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Introduction

If the values of a function f are given at a few points x0, x1, · · · , xn,
can that information be used to estimate a derivative

f ′(c)

or an integral ∫ b

a
f (x)dx?
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Numerical differentiation

Assume that h > 0 and f ∈ C2[x, x + h]. By Taylor’s Theorem, we
have

f (x + h) = f (x) + hf ′(x) +
h2

2
f ′′(ξ),

for some ξ ∈ (x, x + h). Rearranging the expansion, we obtain

f ′(x) =
1
h

(
f (x + h)− f (x)

)
− h

2
f ′′(ξ).

If the term − h
2 f ′′(ξ) is small, then we have an approximation of

f ′(x),

f ′(x) ≈ 1
h

(
f (x + h)− f (x)

)
.

The term “− h
2 f ′′(ξ)” is called the truncation error.
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Example

Let f (x) = cos(x), x = π/4 and h = 0.01.

We know the exact solution is f ′(π
4 ) = − sin(π

4 )
∼= −0.7071.

1
h

(
f (x + h)− f (x)

)
=

1
0.01

(
0.700000476 − 0.707106781

)
= −0.71063051.

True error: | − 0.7071 − (−0.7106)| = 0.0035.

Truncation error: | − h
2 f ′′(ξ)| = 0.005| cos(ξ)| ≤ 0.005.
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Subtractive cancelation

Question: can we get a smaller error by using a smaller step size h?

Example: consider f (x) = tan−1(x) at x =
√

2. We know that the
exact solution is f ′(x) = (x2 + 1)−1 and f ′(

√
2) = 1

3 .

h f (x) f (x + h) f ′(x) ≈
0.62 ×10−1 0.95531660 0.97555095 0.32374954
0.24 ×10−3 0.95531660 0.95539796 0.33325195
0.95 ×10−6 0.95531660 0.95531690 0.31250000
0.60 ×10−7 0.95531660 0.95531666 1.00000000
0.15 ×10−7 0.95531660 0.95531660 0.00000000

When h is too small, f (x) and f (x + h) are too close to each other,
the significant digits were canceled.

One resolution is to use a higher order method. h doesn’t need
to be too small.
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Higher order methods

Assume that h > 0 and f ∈ C3[x − h, x + h]. By Taylor’s
Theorem, we have

f (x + h) = f (x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(ξ1),

f (x − h) = f (x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f ′′′(ξ2),

for some ξ1 ∈ (x, x + h) and ξ2 ∈ (x − h, x). After subtracting
and rearranging, we have

f ′(x) =
1
2h

(
f (x + h)− f (x − h)

)
− h2

6
1
2

(
f ′′′(ξ1) + f ′′′(ξ2)

)
.

This is a more favorable result, because of the h2 term in the
error. Notice, however, the presence of f ′′′ in the error.
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Higher order methods (cont’d)

From the Intermediate Value Theorem, we have that there is a
ξ ∈ (x − h, x + h), such that

f ′′′(ξ) =
1
2

(
f ′′′(ξ1) + f ′′′(ξ2)

)
.

Hence,

f ′(x) =
1
2h

(
f (x + h)− f (x − h)

)
− h2

6
f ′′′(ξ).

Therefore,

f ′(x) ≈ 1
2h

(
f (x + h)− f (x − h)

)
,

which is a second order formula.
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Example

Consider f (x) = tan−1(x) at x =
√

2. We know that the exact solution
is f ′(x) = (x2 + 1)−1 and f ′(

√
2) = 1

3 .

h f (x − h) f (x + h) f ′(x) ≈
0.25 ×100 0.86112982 1.02972674 0.33719385
0.9765 ×10−3 0.95499092 0.95564199 0.33334351
0.3815 ×10−5 0.95531535 0.95531786 0.32812500
0.1490 ×10−7 0.95531660 0.95531660 0.00000000
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Approximation of f ′′(x)

Assume that h > 0 and f ∈ C4[x − h, x + h]. From Taylor’s Theorem,
we have

f (x + h) = f (x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f (3)(x) +

h4

4!
f (4)(ξ1),

f (x − h) = f (x)− hf ′(x) +
h2

2!
f ′′(x)− h3

3!
f (3)(x) +

h4

4!
f (4)(ξ2),

for ξ1 ∈ (x, x + h) and ξ2 ∈ (x − h, x). After sum and rearrangement,
we obtain the following central difference formula:

f ′′(x) =
1
h2

(
f (x + h)− 2f (x) + f (x − h)

