1 \cdots, n$ ，then

$$
f(t)-p_{n}(t)=f\left[x_{0}, x_{1}, \cdots, x_{n}, t\right] \prod_{j=0}^{n}\left(t-x_{j}\right)
$$

－Theorem C（Theorem on derivatives and divided differences）： If $f \in C^{n}[a, b]$ and $x_{0}, x_{1}, \cdots, x_{n}$ are distinct points in $[a, b]$ ，there exists a point $\xi \in(a, b)$ such that

$$
f\left[x_{0}, x_{1}, \cdots, x_{n}\right]=\frac{1}{n!} f^{(n)}(\xi)
$$

## Proof of Theorem A

－$f\left[z_{0}, z_{1}, \cdots, z_{n}\right]$ is the coefficient of $x^{n}$ in the polynomial of degree $\leq n$ that interpolates $f$ at the nodes $z_{0}, z_{1}, \cdots, z_{n}$ ．
－$f\left[x_{0}, x_{1}, \cdots, x_{n}\right]$ is the coefficient of $x^{n}$ in the polynomial of degree $\leq n$ that interpolates $f$ at the nodes $x_{0}, x_{1}, \cdots, x_{n}$ ．
－These two polynomials are the same．This leads to the conclusion．

## Proof of Theorem B

Let $q$ be the polynomial of degree $\leq n+1$ that interpolates $f$ at the nodes $x_{0}, x_{1}, \cdots, x_{n}, t$ ．Then

$$
q(x)=p_{n}(x)+f\left[x_{0}, x_{1}, \cdots, x_{n}, t\right] \prod_{j=0}^{n}\left(x-x_{j}\right) .
$$

Since $q(t)=f(t)$ ，we obtain

$$
f(t)=q(t)=p_{n}(t)+f\left[x_{0}, x_{1}, \cdots, x_{n}, t\right] \prod_{j=0}^{n}\left(t-x_{j}\right)
$$

Therefore，

$$
f(t)-p_{n}(t)=f\left[x_{0}, x_{1}, \cdots, x_{n}, t\right] \prod_{j=0}^{n}\left(t-x_{j}\right) .
$$

## Proof of Theorem C

Let $p_{n-1}$ be the polynomial of degree $\leq n-1$ that interpolates $f$ at $x_{0}, x_{1}, \cdots, x_{n-1}$ ．By the Theorem on Polynomial Interpolation Error on page $13, \exists \xi \in(a, b)$ such that

$$
f\left(x_{n}\right)-p_{n-1}\left(x_{n}\right)=\frac{1}{n!} f^{(n)}(\xi) \prod_{j=0}^{n-1}\left(x_{n}-x_{j}\right)
$$

On the other hand，by Theorem B with $t=x_{n}$ ，we have

$$
f\left(x_{n}\right)-p_{n-1}\left(x_{n}\right)=f\left[x_{0}, x_{1}, \cdots, x_{n}\right] \prod_{j=0}^{n-1}\left(x_{n}-x_{j}\right)
$$

Therefore，we have

$$
f\left[x_{0}, x_{1}, \cdots, x_{n}\right]=\frac{1}{n!} f^{(n)}(\xi) . \quad \square
$$

## Hermite interpolation

－Regular interpolation（Lagrange interpolation）refers to the interpolation of a function at a set of nodes：

$$
f\left(x_{i}\right), i=0,1, \cdots, n, \quad \text { are given. }
$$

－Hermite interpolation refers to the interpolation of a function and some of its derivatives at a set of nodes：

$$
f\left(x_{i}\right), i=0,1, \cdots, n, \quad \text { are given }
$$

and

$$
\text { some of } f^{\prime}\left(x_{i}\right), i=0,1, \cdots, n, \quad \text { are given. }
$$

## Basic concepts

－Given $f$ and its derivative $f^{\prime}$ at two distinct points，say $x_{0}$ and $x_{1}$ ， find a polynomial with the lowest degree such that

$$
p\left(x_{i}\right)=f\left(x_{i}\right) \quad \text { and } \quad p^{\prime}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right) \quad \text { for } i=0,1 .
$$

－What degree？Since there are four conditions，a polynomial of degree 3 seems reasonable；i．e．，find $a, b, c, d$ such that

$$
p(x)=a+b x+c x^{2}+d x^{3}
$$

satisfies all the four conditions．Notice that

$$
p^{\prime}(x)=b+2 c x+3 d x^{2}
$$

－$(a, b, c, d)$ is the solution of the following system：

$$
\begin{aligned}
p\left(x_{0}\right) & =a+b x_{0}+c x_{0}^{2}+d x_{0}^{3}=f\left(x_{0}\right), \\
p\left(x_{1}\right) & =a+b x_{1}+c x_{1}^{2}+d x_{1}^{3}=f\left(x_{1}\right), \\
p^{\prime}\left(x_{0}\right) & =b+2 c x_{0}+3 d x_{0}^{2}=f^{\prime}\left(x_{0}\right), \\
p^{\prime}\left(x_{1}\right) & =b+2 c x_{1}+3 d x_{1}^{2}=f^{\prime}\left(x_{1}\right) .
\end{aligned}
$$

－Does this have a solution？Unique？How to solve it？

## Basic concepts（cont＇d）

－A better form of a polynomial of degree 3

$$
p(x)=a+b\left(x-x_{0}\right)+c\left(x-x_{0}\right)^{2}+d\left(x-x_{0}\right)^{2}\left(x-x_{1}\right)
$$

and

$$
p^{\prime}(x)=b+2 c\left(x-x_{0}\right)+2 d\left(x-x_{0}\right)\left(x-x_{1}\right)+d\left(x-x_{0}\right)^{2} .
$$

－The four conditions on $p$ can now be written in the form

$$
\begin{aligned}
f\left(x_{0}\right) & =a \\
f^{\prime}\left(x_{0}\right) & =b \\
f\left(x_{1}\right) & =a+b h+c h^{2} \\
f^{\prime}\left(x_{1}\right) & =b+2 c h+d h^{2}
\end{aligned}
$$

where $h:=x_{1}-x_{0}$ ．

## Some difficulties

－How general is this linear system approach？
－An example：find a polynomial $p$ that assumes these values： $p(0)=0, p(1)=1, p^{\prime}\left(\frac{1}{2}\right)=2$ ．

$$
p(x)=a+b x+c x^{2} .
$$

（1）$p(0)=0$ leads to $a=0$ ．
（2）the other two conditions lead to

$$
\begin{aligned}
1 & =p(1)=b+c \\
2 & =p^{\prime}\left(\frac{1}{2}\right)=b+c
\end{aligned}
$$

