MA 8020：Numerical Analysis II Numerical Differentiation and Integration

Suh－Yuh Yang（楊肅暟）

Department of Mathematics，National Central University Jhongli District，Taoyuan City 320317，Taiwan

First version：March 18，2019／Last updated：April 16， 2024

Introduction

If the values of a function f are given at a few points $x_{0}, x_{1}, \cdots, x_{n}$ ， can that information be used to estimate a derivative

$$
f^{\prime}(c)
$$

or an integral

$$
\int_{a}^{b} f(x) d x ?
$$

Numerical differentiation

－Assume that $h>0$ and $f \in C^{2}[x, x+h]$ ．By Taylor＇s Theorem，we have

$$
f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(\xi)
$$

for some $\xi \in(x, x+h)$ ．Rearranging the expansion，we obtain

$$
f^{\prime}(x)=\frac{1}{h}(f(x+h)-f(x))-\frac{h}{2} f^{\prime \prime}(\xi) .
$$

－If the term $-\frac{h}{2} f^{\prime \prime}(\xi)$ is small，then we have an approximation of $f^{\prime}(x)$ ，

$$
f^{\prime}(x) \approx \frac{1}{h}(f(x+h)-f(x)) .
$$

The term＂$-\frac{h}{2} f^{\prime \prime}(\xi)$＂is called the truncation error．

Example

Let $f(x)=\cos (x), x=\pi / 4$ and $h=0.01$ ．
We know the exact solution is $f^{\prime}\left(\frac{\pi}{4}\right)=-\sin \left(\frac{\pi}{4}\right) \cong-0.7071$ ．

$$
\begin{aligned}
\frac{1}{h}(f(x+h)-f(x)) & =\frac{1}{0.01}(0.700000476-0.707106781) \\
& =-0.71063051
\end{aligned}
$$

－True error：$|-0.7071-(-0.7106)|=0.0035$ ．
－Truncation error：$\left|-\frac{h}{2} f^{\prime \prime}(\xi)\right|=0.005|\cos (\xi)| \leq 0.005$ ．

Subtractive cancelation

－Question：can we get a smaller error by using a smaller step size h ？
－Example：consider $f(x)=\tan ^{-1}(x)$ at $x=\sqrt{2}$ ．We know that the exact solution is $f^{\prime}(x)=\left(x^{2}+1\right)^{-1}$ and $f^{\prime}(\sqrt{2})=\frac{1}{3}$ ．

h	$f(x)$	$f(x+h)$	$f^{\prime}(x) \approx$
0.62×10^{-1}	0.95531660	0.97555095	0.32374954
0.24×10^{-3}	0.95531660	0.95539796	0.33325195
0.95×10^{-6}	0.95531660	0.95531690	0.31250000
0.60×10^{-7}	0.95531660	0.95531666	1.00000000
0.15×10^{-7}	0.95531660	0.95531660	0.00000000

－When h is too small，$f(x)$ and $f(x+h)$ are too close to each other， the significant digits were canceled．
－One resolution is to use a higher order method．h doesn＇t need to be too small．

Higher order methods

－Assume that $h>0$ and $f \in C^{3}[x-h, x+h]$ ．By Taylor＇s Theorem，we have

$$
\begin{aligned}
& f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\frac{h^{3}}{6} f^{\prime \prime \prime}\left(\xi_{1}\right), \\
& f(x-h)=f(x)-h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)-\frac{h^{3}}{6} f^{\prime \prime \prime}\left(\xi_{2}\right)
\end{aligned}
$$

for some $\xi_{1} \in(x, x+h)$ and $\xi_{2} \in(x-h, x)$ ．After subtracting and rearranging，we have

$$
f^{\prime}(x)=\frac{1}{2 h}(f(x+h)-f(x-h))-\frac{h^{2}}{6} \frac{1}{2}\left(f^{\prime \prime \prime}\left(\xi_{1}\right)+f^{\prime \prime \prime}\left(\xi_{2}\right)\right) .
$$