)
− h2

12
1
2

(
f (4)(ξ1) + f (4)(ξ2)

)
=

1
h2

(
f (x + h)− 2f (x) + f (x − h)

)
− h2

12
f (4)(ξ),

where at the last equality we use the Intermediate Value Theorem
again. Thus, we have a second order approximation of f ′′(x)

f ′′(x) ≈ 1
h2

(
f (x + h)− 2f (x) + f (x − h)

)
.
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Homework

Derive the following two formulas for approximating derivatives and
show that they are both O(h4) by establishing their error terms:

f ′(x) ≈ 1
12h

(
−f (x + 2h) + 8f (x + h)− 8f (x − h) + f (x − 2h)

)
,

f ′′(x) ≈ 1
12h2

(
−f (x + 2h) + 16f (x + h)− 30f (x)

+16f (x − h)− f (x − 2h)
)

.

(see Textbook, page 477, #6)
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Differentiation via polynomial interpolation

Goal: given f at n + 1 points x0, x1, · · · , xn. We wish to compute f ′(xα),
where xα is any of the node points.

We interpolate f with a polynomial, its Lagrange form is

f (x) =
n

∑
i=0

f (xi)ℓi(x) +
1

(n + 1)!
f (n+1)(ξx)

n

∏
i=0

(x − xi).

Define w(x) = ∏n
i=0(x − xi).

Taking the above equation derivative, we obtain

f ′(x) =
n

∑
i=0

f (xi)ℓ
′
i(x) +

1
(n + 1)!

f (n+1)(ξx)w′(x)

+
1

(n + 1)!
w(x)

d
dx

f (n+1)(ξx).

Hence,

f ′(xα) =
n

∑
i=0

f (xi)ℓ
′
i(xα) +

1
(n + 1)!

f (n+1)(ξx)
n

∏
j=0,j ̸=α

(xα − xj).
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Example

Use the equation above when n = 1 and α = 0. The two
Lagrange cardinal functions are

ℓ0(x) =
x − x1

x0 − x1
and ℓ1(x) =

x − x0

x1 − x0
.

Their derivatives are

ℓ′0(x) =
1

x0 − x1
=

−1
h

and ℓ′1(x) =
1

x1 − x0
=

1
h

.

Hence we have

f ′(x0) =
−f (x0)

h
+

f (x1)

h
+

1
2

f ′′(ξx)(x0 − x1),

=⇒ f ′(x0) =
f (x1)− f (x0)

h
− h

2
f ′′(ξx).
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Richardson extrapolation

Richardson extrapolation is a general procedure to improve
accuracy.

Assume that f is sufficiently smooth and

f (x+ h) =
∞

∑
k=0

1
k!

hkf (k)(x) and f (x− h) =
∞

∑
k=0

1
k!
(−1)khkf (k)(x).

After subtraction and rearrangement, we obtain

f ′(x) =
1
2h

(
f (x + h)− f (x − h)

)
−
( 1

3!
h2f (3)(x) +

1
5!

h4f (5)(x) +
1
7!

h6f (7)(x) + · · ·
)

,

or in an abstract form

L = ϕ(h) +
(

a2h2 + a4h4 + a6h6 + · · ·
)

.
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Richardson extrapolation (cont’d)

We rewrite the formula in the previous page as

L = ϕ(h) +
(

a2h2 + a4h4 + a6h6 + · · ·
)

. (∗)

If a2 ̸= 0, the truncation error is O(h2). How can we get rid of
this term? Rewrite the abstract form for h/2 to get

L = ϕ(
h
2
) +

(a2

4
h2 +

a4

16
h4 +

a6

64
h6 + · · ·

)
. (∗∗)

Multiplying (∗∗) by 4 and subtracting from (∗), we obtain

L =
4
3

ϕ(
h
2
)− 1

3
ϕ(h)−

(a4

4
h4 +

5a6

16
h6 + · · ·

)
.

This formula is the first step in Richardson extrapolation. It
shows that a simple combination of ϕ(h) and ϕ(h/2) furnishes
an estimate of L with accuracy O(h4).
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Numerical integration

Question: How to compute
∫ b

a f (x)dx numerically?