－It doesn＇t work！

## Birkhoff interpolation

－Let us try a cubic polynomial

$$
p(x)=a+b x+c x^{2}+d x^{3}
$$

We discover that a solution exists but not unique．
（1）notice that $a=0$ $(\because p(0)=0)$ ．
（2）the remaining conditions are

$$
\begin{array}{lll}
1 & =b+c+d & (\because p(1)=1) \\
2 & =b+c+\frac{3}{4} d & \left(\because p^{\prime}\left(\frac{1}{2}\right)=2\right)
\end{array}
$$

－The solution of this system is $d=-4$ and $b+c=5$（infinitely many solution）．

## Hermite interpolation

－In a Hermite interpolation，it is assumed that whenever a derivative $p^{(j)}\left(x_{i}\right)$ is prescribed at note $x_{i}$ ，then $p^{(j-1)}\left(x_{i}\right)$ ， $p^{(j-2)}\left(x_{i}\right), \cdots, p^{\prime}\left(x_{i}\right)$ and $p\left(x_{i}\right)$ will also be prescribed．

That is at node $x_{i}, k_{i}:=j+1$ interpolation conditions are prescribed．Notice that $k_{i}$ may vary with $i$ ．
－Let nodes be $x_{0}, x_{1}, \cdots, x_{n}$ ．Suppose that at node $x_{i}$ these interpolation conditions are given：

$$
p^{(j)}\left(x_{i}\right)=c_{i j} \quad \text { for } 0 \leq j \leq k_{i}-1 \text { and } 0 \leq i \leq n .
$$

－The total number of conditions on $p$ denoted by $m+1$ ，i．e．，

$$
m+1:=k_{0}+k_{1}+\cdots+k_{n} .
$$

## Theorem on Hermite interpolation

There exists a unique polynomial $p \in \Pi_{m}$ fulfilling the Hermite interpolation conditions，where $\Pi_{m}$ is the space containing all polynomials of degree less than or equal to $m$ ．

Sketch of the proof：
From the interpolation conditions，we have an associated linear system problem，say $A x=b$ ，where $A$ is an $(m+1) \times(m+1)$ matrix．

To prove that $A$ is nonsingular，it suffices to prove that $A x=0$ has only the 0 solution．
That is，we need to show that if $p \in \Pi_{m}$ such that

$$
p^{(j)}\left(x_{i}\right)=0 \quad \text { for } 0 \leq j \leq k_{i}-1 \text { and } 0 \leq i \leq n,
$$

then $p(x) \equiv 0$ ．Such polynomial has a zero of multiplicity $k_{i}$ at $x_{i}$ for $0 \leq i \leq n$ ．Therefore，$p$ must be a multiple of $q(x):=\prod_{i=0}^{n}\left(x-x_{i}\right)^{k_{i}}$ ．
Since $\operatorname{degree}(q)=\sum_{i=0}^{n} k_{i}=m+1$ ，we have $p(x) \equiv 0$ ．

## Remark

What happens in Hermite interpolation when there is only one node？ In this case，we require a polynomial $p$ of degree $k$ ，for which

$$
p^{(j)}\left(x_{0}\right)=c_{0 j} \quad \text { for } 0 \leq j \leq k .
$$

The solution is the Taylor polynomial：

$$
p(x)=c_{00}+c_{01}\left(x-x_{0}\right)+\frac{c_{02}}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{c_{0 k}}{k!}\left(x-x_{0}\right)^{k} .
$$

## Newton form of Hermite interpolation

Suppose that we are going to find a quadratic polynomial of the form

$$
p(x)=c_{0}+c_{1}\left(x-x_{0}\right)+c_{2}\left(x-x_{0}\right)^{2}
$$

which satisfies the requirements：

$$
p\left(x_{0}\right)=f\left(x_{0}\right), \quad p^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) \quad \text { and } \quad p\left(x_{1}\right)=f\left(x_{1}\right) .
$$

Then

$$
p^{\prime}(x)=c_{1}+2 c_{2}\left(x-x_{0}\right)
$$

and we have a lower triangular system

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & \left(x_{1}-x_{0}\right) & \left(x_{1}-x_{0}\right)^{2}
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
f\left(x_{0}\right) \\
f^{\prime}\left(x_{0}\right) \\
f\left(x_{1}\right)
\end{array}\right]
$$

Thus，$c_{0}=f\left(x_{0}\right)=f\left[x_{0}\right], c_{1}$ depends on $f^{\prime}\left(x_{0}\right)$ ，and $c_{2}$ depends on $f\left(x_{0}\right), f^{\prime}\left(x_{0}\right)$ ，and $f\left(x_{1}\right)$ ．

## Newton form of Hermite interpolation（cont＇d）

－Since $\lim _{x \rightarrow x_{0}} f\left[x_{0}, x\right]=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}\right)$ ，we define

$$
f\left[x_{0}, x_{0}\right]:=f^{\prime}\left(x_{0}\right)
$$

Then $c_{1}=f^{\prime}\left(x_{0}\right)=f\left[x_{0}, x_{0}\right]$ ．From

$$
f\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

we have

$$
f\left[x_{0}, x_{0}, x_{1}\right]=\frac{f\left[x_{0}, x_{1}\right]-f\left[x_{0}, x_{0}\right]}{x_{1}-x_{0}}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{\left(x_{1}-x_{0}\right)^{2}}-\frac{c_{1}}{x_{1}-x_{0}}=c_{2} .
$$

－We can check that

$$
p(x)=f\left(x_{0}\right)+f\left[x_{0}, x_{0}\right]\left(x-x_{0}\right)+f\left[x_{0}, x_{0}, x_{1}\right]\left(x-x_{0}\right)^{2} .
$$

（see Problem 6．3．5）

## Remarks

－We write the divided difference table in this form：

| $x_{0}$ | $f\left[x_{0}\right]$ | $f\left[x_{0}, x_{0}\right] \quad ?$ |
| :--- | :--- | :---: |
| $x_{0}$ | $f\left[x_{0}\right]$ | $?$ |
| $x_{1}$ | $f\left[x_{1}\right]$ |  |

The question marks stand for entries that are not yet computed．
Observe that $x_{0}$ appears twice and the prescribed value of $f^{\prime}\left(x_{0}\right)\left(=f\left[x_{0}, x_{0}\right]\right)$ has been placed in the column of first－order divided differences．
－From Theorem C（page 31），

$$
f\left[x_{0}, x_{1}, \cdots, x_{k}\right]=\frac{1}{k!} f^{(k)}(\xi),
$$

where $\xi$ belongs to the open interval containing $x_{0}, x_{1}, \cdots, x_{k}$ ．
Hence，we define

$$
f\left[x_{0}, x_{0}, \cdots, x_{0}\right]:=\frac{1}{k!} f^{(k)}\left(x_{0}\right) .
$$