－This is a more favorable result，because of the h^{2} term in the error．Notice，however，the presence of $f^{\prime \prime \prime}$ in the error．

Higher order methods（cont＇d）

－From the Intermediate Value Theorem，we have that there is a $\xi \in(x-h, x+h)$ ，such that

$$
f^{\prime \prime \prime}(\xi)=\frac{1}{2}\left(f^{\prime \prime \prime}\left(\xi_{1}\right)+f^{\prime \prime \prime}\left(\xi_{2}\right)\right) .
$$

Hence，

$$
f^{\prime}(x)=\frac{1}{2 h}(f(x+h)-f(x-h))-\frac{h^{2}}{6} f^{\prime \prime \prime}(\xi) .
$$

Therefore，

$$
f^{\prime}(x) \approx \frac{1}{2 h}(f(x+h)-f(x-h))
$$

which is a second order formula．

Example

Consider $f(x)=\tan ^{-1}(x)$ at $x=\sqrt{2}$ ．We know that the exact solution is $f^{\prime}(x)=\left(x^{2}+1\right)^{-1}$ and $f^{\prime}(\sqrt{2})=\frac{1}{3}$ ．

h	$f(x-h)$	$f(x+h)$	$f^{\prime}(x) \approx$
0.25×10^{0}	0.86112982	1.02972674	0.33719385
0.9765×10^{-3}	0.95499092	0.95564199	0.33334351
0.3815×10^{-5}	0.95531535	0.95531786	0.32812500
0.1490×10^{-7}	0.95531660	0.95531660	0.00000000

Approximation of $f^{\prime \prime}(x)$

Assume that $h>0$ and $f \in C^{4}[x-h, x+h]$ ．From Taylor＇s Theorem， we have

$$
\begin{aligned}
& f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\frac{h^{3}}{3!} f^{(3)}(x)+\frac{h^{4}}{4!} f^{(4)}\left(\xi_{1}\right), \\
& f(x-h)=f(x)-h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)-\frac{h^{3}}{3!} f^{(3)}(x)+\frac{h^{4}}{4!} f^{(4)}\left(\xi_{2}\right),
\end{aligned}
$$

for $\xi_{1} \in(x, x+h)$ and $\xi_{2} \in(x-h, x)$ ．After sum and rearrangement， we obtain the following central difference formula：

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{1}{h^{2}}(f(x+h)-2 f(x)+f(x-h))-\frac{h^{2}}{12} \frac{1}{2}\left(f^{(4)}\left(\xi_{1}\right)+f^{(4)}\left(\xi_{2}\right)\right) \\
& =\frac{1}{h^{2}}(f(x+h)-2 f(x)+f(x-h))-\frac{h^{2}}{12} f^{(4)}(\xi),
\end{aligned}
$$

where at the last equality we use the Intermediate Value Theorem again．Thus，we have a second order approximation of $f^{\prime \prime}(x)$

$$
f^{\prime \prime}(x) \approx \frac{1}{h^{2}}(f(x+h)-2 f(x)+f(x-h))
$$

Homework

Derive the following two formulas for approximating derivatives and show that they are both $O\left(h^{4}\right)$ by establishing their error terms：

$$
\begin{aligned}
& f^{\prime}(x) \approx \frac{1}{12 h}(-f(x+2 h)+8 f(x+h)-8 f(x-h)+f(x-2 h)), \\
& f^{\prime \prime}(x) \approx \frac{1}{12 h^{2}}(-f(x+2 h)+16 f(x+h)-30 f(x) \\
&+16 f(x-h)-f(x-2 h)) .
\end{aligned}
$$

（see Textbook，page 477，\＃6）

Differentiation via polynomial interpolation

Goal：given f at $n+1$ points $x_{0}, x_{1}, \cdots, x_{n}$ ．We wish to compute $f^{\prime}\left(x_{\alpha}\right)$ ， where x_{α} is any of the node points．
－We interpolate f with a polynomial，its Lagrange form is

$$
f(x)=\sum_{i=0}^{n} f\left(x_{i}\right) \ell_{i}(x)+\frac{1}{(n+1)!} f^{(n+1)}\left(\xi_{x}\right) \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