If we know the antiderivative of f , say F(x), then we have∫ b

a
f (x)dx = F(b)− F(a).

Otherwise, we can find an approximation of f (x), say g(x)
whose integral is easy to compute. Then∫ b

a
f (x)dx ≈

∫ b

a
g(x)dx.
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Integration using polynomial interpolation

We select some interpolation points x0, x1, · · · , xn in [a, b], and
define the Lagrange interpolation of f ,

g(x) = p(x) =
n

∑
i=0

f (xi)ℓi(x),

where ℓi, i = 1, 2, · · · , n, are the cardinal functions,

ℓi(x) =
n

∏
j=0,j ̸=i

x − xj

xi − xj
, for i = 0, 1, · · · , n.

Then we have∫ b

a
f (x)dx ≈

∫ b

a
p(x)dx =

∫ b

a

n

∑
i=0

f (xi)ℓi(x)dx =
n

∑
i=0

f (xi)
∫ b

a
ℓi(x)dx.
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Integration using polynomial interpolation (cont’d)

Let us denote

Ai =
∫ b

a
ℓi(x)dx,

which is independent of f (x). Then we have a numerical
integration formula: ∫ b

a
f (x)dx ≈

n

∑
i=0

Aif (xi).

If the interpolation points are equally spaced, then this is called a
Newton-Cotes formula.
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Trapezoid rule

If n = 1 and the interpolation points are x0 = a, and x1 = b.
Then we have

ℓ0(x) =
x − b
a − b

and ℓ1(x) =
x − a
b − a

.

A0 =
∫ b

a

x − b
a − b

=
1
2
(b − a) and A1 =

∫ b

a

x − a
b − a

=
1
2
(b − a).

The corresponding quadrature formula is∫ b

a
f (x)dx ≈ 1

2
(b − a)

(
f (a) + f (b)

)
=⇒ trapezoid rule.
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Error term in the trapezoid rule

The error term in the trapezoid rule: Assume that f ∈ C2[a, b].
Using the error term in the Lagrange interpolation and the
mean-value theorem for integrals, we have∫ b

a
f (x)− p(x)dx =

∫ b

a
f ′′(ξx)

(x − a)(x − b)
2

dx

= −1
2

f ′′(ξ)
∫ b

a
−x2 + (a + b)x − abdx = · · · = − 1

12
(b − a)3f ′′(ξ),

where f ′′(ξx) = 2(f (x)− p(x))/(x2 − (a+ b)x+ ab) is continuous
on (a, b) and can be continuously extended to [a, b] by using the
L’Hospital rule to calculate limx→a+ f ′′(ξx) and limx→b− f ′′(ξx).

The trapezoid rule is exact for all f ∈ Π1. The error is large if the
interval size is large.

The mean-value theorem for integrals (cf. Textbook, page 19):
Assume that u ∈ C[a, b], v ∈ R[a, b] and v doesn’t change sign on
[a, b]. Then ∃ ξ ∈ (a, b) such that

∫ b
a uvdx = u(ξ)

∫ b
a vdx.
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Composite trapezoid rule

Partition the interval [a, b] into a = x0 < x1 < · · · < xn = b, and
then use the two-point trapezoid rule on each subinterval.∫ b

a
f (x)dx =

n

∑
i=1

∫ xi

xi−1

f (x)dx ≈ 1
2

n

∑
i=1

(xi − xi−1)
(

f (xi−1) + f (xi)
)

.

If the points are equally spaced, then we can introduce a step
size h = (b − a)/n, where n is the number of subintervals. The
interpolation points are xi = a + ih. The composite trapezoid
rule becomes∫ b

a
f (x)dx ≈ h

2

(
f (a) + 2

n−1

∑
i=1

f (xi) + f (b)
)

.
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Error term in the composite trapezoid rule

Assume that f ∈ C2[a, b]. For uniform partition, the error term for the
composite trapezoid rule is∫ b

a
f (x)dx − h

2

(
f (a) + 2

n−1

∑
i=1

f (xi) + f (b)
)
= − 1

12
(b − a)h2f ′′(ξ),

for some ξ ∈ (a, b). (=⇒ exact for all f ∈ Π1)