Notice that when $k \geq 2$ need to include $1 / k$ ！in the table．

## Example

－Use the extended Newton divided difference algorithm to determine a polynomial that that takes these values：

$$
p(1)=2, \quad p^{\prime}(1)=3, \quad p(2)=6, \quad p^{\prime}(2)=7, \quad \text { and } \quad p^{\prime \prime}(2)=8 .
$$

| 1 | 2 | 3 | $?$ | $?$ | $?$ | 1 | 2 | 3 | 1 | 2 | -1 |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | $?$ | $?$ | $?$ | 1 | 2 | 4 | 3 | 1 |  |  |
| 2 | 6 | 7 | $8 / 2$ |  | 2 | 6 | 7 | 4 |  |  |  |
| 2 | 6 |  |  |  | 2 | 6 |  |  |  |  |  |
| 2 | 6 |  |  |  | 2 | 6 |  |  |  |  |  |

－The interpolating polynomial is

$$
p(x)=2+3(x-1)+(x-1)^{2}+2(x-1)^{2}(x-2)-(x-1)^{2}(x-2)^{2} .
$$

## Lagrange form of Hermite interpolation

Let us try to satisfy

$$
p\left(x_{i}\right)=c_{i 0} \quad \text { and } \quad p^{\prime}\left(x_{i}\right)=c_{i 1}, \quad 0 \leq i \leq n
$$

by a polynomial of the form

$$
p(x)=\sum_{i=0}^{n} c_{i 0} A_{i}(x)+\sum_{i=0}^{n} c_{i 1} B_{i}(x)
$$

Similar to the Lagrange formula，we wish the following properties：

$$
\left\{\begin{array} { l } 
{ A _ { i } ( x _ { j } ) = \delta _ { i j } , } \\
{ A _ { i } ^ { \prime } ( x _ { j } ) = 0 ; }
\end{array} \quad \left\{\begin{array}{l}
B_{i}\left(x_{j}\right)=0 \\
B_{i}^{\prime}\left(x_{j}\right)=\delta_{i j}
\end{array}\right.\right.
$$

Recall the notation

$$
\ell_{i}(x)=\prod_{j=0, j \neq i}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

Then，$A_{i}$ and $B_{i}$ can be defined as follows

$$
\left\{\begin{aligned}
A_{i}(x) & =\left[1-2\left(x-x_{i}\right) \ell_{i}^{\prime}\left(x_{i}\right)\right] \ell_{i}^{2}(x) \quad 0 \leq i \leq n \\
B_{i}(x) & =\left(x-x_{i}\right) \ell_{i}^{2}(x) \quad 0 \leq i \leq n
\end{aligned}\right.
$$

## Lagrange form of Hermite interpolation（cont＇d）

Take a two－point case：

$$
p(x)=f\left(x_{0}\right) A_{0}(x)+f\left(x_{1}\right) A_{1}(x)+f^{\prime}\left(x_{0}\right) B_{0}(x)+f^{\prime}\left(x_{1}\right) B_{1}(x)
$$

where

$$
\begin{aligned}
& A_{0}(x)=\left(1-2\left(x-x_{0}\right) \ell_{0}^{\prime}\left(x_{0}\right)\right) \ell_{0}^{2}(x), \\
& A_{1}(x)=\left(1-2\left(x-x_{1}\right) \ell_{1}^{\prime}\left(x_{1}\right)\right) \ell_{1}^{2}(x), \\
& B_{0}(x)=\left(x-x_{0}\right) \ell_{0}^{2}(x), \\
& B_{1}(x)=\left(x-x_{1}\right) \ell_{1}^{2}(x),
\end{aligned}
$$

and

$$
\begin{aligned}
\ell_{0}(x) & =\frac{x-x_{1}}{x_{0}-x_{1}} \\
\ell_{1}(x) & =\frac{x-x_{0}}{x_{1}-x_{0}} \\
\ell_{0}^{\prime}(x) & =\frac{1}{x_{0}-x_{1}}, \\
\ell_{1}^{\prime}(x) & =\frac{1}{x_{1}-x_{0}} .
\end{aligned}
$$

## Theorem on Hermite interpolation error estimate

Let $x_{0}, x_{1}, \cdots, x_{n}$ be distinct nodes in $[a, b]$ and let $f \in C^{2 n+2}[a, b]$ ．If $p_{2 n+1}$ is the polynomial of degree at most $2 n+1$ such that

$$
p_{2 n+1}\left(x_{i}\right)=f\left(x_{i}\right), \quad p_{2 n+1}^{\prime}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right) \quad \text { for } 0 \leq i \leq n
$$

then to each $x$ in $[a, b]$ there corresponds a point $\xi$ in $(a, b)$ such that

$$
f(x)-p_{2 n+1}(x)=\frac{f^{(2 n+2)}(\xi)}{(2 n+2)!} \prod_{i=0}^{n}\left(x-x_{i}\right)^{2}
$$

Sketch of the proof：The proof is similar to the proof of Theorem on Lagrange interpolation error estimate，pp．13－14．
Let $x \in[a, b]$ be any point other than $x_{i}, i=0,1, \cdots, n$ ．Define

$$
\begin{aligned}
w(t) & =\prod_{i=0}^{n}\left(t-x_{i}\right)^{2} \quad(\text { polynomial in } t) \\
\varphi(t) & =f(t)-p_{2 n+1}(t)-\lambda w(t) \quad(\text { function in } t) \\
\lambda & \left.=\frac{f(x)-p_{2 n+1}(x)}{w(x)} \quad \quad \text { (a constant that makes } \varphi(x)=0\right)
\end{aligned}
$$

## Spline interpolation（樣條插值）

－A spline function consists of polynomial pieces on subintervals joined together with certain continuity conditions．Formally， suppose that $n+1$ points（knots）$t_{0}, t_{1}, \cdots, t_{n}$ have been specified and satisfy $t_{0}<t_{1}<\cdots<t_{n}$ ．
－A spline function of degree $k$ is a function $S$ such that
（1）on each interval $\left[t_{i-1}, t_{i}\right), S$ is a polynomial of degree $\leq k$ ．
（2）$S$ has a continuous $(k-1)$ st derivative on $\left[t_{0}, t_{n}\right]$ ．
－Example：A spline of degree 0 is a piecewise constant function． A spline of degree 0 can be given explicitly in the form：

$$
S(x)=\left\{\begin{array}{lc}
S_{0}(x)=c_{0} & x \in\left[t_{0}, t_{1}\right) \\
S_{1}(x)=c_{1} & x \in\left[t_{1}, t_{2}\right) \\
\vdots & \vdots \\
S_{n-1}(x)=c_{n-1} & x \in\left[t_{n-1}, t_{n}\right]
\end{array}\right.
$$