Define $w(x)=\prod_{i=0}^{n}\left(x-x_{i}\right)$ ．
－Taking the above equation derivative，we obtain

$$
\begin{aligned}
f^{\prime}(x)= & \sum_{i=0}^{n} f\left(x_{i}\right) \ell_{i}^{\prime}(x)+\frac{1}{(n+1)!} f^{(n+1)}\left(\xi_{x}\right) w^{\prime}(x) \\
& +\frac{1}{(n+1)!} w(x) \frac{d}{d x} f^{(n+1)}\left(\xi_{x}\right) .
\end{aligned}
$$

Hence，

$$
f^{\prime}\left(x_{\alpha}\right)=\sum_{i=0}^{n} f\left(x_{i}\right) \ell_{i}^{\prime}\left(x_{\alpha}\right)+\frac{1}{(n+1)!} f^{(n+1)}\left(\xi_{x}\right) \prod_{j=0, j \neq \alpha}^{n}\left(x_{\alpha}-x_{j}\right) .
$$

Example

－Use the equation above when $n=1$ and $\alpha=0$ ．The two Lagrange cardinal functions are

$$
\ell_{0}(x)=\frac{x-x_{1}}{x_{0}-x_{1}} \quad \text { and } \quad \ell_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}}
$$

Their derivatives are

$$
\ell_{0}^{\prime}(x)=\frac{1}{x_{0}-x_{1}}=\frac{-1}{h} \quad \text { and } \quad \ell_{1}^{\prime}(x)=\frac{1}{x_{1}-x_{0}}=\frac{1}{h}
$$

－Hence we have

$$
\begin{aligned}
& f^{\prime}\left(x_{0}\right)=\frac{-f\left(x_{0}\right)}{h}+\frac{f\left(x_{1}\right)}{h}+\frac{1}{2} f^{\prime \prime}\left(\xi_{x}\right)\left(x_{0}-x_{1}\right), \\
& \Longrightarrow f^{\prime}\left(x_{0}\right)=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{h}-\frac{h}{2} f^{\prime \prime}\left(\xi_{x}\right) .
\end{aligned}
$$

Richardson extrapolation

－Richardson extrapolation is a general procedure to improve accuracy．
－Assume that f is sufficiently smooth and

$$
f(x+h)=\sum_{k=0}^{\infty} \frac{1}{k!} h^{k} f^{(k)}(x) \quad \text { and } \quad f(x-h)=\sum_{k=0}^{\infty} \frac{1}{k!}(-1)^{k} h^{k} f^{(k)}(x) .
$$

After subtraction and rearrangement，we obtain

$$
\begin{aligned}
f^{\prime}(x)= & \frac{1}{2 h}(f(x+h)-f(x-h)) \\
& -\left(\frac{1}{3!} h^{2} f^{(3)}(x)+\frac{1}{5!} h^{4} f^{(5)}(x)+\frac{1}{7!} h^{6} f^{(7)}(x)+\cdots\right)
\end{aligned}
$$

or in an abstract form

$$
L=\phi(h)+\left(a_{2} h^{2}+a_{4} h^{4}+a_{6} h^{6}+\cdots\right) .
$$

Richardson extrapolation（cont＇d）

－We rewrite the formula in the previous page as

$$
\begin{equation*}
L=\phi(h)+\left(a_{2} h^{2}+a_{4} h^{4}+a_{6} h^{6}+\cdots\right) . \tag{*}
\end{equation*}
$$

If $a_{2} \neq 0$ ，the truncation error is $O\left(h^{2}\right)$ ．How can we get rid of this term？Rewrite the abstract form for $h / 2$ to get

$$
\begin{equation*}
L=\phi\left(\frac{h}{2}\right)+\left(\frac{a_{2}}{4} h^{2}+\frac{a_{4}}{16} h^{4}+\frac{a_{6}}{64} h^{6}+\cdots\right) . \tag{**}
\end{equation*}
$$