Proof. Using the error formula for the trapezoid rule, we have∫ b

a
f (x)dx − h

2

(
f (a) + 2

n−1

∑
i=1

f (xi) + f (b)
)
=

n

∑
i=1

− 1
12

h3f ′′(ξi)

= − 1
12

h2
n

∑
i=1

hf ′′(ξi) = − 1
12

h2
n

∑
i=1

(b − a)
n

f ′′(ξi)

= − 1
12

(b − a)h2 1
n

n

∑
i=1

f ′′(ξi) = − 1
12

(b − a)h2f ′′(ξ), for some ξ ∈ (a, b),

where we use the intermediate value theorem for continuous
functions at the last equality. □
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Examples

For example, if n = 2, and [a, b] = [0, 1], then x0 = 0, x1 = 0.5,
and x2 = 1, we have h = 1/2. The composite trapezoid rule is∫ 1

0
f (x)dx ≈ 1

4
f (0) +

1
2

f (0.5) +
1
4

f (1).

If we take n = 2 and [a, b] = [0, 1] in the Newton-Cotes
procedure, we have∫ 1

0
f (x)dx ≈ 1

6
f (0) +

2
3

f (0.5) +
1
6

f (1).

Solution:

ℓ0(x) = 2(x− 0.5)(x− 1), ℓ1(x) = −4x(x− 1), ℓ2(x) = 2x(x− 0.5),

A0 =
∫ 1

0
ℓ0(x)dx =

1
6

, A1 =
∫ 1

0
ℓ1(x)dx =

2
3

, A2 =
∫ 1

0
ℓ2(x)dx =

1
6

.

(This formula is called Simpson’s rule. It will be derived again
by the method of undetermined coefficients below)
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Recall the Newton-Cotes rule

Recall the Newton-Cotes rule: x0 = a < x1 < · · · < xn = b,
h = xi − xi−1 for all i = 1, 2, · · · , n. (equally spaced!)∫ b

a
f (x)dx ≈

n

∑
i=0

Aif (xi),

where

Ai =
∫ b

a
ℓi(x)dx.

This formula is exact for all f ∈ Πn.
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Method of undetermined coefficients

Let us look at an example. For n = 2,∫ 1

0
f (x)dx ≈ A0f (0) + A1f (0.5) + A2f (1).

What are the coefficients A0, A1 and A2? We seek the formula
that will be exact for all polynomials of degree ≤ 2. It must be
exact for f (x) = 1, f (x) = x and f (x) = x2, i.e.,

1 =
∫ 1

0
1dx = A0 + A1 + A2,

1
2

=
∫ 1

0
xdx =

1
2

A1 + A2,

1
3

=
∫ 1

0
x2dx =

1
4

A1 + A2.

Solving the 3 × 3 linear system, we obtain A0 = 1/6, A1 = 2/3,
and A2 = 1/6. This formula is called Simpson’s rule on [0, 1].
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Simpson’s rule

If we repeat the previous exercise for the interval [a, b], we have
Simpson’s rule on [a, b]:∫ b

a
f (x)dx ≈ b − a

6

(
f (a) + 4f (

a + b
2

) + f (b)
)

.

We know that Simpson’s rule is exact for all polynomials of
degree ≤ 2. Surprisingly, Simpson’s rule is exact for cubic
polynomials.

Let [a, b] ⊂ (c, d). Assume that f ∈ C4[c, d]. Then the error term
of Simpson’s rule is

− 1
90

(b − a
2

)5
f (4)(ξ), for some ξ ∈ (a, b).

(See next three pages for the derivation)

It is large if the interval size is large, but can be more accurate
than the trapezoid rule if b − a is small.
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Error term of Simpson’s rule

Let h = (b − a)/2. The numerical integration formula takes the form∫ a+2h

a
f (x)dx ≈ h

3

(
f (a) + 4f (a + h) + f (a + 2h)

)
. (∗)

Using Taylor’s theorem, we have

f (a + h) = f (a) + hf ′(a) +
h2

2!
f ′′(a) +

h3

3!
f ′′′(a) +

h4

4!
f (4)(ξ1),

f (a + 2h) = f (a) + 2hf ′(a) +
(2h)2

2!
f ′′(a) +

(2h)3

3!
f ′′′(a) +

(2h)4

4!
f (4)(ξ2),

for some ξ1 ∈ (a, a + h) and ξ2 ∈ (a, a + 2h). Substituting above
equations into the right-hand side of (*) yields

h
3

(
f (a) + 4f (a + h) + f (a + 2h)