## A spline of degree 1

A spline function of degree 1 takes the following form：

$$
S(x)=\left\{\begin{array}{lc}
S_{0}(x)=a_{0} x+b_{0} & x \in\left[t_{0}, t_{1}\right), \\
S_{1}(x)=a_{1} x+b_{1} & x \in\left[t_{1}, t_{2}\right), \\
\vdots & \vdots \\
S_{n-1}(x)=a_{n-1} x+b_{n-1} & x \in\left[t_{n-1}, t_{n}\right]
\end{array}\right.
$$

－Note that when $k=1$ ，the $k-1$ derivative has to be continuous， i．e．，$S(x)$ has to be continuous on $\left[t_{0}, t_{n}\right]$ ．
－The pieces are not independent．They have to satisfy the conditions

$$
S_{i}\left(t_{i+1}\right)=S_{i+1}\left(t_{i+1}\right) \quad \text { for } i=0,1, \cdots, n-2 .
$$

Cubic splines $(k=3)$
－Cubic splines are most famous and often used in practice．
－We assume that a table of value has been given

| $x$ | $t_{0}$ | $t_{1}$ | $\cdots$ | $t_{n}$ |
| :--- | :--- | :--- | :--- | :--- |
| $y$ | $y_{0}$ | $y_{1}$ | $\cdots$ | $y_{n}$ |

On each interval $\left[t_{0}, t_{1}\right],\left[t_{1}, t_{2}\right], \cdot,\left[t_{n-1}, t_{n}\right], S$ is given by a different cubic polynomial．
－Let $S_{i}$ be the cubic polynomial that represent $S$ on $\left[t_{i}, t_{i+1}\right]$ ．Thus，

$$
S(x)= \begin{cases}S_{0}(x) & x \in\left[t_{0}, t_{1}\right] \\ S_{1}(x) & x \in\left[t_{1}, t_{2}\right] \\ \vdots & \vdots \\ S_{n-1}(x) & x \in\left[t_{n-1}, t_{n}\right]\end{cases}
$$

## Cubic splines（cont＇d）

－The polynomials $S_{i-1}$ and $S_{i}$ interpolate the same value at the point $t_{i}$ and therefore

$$
S_{i-1}\left(t_{i}\right)=y_{i}=S_{i}\left(t_{i}\right) \quad \text { for } 1 \leq i \leq n-1 .
$$

This implies that $S(x)$ is continuous．
－Now，since $k=3$ ，we also need to have both $S^{\prime}(x)$ and $S^{\prime \prime}(x)$ to be continuous．
－How do we satisfy these conditions？
（1）we have $4 n$ coefficients for $n$ cubic polynomials．
（2）on each subinterval $\left[t_{i}, t_{i+1}\right]$ ，we have 2 interpolation conditions：$S\left(t_{i}\right)=y_{i}$ and $S\left(t_{i+1}\right)=y_{i+1} \Longrightarrow 2 n$ conditions．
（3）continuity of $S^{\prime} \Longrightarrow$ one condition at each knot： $S_{i-1}^{\prime}\left(t_{i}\right)=S_{i}^{\prime}\left(t_{i}\right) \Longrightarrow n-1$ conditions．
（4）similarly for $S^{\prime \prime} \Longrightarrow n-1$ conditions．
（5）total： $4 n-2$ conditions， $4 n$ coefficients．$\Longrightarrow$ two degrees of freedom．

Derive the equation for $S_{i}(x)$ on $\left[t_{i}, t_{i+1}\right]$
－Let $z_{i}:=S^{\prime \prime}\left(t_{i}\right)$ for $0 \leq i \leq n . S^{\prime \prime}(x)$ is continuous everywhere including the nodes

$$
\lim _{x \downarrow t_{i}} S^{\prime \prime}(x)=z_{i}=\lim _{x \uparrow t_{i}} S^{\prime \prime}(x) \quad \text { for } 1 \leq i \leq n-1
$$

－Since $S_{i}$ is a cubic polynomial on $\left[t_{i}, t_{i+1}\right], S_{i}^{\prime \prime}(x)$ is a degree 1 polynomial（linear function）satisfying $S_{i}^{\prime \prime}\left(t_{i}\right)=z_{i}$ and $S_{i}^{\prime \prime}\left(t_{i+1}\right)=z_{i+1}$ ．Then

$$
S_{i}^{\prime \prime}(x)=\frac{z_{i}}{h_{i}}\left(t_{i+1}-x\right)+\frac{z_{i+1}}{h_{i}}\left(x-t_{i}\right)
$$

where $h_{i}=t_{i+1}-t_{i}$ ．
－Taking the integral twice to obtain $S_{i}$ itself，

$$
S_{i}(x)=\frac{z_{i}}{6 h_{i}}\left(t_{i+1}-x\right)^{3}+\frac{z_{i+1}}{6 h_{i}}\left(x-t_{i}\right)^{3}+C\left(x-t_{i}\right)+D\left(t_{i+1}-x\right),
$$

where $C$ and $D$ are integration constants．

Derive the equation for $S_{i}(x)$ on $\left[t_{i}, t_{i+1}\right]$（cont＇d）
－We need to use other conditions to determine $C$ and $D$ ．
－Using the interpolation conditions

$$
S_{i}\left(t_{i}\right)=y_{i} \quad \text { and } \quad S_{i}\left(t_{i+1}\right)=y_{i+1},
$$

we obtain

$$
\begin{aligned}
S_{i}(x) & =\frac{z_{i}}{6 h_{i}}\left(t_{i+1}-x\right)^{3}+\frac{z_{i+1}}{6 h_{i}}\left(x-t_{i}\right)^{3} \\
& +\left(\frac{y_{i+1}}{h_{i}}-\frac{z_{i+1} h_{i}}{6}\right)\left(x-t_{i}\right)+\left(\frac{y_{i}}{h_{i}}-\frac{z_{i} h_{i}}{6}\right)\left(t_{i+1}-x\right) .
\end{aligned}
$$

－Note：We still do not know the values of $z_{i}$ and $z_{i+1}$ ．

## Derive the equation for $S_{i}(x)$ on $\left[t_{i}, t_{i+1}\right]$（cont＇d）

－Let us use the condition that $S^{\prime}$ is continuous．This means

$$
\begin{aligned}
S_{i-1}^{\prime}\left(t_{i}\right) & =S_{i}^{\prime}\left(t_{i}\right) \\
S_{i}^{\prime}\left(t_{i}\right) & =-\frac{h_{i}}{3} z_{i}-\frac{h_{i}}{6} z_{i+1}-\frac{y_{i}}{h_{i}}+\frac{y_{i+1}}{h_{i}} \\
S_{i-1}^{\prime}\left(t_{i}\right) & =\frac{h_{i-1}}{6} z_{i-1}+\frac{h_{i-1}}{3} z_{i}-\frac{y_{i-1}}{h_{i-1}}+\frac{y_{i}}{h_{i-1}} .
\end{aligned}
$$