Multiplying（＊＊）by 4 and subtracting from（＊），we obtain

$$
L=\frac{4}{3} \phi\left(\frac{h}{2}\right)-\frac{1}{3} \phi(h)-\left(\frac{a_{4}}{4} h^{4}+\frac{5 a_{6}}{16} h^{6}+\cdots\right) .
$$

－This formula is the first step in Richardson extrapolation．It shows that a simple combination of $\phi(h)$ and $\phi(h / 2)$ furnishes an estimate of L with accuracy $O\left(h^{4}\right)$ ．

Numerical integration

Question：How to compute $\int_{a}^{b} f(x) d x$ numerically？
－If we know the antiderivative of f ，say $F(x)$ ，then we have

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

－Otherwise，we can find an approximation of $f(x)$ ，say $g(x)$ whose integral is easy to compute．Then

$$
\int_{a}^{b} f(x) d x \approx \int_{a}^{b} g(x) d x
$$

Integration using polynomial interpolation

－We select some interpolation points $x_{0}, x_{1}, \cdots, x_{n}$ in $[a, b]$ ，and define the Lagrange interpolation of f ，

$$
g(x)=p(x)=\sum_{i=0}^{n} f\left(x_{i}\right) \ell_{i}(x)
$$

where $\ell_{i}, i=1,2, \cdots, n$ ，are the cardinal functions，

$$
\ell_{i}(x)=\prod_{j=0, j \neq i}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}, \quad \text { for } i=0,1, \cdots, n .
$$

－Then we have

$$
\int_{a}^{b} f(x) d x \approx \int_{a}^{b} p(x) d x=\int_{a}^{b} \sum_{i=0}^{n} f\left(x_{i}\right) \ell_{i}(x) d x=\sum_{i=0}^{n} f\left(x_{i}\right) \int_{a}^{b} \ell_{i}(x) d x
$$

Integration using polynomial interpolation（cont＇d）

－Let us denote

$$
A_{i}=\int_{a}^{b} \ell_{i}(x) d x
$$

which is independent of $f(x)$ ．Then we have a numerical integration formula：

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n} A_{i} f\left(x_{i}\right) .
$$

－If the interpolation points are equally spaced，then this is called a Newton－Cotes formula．

Trapezoid rule

－If $n=1$ and the interpolation points are $x_{0}=a$ ，and $x_{1}=b$ ． Then we have

$$
\begin{gathered}
\ell_{0}(x)=\frac{x-b}{a-b} \text { and } \ell_{1}(x)=\frac{x-a}{b-a} . \\
A_{0}=\int_{a}^{b} \frac{x-b}{a-b}=\frac{1}{2}(b-a) \text { and } A_{1}=\int_{a}^{b} \frac{x-a}{b-a}=\frac{1}{2}(b-a) .
\end{gathered}
$$

－The corresponding quadrature formula is

$$
\int_{a}^{b} f(x) d x \approx \frac{1}{2}(b-a)(f(a)+f(b)) \Longrightarrow \text { trapezoid rule. }
$$