)
(∗∗)

= 2hf (a) + 2h2f ′(a) +
4
3

h3f ′′(a) +
2
3

h4f ′′′(a)

+
1
3

h
( 1

3!
h4f (4)(ξ1) +

16
4!

h4f (4)(ξ2)
)

.
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Error term of Simpson’s rule (cont’d)

Define F(x) :=
∫ x

a
f (t)dt for x ∈ [c, d]. Then by the Fundamental

Theorem of Calculus, part I, we have F′(x) = f (x) for x ∈ [a, a + 2h].
Using Taylor’s theorem on the left-hand side of (*), we obtain∫ a+2h

a
f (x)dx = F(a + 2h) = F(a) + (2h)F′(a) +

(2h)2

2!
F′′(a) (∗ ∗ ∗)

+
(2h)3

3!
F′′′(a) +

(2h)4

4!
F(4)(a) +

(2h)5

5!
F(5)(η)

= 0 + 2hf (a) + 2h2f ′(a) +
4
3

h3f ′′(a) +
2
3

h4f ′′′(a) +
32
5!

h5f (4)(η),

for some η ∈ (a, a + 2h). Comparing (**) and (***), we have∫ a+2h

a
f (x)dx =

h
3

(
f (a) + 4f (a + h) + f (a + 2h)

)
−1

3
h
( 1

3!
h4f (4)(ξ1) +

16
4!

h4f (4)(ξ2)
)
+

32
5!

h5f (4)(η).
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Error term of Simpson’s rule (cont’d)

Notice that Simpson’s rule is exact for f (x) = xi, i = 0, 1, 2, 3. Assume
that ∫ a+2h

a
f (x)dx =

h
3

(
f (a) + 4f (a + h) + f (a + 2h)

)
+ Kf (4)(ξ).

Using f (x) = x4, we have f (4)(ξ) = 24 and

1
5
((a + 2h)5 − a5) =

h
3

(
a4 + 4(a + h)4 + (a + 2h)4

)
+ 24K,

which implies

K = − h5

90
. □

Notice that

−1
3

h
( 1

3!
h4f (4)(ξ1) +

16
4!

h4f (4)(ξ2)
)
+

32
5!

h5f (4)(η)

= − 1
18

h5f (4)(ξ1)−
2
9

h5f (4)(ξ2) +
4

15
h5f (4)(η)

=
−1
90

h5
(

5f (4)(ξ1) + 20f (4)(ξ2)− 24f (4)(η)
)

.
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Composite Simpson’s rule

We partition the interval [a, b] into n subintervals (even number)
with xi = a + ih, and h = (b − a)/n. Then,∫ b

a
f (x)dx =

∫ x2

x0

f (x)dx +
∫ x4

x2

f (x)dx + · · ·+
∫ xn

xn−2

f (x)dx

=
n/2

∑
i=1

∫ x2i

x2i−2

f (x)dx.

Using Simpson’s rule on each interval [x2i−2, x2i], we have∫ b

a
f (x)dx ≈ h

3

n/2

∑
i=1

(
f (x2i−2) + 4f (x2i−1) + f (x2i)

)
=

h
3

(
f (x0) + 2

n/2

∑
i=2

f (x2i−2) + 4
n/2

∑
i=1

f (x2i−1) + f (xn)
)

.

The error is − 1
180

(b − a)h4f (4)(ξ) for some ξ ∈ (a, b).
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More general integration formulas

Consider the definite integral∫ b

a
f (x)w(x)dx,

where w(x) is a given weight function. For example
w(x) = cos(x).

We want a formula of the form∫ b

a
f (x)w(x)dx ≈

∫ b

a

n

∑
i=0

f (xi)ℓi(x)w(x)dx ≈
n

∑
i=0

Aif (xi),

where

Ai =
∫ b

a
ℓi(x)w(x)dx, i = 0, 1, · · · , n.

In general, Ai is hard to compute without using the method of
undetermined coefficients.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Differentiation and Integration – 30/44



More general integration formulas (cont’d)

An important question to ask before using the method of
undetermined coefficients: what is highest degree of polynomials
that the integration scheme can evaluate without error?