－Hence，we have
$h_{i-1} z_{i-1}+2\left(h_{i}+h_{i-1}\right) z_{i}+h_{i} z_{i+1}=\frac{6}{h_{i}}\left(y_{i+1}-y_{i}\right)-\frac{6}{h_{i-1}}\left(y_{i}-y_{i-1}\right)$ ，
where $z_{i-1}, z_{i}$ and $z_{i+1}$ are the unknowns，everything else is known．
－The above equation is valid only for points $t_{1}, t_{2}, \cdots, t_{n-1}$ ．Why？
－Boundary conditions：For $z_{0}$ and $z_{n}$ ，we can pick any values． natural cubic spline：$z_{0}=z_{n}=0$ ．

## A linear system

－Putting all the conditions togethers，for $i=1,2, \cdots, n-1$ ，we have

$$
\left[\begin{array}{cccccc}
u_{1} & h_{1} & & & & \\
h_{1} & u_{2} & h_{2} & & & \\
& h_{2} & u_{3} & h_{3} & & \\
& & \ddots & \ddots & \ddots & \\
& & & h_{n-1} & u_{n-2} & h_{n-2} \\
& & & & h_{n-2} & u_{n-1}
\end{array}\right]\left[\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3} \\
\vdots \\
z_{n-2} \\
z_{n-1}
\end{array}\right]=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
v_{n-2} \\
v_{n-1}
\end{array}\right]
$$

where

$$
\begin{aligned}
& h_{i}=t_{i+1}-t_{i}, \quad u_{i}=2\left(h_{i}+h_{i-1}\right), \\
& b_{i}=\frac{6}{h_{i}}\left(y_{i+1}-y_{i}\right), \quad v_{i}=b_{i}-b_{i-1} .
\end{aligned}
$$

－The matrix is strictly diagonally dominant，therefore it is nonsingular！

## Smoothness properties

－Theorem on optimality of natural cubic splines： $\operatorname{If} f^{\prime \prime}$ is continuous in $[a, b]$ ，then

$$
\int_{a}^{b}\left(S^{\prime \prime}(x)\right)^{2} d x \leq \int_{a}^{b}\left(f^{\prime \prime}(x)\right)^{2} d x
$$

Proof：See Textbook，page 355.
－Recall，the curvature of a smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$ is

$$
\left|f^{\prime \prime}(x)\right|\left(1+\left(f^{\prime}(x)\right)^{2}\right)^{-3 / 2} \approx\left|f^{\prime \prime}(x)\right| \quad \text { if } f^{\prime}(x) \text { is small. }
$$

－The natural cubic spline function has a curvature＂smaller＂than that of $f$ over an interval $[a, b]$ ．

## A classical problem in best approximation

－Problem：A continuous function $f$ is defined on an interval $[a, b]$ ． For a fixed $n$ ，we ask for a polynomial $p$ of degree at most $n$ such that

$$
\max _{a \leq x \leq b}|f(x)-p(x)| \quad \text { is minimized }
$$

－Remarks：
－Interpolations use pointwise values，e．g．，Lagrange interpolation：$p\left(x_{i}\right)=f\left(x_{i}\right)$ ．
－Approximations use global information．

## Some backgrounds

Consider a normed linear space $(E,\|\cdot\|)$ and a subspace $G$ in $E$ ．
－For any $f \in E$ ，the distance from $f$ to $G$ is defined as

$$
\operatorname{dist}(f, G)=\inf _{g \in G}\|f-g\|
$$

－If an element $g^{*} \in G$ has the property

$$
\left\|f-g^{*}\right\|=\operatorname{dist}(f, G)=\inf _{g \in G}\|f-g\|,
$$

then $g^{*}$ achieves this minimum deviation．It is a best approximation of $f$ from $G$ ．

The meaning of best approximation thus depends on the norm chosen for the problem．

## Some backgrounds（cont＇d）

－In the classic problem mentioned on page 59 ，the normed space is $E:=C[a, b]$ ，the space of all continuous functions defined on $[a, b]$ ，and the norm is defined by

$$
\|f\|_{\infty}:=\max _{a \leq x \leq b}|f(x)| \quad \text { for } f \in C[a, b] .
$$

The subspace $G$ is the space $\Pi_{n}$ of all polynomials of degree $\leq n$ ．
－In general，best approximations are not unique．For example，let $f(x)=\cos x$ on $[0, \pi / 2]$ ．Then $f \in C[0, \pi / 2]$ ．Let $G=\operatorname{span}\{x\}$ ， then $G$ is a finite－dimensional subspace of $C[0, \pi / 2]$ ．Then $g(x)=\lambda x$ are best approximations for all $0 \leq \lambda \leq 2 / \pi$ in $\|\cdot\|_{\infty}$ ．
Solution：By definition，we have

$$
\begin{aligned}
\operatorname{dist}(f, G) & =\inf _{g \in G}\|f-g\|_{\infty}=\inf _{g \in G} \max _{0 \leq x \leq \pi / 2}|f(x)-g(x)| \\
& =\inf _{\lambda \in \mathbb{R}} \max _{0 \leq x \leq \pi / 2}|\cos x-\lambda x|=1, \\
\text { and }\|f-\lambda x\|_{\infty} & =1, \forall 0 \leq \lambda \leq 2 / \pi .
\end{aligned}
$$

## Theorem on existence of best approximation

If $G$ is a finite－dimensional subspace in a normed linear space $E$ ，then each point of $E$ possesses at least one best approximation in $G$ ．

Sketch of the proof：
Let $f \in E$ ．If $g \in G$ is a best approximation of $f$ ，then
$\|f-g\| \leq\|f-0\|=\|f\|$（since $0 \in G$ ）．
Define $K=\{h \in G:\|f-h\| \leq\|f\|\}$ ．Then $K$ is closed and bounded．
Since $G$ is a finite－dimensional space and $K \subseteq G, K$ is compact．
（Note：A normed linear space is finite－dimensional if and only if every bounded subset is＂relatively compact＂）
$\because$ The function $F: G \rightarrow \mathbb{R}$ defined by $F(h):=\|f-h\|$ is continuous．
$\therefore F$ attains minimum on the compact set $K$ ．
$\therefore \exists g \in K$ such that $\|f-g\|=\min _{h \in K}\|f-h\|(\underbrace{=}_{(w h y ?)} \inf _{h \in G}\|f-h\|) . \square$