Error term in the trapezoid rule

－The error term in the trapezoid rule：Assume that $f \in C^{2}[a, b]$ ． Using the error term in the Lagrange interpolation and the mean－value theorem for integrals，we have
$\int_{a}^{b} f(x)-p(x) d x=\int_{a}^{b} f^{\prime \prime}(\xi x) \frac{(x-a)(x-b)}{2} d x$
$=-\frac{1}{2} f^{\prime \prime}(\xi) \int_{a}^{b}-x^{2}+(a+b) x-a b d x=\cdots=-\frac{1}{12}(b-a)^{3} f^{\prime \prime}(\xi)$ ，
where $f^{\prime \prime}\left(\xi_{x}\right)=2(f(x)-p(x)) /\left(x^{2}-(a+b) x+a b\right)$ is continuous on（ a, b ）and can be continuously extended to $[a, b]$ by using the L＇Hospital rule to calculate $\lim _{x \rightarrow a^{+}} f^{\prime \prime}\left(\xi_{x}\right)$ and $\lim _{x \rightarrow b^{-}} f^{\prime \prime}\left(\xi_{x}\right)$ ．
－The trapezoid rule is exact for all $f \in \Pi_{1}$ ．The error is large if the interval size is large．
－The mean－value theorem for integrals（cf．Textbook，page 19）： Assume that $u \in C[a, b], v \in \mathcal{R}[a, b]$ and v doesn＇t change sign on $[a, b]$ ．Then $\exists \xi \in(a, b)$ such that $\int_{a}^{b} u v d x=u(\xi) \int_{a}^{b} v d x$.

Composite trapezoid rule

－Partition the interval $[a, b]$ into $a=x_{0}<x_{1}<\cdots<x_{n}=b$ ，and then use the two－point trapezoid rule on each subinterval．

$$
\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f(x) d x \approx \frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)\left(f\left(x_{i-1}\right)+f\left(x_{i}\right)\right)
$$

－If the points are equally spaced，then we can introduce a step size $h=(b-a) / n$ ，where n is the number of subintervals．The interpolation points are $x_{i}=a+i h$ ．The composite trapezoid rule becomes

$$
\int_{a}^{b} f(x) d x \approx \frac{h}{2}\left(f(a)+2 \sum_{i=1}^{n-1} f\left(x_{i}\right)+f(b)\right)
$$

Error term in the composite trapezoid rule

Assume that $f \in C^{2}[a, b]$ ．For uniform partition，the error term for the composite trapezoid rule is

$$
\int_{a}^{b} f(x) d x-\frac{h}{2}\left(f(a)+2 \sum_{i=1}^{n-1} f\left(x_{i}\right)+f(b)\right)=-\frac{1}{12}(b-a) h^{2} f^{\prime \prime}(\xi)
$$

for some $\xi \in(a, b) .\left(\Longrightarrow\right.$ exact for all $\left.f \in \Pi_{1}\right)$
Proof．Using the error formula for the trapezoid rule，we have

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x-\frac{h}{2}\left(f(a)+2 \sum_{i=1}^{n-1} f\left(x_{i}\right)+f(b)\right)=\sum_{i=1}^{n}-\frac{1}{12} h^{3} f^{\prime \prime}\left(\xi_{i}\right) \\
& =-\frac{1}{12} h^{2} \sum_{i=1}^{n} h f^{\prime \prime}\left(\xi_{i}\right)=-\frac{1}{12} h^{2} \sum_{i=1}^{n} \frac{(b-a)}{n} f^{\prime \prime}\left(\xi_{i}\right) \\
& =-\frac{1}{12}(b-a) h^{2} \frac{1}{n} \sum_{i=1}^{n} f^{\prime \prime}\left(\xi_{i}\right)=-\frac{1}{12}(b-a) h^{2} f^{\prime \prime}(\xi), \text { for some } \xi \in(a, b),
\end{aligned}
$$

where we use the intermediate value theorem for continuous functions at the last equality．

Examples

－For example，if $n=2$ ，and $[a, b]=[0,1]$ ，then $x_{0}=0, x_{1}=0.5$ ， and $x_{2}=1$ ，we have $h=1 / 2$ ．The composite trapezoid rule is

$$
\int_{0}^{1} f(x) d x \approx \frac{1}{4} f(0)+\frac{1}{2} f(0.5)+\frac{1}{4} f(1) .
$$

－If we take $n=2$ and $[a, b]=[0,1]$ in the Newton－Cotes procedure，we have

$$
\int_{0}^{1} f(x) d x \approx \frac{1}{6} f(0)+\frac{2}{3} f(0.5)+\frac{1}{6} f(1) .
$$