Example: Find a formula∫ π

−π
f (x) cos(x)dx ≈ A0f

(
−3

4
π
)
+ A1f

(
−1

4
π
)

+A2f
(1

4
π
)
+ A3f

(3
4

π
)

that is exact when f is a polynomial of degree 3. Since a
polynomial of degree 3 is a linear combination of 4 polynomials
1, x, x2 and x3, thus we can determine the four coefficients
A0, A1, A2, A3 using the four conditions.
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More general integration formulas (cont’d)

An observation: the problem is symmetric! Therefore A0 = A3
and A1 = A2. Let y = −x. Then dy = −dx and∫ π

−π
f (x) cos(x)dx =

∫ π

−π
f (−y) cos(−y)dy =

∫ π

−π
f (−y) cos(y)dy.

We only need to determine two coefficients

0 =
∫ π

−π
1 cos(x)dx = 2A0 + 2A1,

−4π =
∫ π

−π
x2 cos(x)dx = 2A0

(3
4

π
)2

+ 2A1

(1
4

π
)2

.

Solving the system, we obtain A1 = A2 = −A0 = −A3 = 4/π.∫ π

−π
f (x) cos(x)dx ≈ 4

π

{
−f

(
−3

4
π
)
+ f

(
−1

4
π
)
+ f

(1
4

π
)
− f

(3
4

π
)}

.
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Exercise

Find a formula ∫ 1

0
f (x)exdx ≈ A0f (0) + A1f (1)

that is exact when f is a polynomial of degree one.

Verify the formula by computing∫ 1

0
(2x + 3)exdx.

(The formula should be exact for this definite integral!)
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Change of intervals

Suppose we have a numerical integration formula for an
interval [c, d], can we use it for a problem defined on a different
interval [a, b]?

Suppose a formula is given∫ d

c
f (t)dt ≈

n

∑
i=0

Aif (ti)

and we don’t know, or care, where the formula comes from.
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Change of intervals (cont’d)

Define a linear function λ that maps the interval [c, d] to another
interval [a, b] such that if t traverses [c, d], λ(t) will traverse [a, b].

That means λ(c) = a and λ(d) = b, and λ is given explicitly by

λ(t) = a
t − d
c − d

+ b
t − c
d − c

(
=

b − a
d − c

t +
ad − bc
d − c

)
or

x = a
t − d
c − d

+ b
t − c
d − c

.
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Change of intervals (cont’d)

To make the change of variable, we also need to compute dx in
terms of dt. Taking the derivative, we have

dx =

(
a

1
c − d

+ b
1

d − c

)
dt =

b − a
d − c

dt

which implies ∫ b

a
f (x)dx =

∫ d

c
f (λ(t))

b − a
d − c

dt.

So we have∫ b

a
f (x)dx ≈ b − a

d − c

n

∑
i=0

Aif
(

a
ti − d
c − d

+ b
ti − c
d − c

)
.
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Exercise

Suppose that we have derived Simpson’s rule∫ 1

0
f (x)dx ≈ 1

6
f (0) +

2
3

f (0.5) +
1
6

f (1)

using the method of undermined coefficients. Use the change of
intervals to derive a corresponding formula for∫ b

a
f (x)dx.

(The formula is given on page 25!)
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Error analysis

Recall the interpolation error

f (x)− p(x) =
1

(n + 1)!
f (n+1)(ξx)

n

∏
i=0

(x − xi).

Taking the integral, we have∫ b

a
f (x)dx −

n

∑
i=0

Aif (xi) =
1

(n + 1)!

∫ b

a
f (n+1)(ξx)

n

∏
i=0

(x − xi)dx,

where

Ai =
∫ b

a
ℓi(x)dx.

If |f (n+1)(x)| ≤ M on [a, b], then we have∣∣∣∣∣
∫ b

a
f (x)dx −

n

∑
i=0

Aif (xi)

∣∣∣∣∣ ≤ M
(n + 1)!

∫ b

a

n

∏
i=0

|(x − xi)|dx.