## Inner product spaces

－A real inner product space is a real linear space $E$ with an inner product $\langle\cdot, \cdot\rangle: E \times E \rightarrow \mathbb{R}$ satisfying the following properties： for any $f, g \in E$ ，
（1）$\langle f, f\rangle \geq 0$ and $\langle f, f\rangle=0$ if and only if $f=0$ ．
（2）$\langle f, h\rangle=\langle h, f\rangle$ ．
（3）$\langle f, \alpha h+\beta g\rangle=\alpha\langle f, h\rangle+\beta\langle f, g\rangle$ ，for any $\alpha, \beta \in \mathbb{R}$ ．
－A natural norm associated with the inner product is defined as $\|f\|=\sqrt{\langle f, f\rangle}$ ．
－We write $f \perp g$ if $\langle f, g\rangle=0$ ．We write $f \perp G$ if $f \perp g$ for all $g \in G$ ．

## Examples

Two important inner－product spaces are
－ $\mathbb{R}^{n}$ with

$$
\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i} .
$$

－$C_{w}[a, b]$ ，the space of continuous functions on $[a, b]$ ，with

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) w(x) d x
$$

where $w(x)$ is a fixed continuous positive function（for example， $w(x) \equiv 1)$ ．

## Lemma on inner product space properties

In an inner product space，we have
－$\left\langle\sum_{i=1}^{n} a_{i} f_{i}, g\right\rangle=\sum_{i=1}^{n} a_{i}\left\langle f_{i}, g\right\rangle$.
－$\|f+g\|^{2}=\|f\|^{2}+2\langle f, g\rangle+\|g\|^{2}$ ．
－If $f \perp g$ ，then $\|f+g\|^{2}=\|f\|^{2}+\|g\|^{2} \quad$（Pythagorean law）．
－$|\langle f, g\rangle| \leq\|f\|\|g\| \quad$（Schwarz inequality）．
－$\|f+g\|^{2}+\|f-g\|^{2}=2\|f\|^{2}+2\|g\|^{2}$ ．
Proof：see Textbook，page 395.

## Theorem on characterizing best approximation

Let $G$ be a subspace in an inner product space $E$ ．For $f \in E$ and $g \in G$ ，the following two properties are equivalent：
（1）$g$ is a best approximation to $f$ in $G$ ．
（2）$(f-g) \perp G$ ．
Proof：（2）$\Rightarrow$（1）：If $f-g \perp G$ ，then for any $h \in G$ we have，by the Pythagorean law，

$$
\|f-h\|^{2}=\|(f-g)+(g-h)\|^{2}=\|f-g\|^{2}+\|g-h\|^{2} \geq\|f-g\|^{2} .
$$

$\therefore$ we have（1）．
（1）$\Rightarrow$（2）：Let $h \in G$ and $\lambda>0$ ．Then

$$
\begin{aligned}
0 & \leq\|f-g+\lambda h\|^{2}-\|f-g\|^{2} \\
& =\|f-g\|^{2}+2 \lambda\langle f-g, h\rangle+\lambda^{2}\|h\|^{2}-\|f-g\|^{2} \\
& =\lambda\left\{2\langle f-g, h\rangle+\lambda\|h\|^{2}\right\} .
\end{aligned}
$$

Letting $\lambda \rightarrow 0^{+}$，we obtain $\langle f-g, h\rangle \geq 0$ ．Replacing $h$ by $-h$ ，we have $\langle f-g,-h\rangle \geq 0$ ．Therefore $\langle f-g, h\rangle=0$ ．Since $h$ is arbitrary in $G$ ， $(f-g) \perp G$ ．

## Example

－Determine the best approximation of the function $f(x)=\sin x$ by a polynomial $g(x)=c_{1} x+c_{2} x^{3}+c_{3} x^{5}$ on the interval $[-1,1]$ using the inner product：

$$
\langle f, g\rangle:=\int_{-1}^{1} f(x) g(x) d x, \quad \forall f, g \in L^{2}(-1,1) .
$$

－The optimal function $g$ has the property $(f-g) \perp G$ ．$G$ is the space generated by $g_{1}(x)=x, g_{2}(x)=x^{3}$ ，and $g_{3}(x)=x^{5}$ ．Thus， $\left\langle g-f, g_{i}\right\rangle=0$ is required for $i=1,2,3$ ．

$$
c_{1}\left\langle g_{1}, g_{i}\right\rangle+c_{2}\left\langle g_{2}, g_{i}\right\rangle+c_{3}\left\langle g_{3}, g_{i}\right\rangle=\left\langle f, g_{i}\right\rangle \quad \text { for } i=1,2,3 .
$$

－These are called the normal equations．

## Example（cont＇d）

－Putting in the details，we have

$$
\left\{\begin{aligned}
c_{1} \int_{-1}^{1} x^{2} d x+c_{2} \int_{-1}^{1} x^{4} d x+c_{3} \int_{-1}^{1} x^{6} d x & =\int_{-1}^{1} x \sin x d x \\
c_{1} \int_{-1}^{1} x^{4} d x+c_{2} \int_{-1}^{1} x^{6} d x+c_{3} \int_{-1}^{1} x^{8} d x & =\int_{-1}^{1} x^{3} \sin x d x \\
c_{1} \int_{-1}^{1} x^{6} d x+c_{2} \int_{-1}^{1} x^{8} d x+c_{3} \int_{-1}^{1} x^{10} d x & =\int_{-1}^{1} x^{5} \sin x d x
\end{aligned}\right.
$$

－Results in a $3 \times 3$ linear system：

$$
\left[\begin{array}{ccc}
\frac{1}{3} & \frac{1}{5} & \frac{1}{7} \\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} \\
\frac{1}{7} & \frac{1}{9} & \frac{1}{11}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
\alpha-\beta \\
-3 \alpha+5 \beta \\
65 \alpha-101 \beta
\end{array}\right]
$$

where $\alpha=\sin 1$ and $\beta=\cos 1$ ．Solving this system，we obtain $c_{1} \approx-0.99998, c_{2} \approx-0.16652$ ，and $c_{3} \approx 0.00802$ ．
－This coefficient matrix is an example of the ill－conditioned Hilbert matrix．

## The Gram matrix

－Let $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ be any basis for a subspace $U$ ．In order that an element $u \in U$ be the best approximation to $f$ ，it is necessary and sufficient that $u-f \perp U$ by the Theorem on characterizing best approximation（cf．page 66）．
－An equivalent condition is that $\left\langle u-f, u_{i}\right\rangle=0$ for $1 \leq i \leq n$ ． Setting $u=\sum_{j=1}^{n} c_{j} u_{j}$ ，we find

$$
\sum_{j=1}^{n} c_{j}\left\langle u_{j}, u_{i}\right\rangle=\left\langle f, u_{i}\right\rangle \quad \text { for } 1 \leq i \leq n
$$