Solution：

$$
\begin{aligned}
& \ell_{0}(x)=2(x-0.5)(x-1), \ell_{1}(x)=-4 x(x-1), \ell_{2}(x)=2 x(x-0.5), \\
& A_{0}=\int_{0}^{1} \ell_{0}(x) d x=\frac{1}{6}, A_{1}=\int_{0}^{1} \ell_{1}(x) d x=\frac{2}{3}, A_{2}=\int_{0}^{1} \ell_{2}(x) d x=\frac{1}{6} .
\end{aligned}
$$

（This formula is called Simpson＇s rule．It will be derived again by the method of undetermined coefficients below）

Recall the Newton－Cotes rule

－Recall the Newton－Cotes rule：$x_{0}=a<x_{1}<\cdots<x_{n}=b$ ， $h=x_{i}-x_{i-1}$ for all $i=1,2, \cdots, n$ ．（equally spaced！）

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n} A_{i} f\left(x_{i}\right),
$$

where

$$
A_{i}=\int_{a}^{b} \ell_{i}(x) d x
$$

－This formula is exact for all $f \in \Pi_{n}$ ．

Method of undetermined coefficients

－Let us look at an example．For $n=2$ ，

$$
\int_{0}^{1} f(x) d x \approx A_{0} f(0)+A_{1} f(0.5)+A_{2} f(1) .
$$

－What are the coefficients A_{0}, A_{1} and A_{2} ？We seek the formula that will be exact for all polynomials of degree ≤ 2 ．It must be exact for $f(x)=1, f(x)=x$ and $f(x)=x^{2}$ ，i．e．，

$$
\begin{aligned}
1 & =\int_{0}^{1} 1 d x=A_{0}+A_{1}+A_{2} \\
\frac{1}{2} & =\int_{0}^{1} x d x=\frac{1}{2} A_{1}+A_{2} \\
\frac{1}{3} & =\int_{0}^{1} x^{2} d x=\frac{1}{4} A_{1}+A_{2} .
\end{aligned}
$$

－Solving the 3×3 linear system，we obtain $A_{0}=1 / 6, A_{1}=2 / 3$ ， and $A_{2}=1 / 6$ ．This formula is called Simpson＇s rule on $[0,1]$ ．

Simpson＇s rule

－If we repeat the previous exercise for the interval $[a, b]$ ，we have Simpson＇s rule on $[a, b]$ ：

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{6}\left(f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right) .
$$

－We know that Simpson＇s rule is exact for all polynomials of degree ≤ 2 ．Surprisingly，Simpson＇s rule is exact for cubic polynomials．
－Let $[a, b] \subset(c, d)$ ．Assume that $f \in C^{4}[c, d]$ ．Then the error term of Simpson＇s rule is

$$
-\frac{1}{90}\left(\frac{b-a}{2}\right)^{5} f^{(4)}(\xi), \quad \text { for some } \xi \in(a, b) .
$$

（See next three pages for the derivation）
－It is large if the interval size is large，but can be more accurate than the trapezoid rule if $b-a$ is small．

Error term of Simpson＇s rule

Let $h=(b-a) / 2$ ．The numerical integration formula takes the form

$$
\begin{equation*}
\int_{a}^{a+2 h} f(x) d x \approx \frac{h}{3}(f(a)+4 f(a+h)+f(a+2 h)) \tag{*}
\end{equation*}
$$

Using Taylor＇s theorem，we have

$$
\begin{aligned}
f(a+h) & =f(a)+h f^{\prime}(a)+\frac{h^{2}}{2!} f^{\prime \prime}(a)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(a)+\frac{h^{4}}{4!} f^{(4)}\left(\xi_{1}\right), \\
f(a+2 h) & =f(a)+2 h f^{\prime}(a)+\frac{(2 h)^{2}}{2!} f^{\prime \prime}(a)+\frac{(2 h)^{3}}{3!} f^{\prime \prime \prime}(a)+\frac{(2 h)^{4}}{4!} f^{(4)}\left(\xi_{2}\right)
\end{aligned}
$$