Therefore, The accuracy depends on the distribution of the
points.
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Gaussian quadrature

The formula ∫ b

a
f (x)dx ≈

n

∑
i=0

Aif (xi)

is obtained in two steps:

(1) select the nodes x0, x1, · · · , xn
(2) determine Ai so that the formula is exact for polynomials of

degree ≤ n

Question: since we have 2n + 2 parameters to choose, x0, x1, · · · , xn
and A0, A1, · · · , An, can we make a formula that is exact for all
polynomials of degree ≤ 2n + 1?
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Example

Let us take a two-point case as an example. Consider the interval
[−1, 1], let us pick two point x0, x1 ∈ [−1, 1] such that∫ 1

−1
f (x)dx ≈ A0f (x0) + A1f (x1)

is exact for polynomials of degree ≤ 3. That means the formula
produces no error for the functions 1, x, x2, and x3.

2 =
∫ 1

−1
1dx = A0 + A1,

0 =
∫ 1

−1
xdx = x0A0 + x1A1,

2
3

=
∫ 1

−1
x2dx = x2

0A0 + x2
1A1,

0 =
∫ 1

−1
x3dx = x3

0A0 + x3
1A1,

We have four equations and four unknowns, a nonlinear system of
equations. (In general, it is difficult to solve the nonlinear system!)
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Example (cont’d)

Solution is A0 = A1 = 1 and x1 = −x0 = 1/
√

3.

The two-point Gaussian formula is:∫ 1

−1
f (x)dx ≈ f (−1/

√
3) + f (1/

√
3).

It is exact for polynomials of degree ≤ 3.
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Theorem on Gaussian quadrature

Let w(x) be a positive weight function and let q(x) be a nonzero polynomial
of degree n + 1 that is w-orthogonal to the space Πn in the sense that∫ b

a
q(x)p(x)w(x)dx = 0 for all p(x) ∈ Πn.

If x0, x1, · · · , xn are the roots of q(x) = 0, then the formula∫ b

a
f (x)w(x)dx ≈

n

∑
i=0

Aif (xi)

is exact for all f (x) ∈ Π2n+1 with Ai =
∫ b

a
w(x)

n

∏
j=0,j ̸=i

x − xj

xi − xj
dx.

Proof. (cf. Textbook, page 493)
f ∈ Π2n+1 =⇒ f = qp + r for some p, r ∈ Πn =⇒ f (xi) = r(xi).

∴
∫ b

a
fwdx =

∫ b

a
qpw+ rwdx =

∫ b

a
rwdx =︸︷︷︸

exact

n

∑
i=0

Air(xi) =
n

∑
i=0

Aif (xi). □
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How to find q(x)?

Note: It can be proved that the polynomial q(x) only has simple roots
and all roots are in [a, b] (cf. Textbook, page 494).

Proof. ∵ 1 ∈ Πn,
∫ b

a 1qwdx = 0 and w > 0 on [a, b].
∴ q changes sign at least once.
Suppose that q changes sign only r times with r ≤ n. Let
a = t0 < t1 < · · · < tr < tr+1 = b and q(ti) = 0, i = 1, 2, · · · , r.
Then q is of one sign on each (t0, t1), (t1, t2), · · · , (tr, tr+1).
p(x) := ∏r

i=1(x − ti) ∈ Πn has the same sign property.

∴
∫ b

a qpwdx ̸= 0, a contradiction!

How do we find this q(x)? On [−1, 1], w(x) = 1,

Legendre polynomials : qn(x) =
n!

(2n)!
dn((x2 − 1)n)

dxn .

q1(x) = x, root: 0, q2(x) = x2 − 1
3

, roots: − 1√
3

,
1√
3

,

q3(x) = x3 − 3
5

x, roots: −
√

3
5

, 0,

√
3
5

.
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Convergence and error analysis

Theorem: If f (x) is continuous, then Gaussian quadrature∫ b

a
f (x)w(x)dx ≈

n

∑
i=0

Anif (xni)

converges as n → ∞.

Proof. See page 497 of the textbook.

Theorem: Gaussian formula with error term is∫ b

a
f (x)w(x)dx =

n−1

∑
i=0

Aif (xi) + E.

For an f ∈ C2n[a, b], we have

E =
f (2n)(ξ)

(2n)!

∫ b

a
q2(x)w(x)dx,

where a < ξ < b and q(x) = ∏n−1
i=0 (x − xi).

Proof. See page 497 of the textbook.
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