－These are the normal equations：$n$ linear equations in the $n$ unknowns $c_{1}, c_{2}, \cdots, c_{n}$ ．The coefficient matrix $G$ is called a Gram matrix，where $G_{i j}=\left\langle u_{i}, u_{j}\right\rangle=\left\langle u_{j}, u_{i}\right\rangle$ ．
－Lemma on Gram matrix：If $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ is linearly independent，then its Gram matrix is nonsingular（see page 403）．

## Orthonormal systems

－A sequence of vectors $f_{1}, f_{2}, \cdots$ in an inner product space is
（1）orthogonal if $\left\langle f_{i}, f_{j}\right\rangle=0$ for $i \neq j$ ．
（2）orthonormal if $\left\langle f_{i}, f_{j}\right\rangle=\delta_{i j}$ for all $i, j$ ．
－Theorem on constructing best approximation：Let $\left\{g_{1}, \cdots, g_{n}\right\}$ be an orthonormal system in an inner product space $E$ ．The best approximation of $f$ by an element $\sum_{i=1}^{n} c_{i} g_{i}$ is obtained if and only if $c_{i}=\left\langle f, g_{i}\right\rangle$ ．

$$
\text { Proof: Let } G=\operatorname{span}\left\{g_{1}, g_{2}, \cdots, g_{n}\right\} \text {. Then }
$$

$$
\begin{aligned}
& \sum_{i=1}^{n} c_{i} g_{i} \text { is a best approximation of } f \text { in } G \\
& \Longleftrightarrow\left(f-\sum_{i=1}^{n} c_{i} g_{i}\right) \perp G \Longleftrightarrow\left(f-\sum_{i=1}^{n} c_{i} g_{i}\right) \perp g_{j} \text { for } j=1,2, \cdots, n \\
& \Longleftrightarrow 0=\left\langle f-\sum_{i=1}^{n} c_{i} g_{i}, g_{j}\right\rangle=\left\langle f, g_{j}\right\rangle-\sum_{i=1}^{n} c_{i}\left\langle g_{i}, g_{j}\right\rangle=\left\langle f, g_{j}\right\rangle-c_{j}
\end{aligned}
$$

## Example

We reconsider the previous example： $\sin x \approx c_{1} x+c_{2} x^{3}+c_{3} x^{5}$ ． It is known that an orthonormal basis for our three－dimensional subspace is provided by three Legendre polynomials as follows：

$$
\begin{aligned}
g_{1}(x) & =\frac{x}{\sqrt{2 / 3}} \\
g_{2}(x) & =\frac{5 x^{3}-3 x}{2 \sqrt{2 / 7}} \\
g_{3}(x) & =\frac{63 x^{5}-70 x^{3}+15 x}{8 \sqrt{2 / 11}} .
\end{aligned}
$$

## Example（cont＇d）

The solution is then the polynomial $\sum_{i=1}^{3} c_{i} g_{i}$ ，where $c_{i}=\left\langle f, g_{i}\right\rangle$ ．

$$
\begin{aligned}
c_{1} & =\sqrt{3 / 2} \int_{-1}^{1} x \sin x d x=2 \sqrt{3 / 2}(\alpha-\beta) \\
c_{2} & =\frac{1}{2} \sqrt{7 / 2} \int_{-1}^{1} \sin x\left(5 x^{3}-3 x\right) d x=\sqrt{7 / 2}(-18 \alpha+28 \beta), \\
c_{3} & =\frac{1}{8} \sqrt{11 / 2} \int_{-1}^{1} \sin x\left(63 x^{5}-70 x^{3}+15 x\right) d x \\
& =\frac{1}{4} \sqrt{11 / 2}(4320 \alpha-6728 \beta),
\end{aligned}
$$

where $\alpha=\sin 1$ and $\beta=\cos 1$ ．The approximate solution is $c_{1} \approx 0.738, c_{2} \approx-3.37 \times 10^{-2}$ ，and $c_{3} \approx 4.34 \times 10^{-4}$ ．

## Theorem on Gram－Schmidt process

Let $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be a basis for a subspace $U$ in an inner－product space． Define recursively

$$
u_{i}=\left\|v_{i}-\sum_{j=1}^{i-1}\left\langle v_{i}, u_{j}\right\rangle u_{j}\right\|^{-1}\left(v_{i}-\sum_{j=1}^{i-1}\left\langle v_{i}, u_{j}\right\rangle u_{j}\right) \quad \text { for } i=1,2, \cdots, n .
$$

Then $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ is an orthonormal base for $U$ ．
Proof：see Textbook，page 399.

## Theorem on orthogonal polynomials

The sequence of polynomial defined inductively as following is orthogonal：

$$
p_{n}(x)=\left(x-a_{n}\right) p_{n-1}(x)-b_{n} p_{n-2}(x) \quad \text { for } n \geq 2
$$

with $p_{0}(x)=1, p_{1}(x)=x-a_{1}$ ，and

$$
\begin{aligned}
& a_{n}=\left\langle x p_{n-1}, p_{n-1}\right\rangle /\left\langle p_{n-1}, p_{n-1}\right\rangle \text { for } n \geq 1, \\
& b_{n}=\left\langle x p_{n-1}, p_{n-2}\right\rangle /\left\langle p_{n-2}, p_{n-2}\right\rangle \text { for } n \geq 2,
\end{aligned}
$$

where $\langle\cdot, \cdot\rangle$ is any inner product provided it has the property：
$\langle f g, h\rangle=\langle f, g h\rangle, e . g .,\langle f, g\rangle=\int_{a}^{b} f(x) g(x) w(x) d x$ ．
Proof：Since each $p_{i}$ is a monic polynomial of degree $i,\left\langle p_{i}, p_{i}\right\rangle \neq 0$ for all $i$ ．We show by induction on $n$ that

$$
\begin{aligned}
\left\langle p_{n}, p_{i}\right\rangle=0, \quad \text { for } i & =0,1, \cdots, n-1 . \\
n=1: \quad\left\langle p_{1}, p_{0}\right\rangle=\left\langle\left(x-a_{1}\right) p_{0}, p_{0}\right\rangle & =\left\langle x p_{0}, p_{0}\right\rangle-a_{1}\left\langle p_{0}, p_{0}\right\rangle=0 .
\end{aligned}
$$