for some $\xi_{1} \in(a, a+h)$ and $\xi_{2} \in(a, a+2 h)$ ．Substituting above equations into the right－hand side of $\left({ }^{*}\right)$ yields

$$
\begin{aligned}
& \frac{h}{3}(f(a)+4 f(a+h)+f(a+2 h)) \\
& =2 h f(a)+2 h^{2} f^{\prime}(a)+\frac{4}{3} h^{3} f^{\prime \prime}(a)+\frac{2}{3} h^{4} f^{\prime \prime \prime}(a) \\
& \quad+\frac{1}{3} h\left(\frac{1}{3!} h^{4} f^{(4)}\left(\xi_{1}\right)+\frac{16}{4!} h^{4} f^{(4)}\left(\xi_{2}\right)\right) .
\end{aligned}
$$

Error term of Simpson＇s rule（cont＇d）

Define $F(x):=\int_{a}^{x} f(t) d t$ for $x \in[c, d]$ ．Then by the Fundamental Theorem of Calculus，part I，we have $F^{\prime}(x)=f(x)$ for $x \in[a, a+2 h]$ ． Using Taylor＇s theorem on the left－hand side of（ ${ }^{*}$ ），we obtain

$$
\begin{aligned}
& \int_{a}^{a+2 h} f(x) d x=F(a+2 h)=F(a)+(2 h) F^{\prime}(a)+\frac{(2 h)^{2}}{2!} F^{\prime \prime}(a) \quad(* * *) \\
& \quad+\frac{(2 h)^{3}}{3!} F^{\prime \prime \prime}(a)+\frac{(2 h)^{4}}{4!} F^{(4)}(a)+\frac{(2 h)^{5}}{5!} F^{(5)}(\eta) \\
& =0+2 h f(a)+2 h^{2} f^{\prime}(a)+\frac{4}{3} h^{3} f^{\prime \prime}(a)+\frac{2}{3} h^{4} f^{\prime \prime \prime}(a)+\frac{32}{5!} h^{5} f^{(4)}(\eta),
\end{aligned}
$$

for some $\eta \in(a, a+2 h)$ ．Comparing $\left({ }^{* *}\right)$ and $\left({ }^{(* * *}\right)$ ，we have

$$
\begin{aligned}
\int_{a}^{a+2 h} f(x) d x= & \frac{h}{3}(f(a)+4 f(a+h)+f(a+2 h)) \\
& -\frac{1}{3} h\left(\frac{1}{3!} h^{4} f^{(4)}\left(\xi_{1}\right)+\frac{16}{4!} h^{4} f^{(4)}\left(\xi_{2}\right)\right)+\frac{32}{5!} h^{5} f^{(4)}(\eta)
\end{aligned}
$$

Error term of Simpson＇s rule（cont＇d）

Notice that Simpson＇s rule is exact for $f(x)=x^{i}, i=0,1,2,3$ ．Assume that

$$
\int_{a}^{a+2 h} f(x) d x=\frac{h}{3}(f(a)+4 f(a+h)+f(a+2 h))+K f^{(4)}(\xi) .
$$

Using $f(x)=x^{4}$ ，we have $f^{(4)}(\xi)=24$ and

$$
\frac{1}{5}\left((a+2 h)^{5}-a^{5}\right)=\frac{h}{3}\left(a^{4}+4(a+h)^{4}+(a+2 h)^{4}\right)+24 K,
$$

which implies

$$
K=-\frac{h^{5}}{90} .
$$

Notice that

$$
\begin{aligned}
& -\frac{1}{3} h\left(\frac{1}{3!} h^{4} f^{(4)}\left(\xi_{1}\right)+\frac{16}{4!} h^{4} f^{(4)}\left(\xi_{2}\right)\right)+\frac{32}{5!} h^{5} f^{(4)}(\eta) \\
& =-\frac{1}{18} h^{5} f^{(4)}\left(\xi_{1}\right)-\frac{2}{9} h^{5} f^{(4)}\left(\xi_{2}\right)+\frac{4}{15} h^{5} f^{(4)}(\eta) \\
& =\frac{-1}{00} h^{5}\left(5 f^{(4)}\left(\xi_{1}\right)+20 f^{(4)}\left(\xi_{2}\right)-24 f^{(4)}(\eta)\right) .
\end{aligned}
$$