## Proof of the theorem on orthogonal polynomials（cont＇d）

Suppose that the assertion holds for $n-1$ ．We wish to prove that it is still true for $n$ ．

$$
\begin{aligned}
& \left\langle p_{n}, p_{n-1}\right\rangle=\left\langle x p_{n-1}, p_{n-1}\right\rangle-a_{n}\left\langle p_{n-1}, p_{n-1}\right\rangle-b_{n}\left\langle p_{n-2}, p_{n-1}\right\rangle=0 \\
& \left\langle p_{n}, p_{n-2}\right\rangle=\left\langle x p_{n-1}, p_{n-2}\right\rangle-a_{n}\left\langle p_{n-1}, p_{n-2}\right\rangle-b_{n}\left\langle p_{n-2}, p_{n-2}\right\rangle=0
\end{aligned}
$$

For $i=0,1, \cdots, n-3$ ，we have

$$
\begin{aligned}
\left\langle p_{n}, p_{i}\right\rangle & =\left\langle x p_{n-1}, p_{i}\right\rangle-a_{n}\left\langle p_{n-1}, p_{i}\right\rangle-b_{n}\left\langle p_{n-2}, p_{i}\right\rangle=\left\langle p_{n-1}, x p_{i}\right\rangle \\
& =\left\langle p_{n-1}, p_{i+1}+a_{i+1} p_{i}+b_{i+1} p_{i-1}\right\rangle=0
\end{aligned}
$$

## Legendre polynomials

Combining the inner product $\langle f, g\rangle:=\int_{-1}^{1} f(x) g(x) d x$ with the theorem above，we have the Legendre polynomials：
$p_{0}(x)=1$ ．

$$
a_{1}=\left\langle x p_{0}, p_{0}\right\rangle /\left\langle p_{0}, p_{0}\right\rangle=0 .
$$

$p_{1}(x)=x$ ．

$$
\begin{aligned}
& a_{2}=\left\langle x p_{1}, p_{1}\right\rangle /\left\langle p_{1}, p_{1}\right\rangle=0 . \\
& b_{2}=\left\langle x p_{1}, p_{0}\right\rangle /\left\langle p_{0}, p_{0}\right\rangle=\frac{1}{3} .
\end{aligned}
$$

$p_{2}(x)=x^{2}-\frac{1}{3}$ ．
Similarly，we have
$p_{3}(x)=x^{3}-\frac{3}{5} x$ ．
$p_{4}(x)=x^{4}-\frac{6}{7} x^{2}+\frac{3}{35}$ ．
$p_{5}(x)=x^{5}-\frac{10}{9} x^{3}+\frac{5}{21} x$ ．

## Chebyshev polynomials

The Chebyshev polynomials form an orthogonal system on $[-1,1]$ using the following inner product：

$$
\langle f, g\rangle:=\int_{-1}^{1} f(x) g(x) \frac{d x}{\sqrt{1-x^{2}}}
$$

Solution：Changing of variable $x=\cos \theta$ ，we have

$$
\langle f, g\rangle:=\int_{0}^{\pi} f(\cos \theta) g(\cos \theta) d \theta
$$

Since $T_{n}(x)=\cos \left(n \cos ^{-1} x\right)$ ，we have for $n \neq m$ ，

$$
\begin{aligned}
\left\langle T_{n}, T_{m}\right\rangle & =\int_{0}^{\pi} \cos (n \theta) \cos (m \theta) d \theta=\frac{1}{2} \int_{0}^{\pi} \cos (n+m) \theta+\cos (n-m) \theta d \theta \\
& =\frac{1}{2}\left[\frac{\sin (n+m) \theta}{n+m}+\frac{\sin (n-m) \theta}{n-m}\right]_{0}^{\pi}=0
\end{aligned}
$$

## Least squares problems

－Given a data set $\left\{\left(x_{i}, f_{i}\right), i=1,2, \cdots, m\right\}$ ．We would like to approximate the data set using functions in the following space： $F=\operatorname{span}\left\{\phi_{1}(x), \phi_{2}(x), \cdots, \phi_{n}(x)\right\}$ ，where $\phi_{1}(x), \phi_{2}(x), \cdots, \phi_{n}(x)$ are the basis functions．In general，$m \gg n$ ．
Functions in $F$ take the form $\phi(x)=c_{1} \phi_{1}(x)+\cdots+c_{n} \phi_{n}(x)$ ．
－Question：can we find a $\phi(x) \in F$ ，such as all conditions in the data set are satisfied：

$$
\phi\left(x_{i}\right)=f_{i}, i=1,2, \cdots, m,
$$

which is the same as saying the following

$$
\begin{aligned}
c_{1} \phi_{1}\left(x_{1}\right)+c_{2} \phi_{2}\left(x_{1}\right)+\cdots+c_{n} \phi_{n}\left(x_{1}\right) & =f_{1}, \\
c_{1} \phi_{1}\left(x_{2}\right)+c_{2} \phi_{2}\left(x_{2}\right)+\cdots+c_{n} \phi_{n}\left(x_{2}\right) & =f_{2}, \\
\cdots & \\
c_{1} \phi_{1}\left(x_{m}\right)+c_{2} \phi_{2}\left(x_{m}\right)+\cdots+c_{n} \phi_{n}\left(x_{m}\right) & =f_{m} .
\end{aligned}
$$

－This is not a square system，and usually has no solution．

## Least squares problems（cont＇d）

－No solution in the classical sense，but we can define a least squares solution．
－Define $d_{i}=f_{i}-\left(c_{1} \phi_{1}\left(x_{i}\right)+c_{2} \phi_{2}\left(x_{i}\right)+\cdots+c_{n} \phi_{n}\left(x_{i}\right)\right)$ ， $i=1,2, \cdots, m$ ．
－If we can＇t make all $d_{i}=0$ ，can we make all of them small？
－Define a vector $d=\left(d_{1}, d_{2}, \cdots, d_{m}\right)^{\top}$ ，and

$$
\min \|d\|^{2}
$$

Using the 2－norm，we have

$$
\min \left(d_{1}^{2}+d_{2}^{2}+\cdots+d_{m}^{2}\right)
$$

## Least squares problems（cont＇d）

－Define

$$
\Psi\left(c_{1}, c_{2}, \cdots, c_{n}\right):=\|d\|_{2}^{2}=\sum_{i=1}^{m}\left(f_{i}-\sum_{j=1}^{n} c_{j} \phi_{j}\left(x_{i}\right)\right)^{2}
$$

－Want to find $c_{1}, c_{2}, \cdots, c_{n}$ such that $\Psi\left(c_{1}, c_{2}, \cdots, c_{n}\right)$ is minimized．

$$
\frac{\partial \Psi}{\partial c_{\ell}}=0, \quad \text { for } \ell=1,2, \cdots, n .
$$

This leads to a linear system problem：

$$
G c=b .
$$

Here $G$ is an $n \times n$ Gram matrix．