Composite Simpson＇s rule

－We partition the interval $[a, b]$ into n subintervals（even number） with $x_{i}=a+i h$ ，and $h=(b-a) / n$ ．Then，

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\int_{x_{0}}^{x_{2}} f(x) d x+\int_{x_{2}}^{x_{4}} f(x) d x+\cdots+\int_{x_{n-2}}^{x_{n}} f(x) d x \\
& =\sum_{i=1}^{n / 2} \int_{x_{2 i-2}}^{x_{2 i}} f(x) d x
\end{aligned}
$$

Using Simpson＇s rule on each interval $\left[x_{2 i-2}, x_{2 i}\right]$ ，we have

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx \frac{h}{3} \sum_{i=1}^{n / 2}\left(f\left(x_{2 i-2}\right)+4 f\left(x_{2 i-1}\right)+f\left(x_{2 i}\right)\right) \\
& =\frac{h}{3}\left(f\left(x_{0}\right)+2 \sum_{i=2}^{n / 2} f\left(x_{2 i-2}\right)+4 \sum_{i=1}^{n / 2} f\left(x_{2 i-1}\right)+f\left(x_{n}\right)\right)
\end{aligned}
$$

－The error is $-\frac{1}{180}(b-a) h^{4} f^{(4)}(\xi)$ for some $\xi \in(a, b)$ ．

More general integration formulas

－Consider the definite integral

$$
\int_{a}^{b} f(x) w(x) d x
$$

where $w(x)$ is a given weight function．For example $w(x)=\cos (x)$ ．
－We want a formula of the form

$$
\int_{a}^{b} f(x) w(x) d x \approx \int_{a}^{b} \sum_{i=0}^{n} f\left(x_{i}\right) \ell_{i}(x) w(x) d x \approx \sum_{i=0}^{n} A_{i} f\left(x_{i}\right)
$$

where

$$
A_{i}=\int_{a}^{b} \ell_{i}(x) w(x) d x, \quad i=0,1, \cdots, n .
$$

In general，A_{i} is hard to compute without using the method of undetermined coefficients．

More general integration formulas（cont＇d）

－An important question to ask before using the method of undetermined coefficients：what is highest degree of polynomials that the integration scheme can evaluate without error？
－Example：Find a formula

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(x) \cos (x) d x \approx & A_{0} f\left(-\frac{3}{4} \pi\right)+A_{1} f\left(-\frac{1}{4} \pi\right) \\
& +A_{2} f\left(\frac{1}{4} \pi\right)+A_{3} f\left(\frac{3}{4} \pi\right)
\end{aligned}
$$

that is exact when f is a polynomial of degree 3 ．Since a polynomial of degree 3 is a linear combination of 4 polynomials $1, x, x^{2}$ and x^{3} ，thus we can determine the four coefficients $A_{0}, A_{1}, A_{2}, A_{3}$ using the four conditions．

More general integration formulas（cont＇d）

－An observation：the problem is symmetric！Therefore $A_{0}=A_{3}$ and $A_{1}=A_{2}$ ．Let $y=-x$ ．Then $d y=-d x$ and

$$
\int_{-\pi}^{\pi} f(x) \cos (x) d x=\int_{-\pi}^{\pi} f(-y) \cos (-y) d y=\int_{-\pi}^{\pi} f(-y) \cos (y) d y .
$$

We only need to determine two coefficients

$$
\begin{aligned}
0 & =\int_{-\pi}^{\pi} 1 \cos (x) d x=2 A_{0}+2 A_{1}, \\
-4 \pi & =\int_{-\pi}^{\pi} x^{2} \cos (x) d x=2 A_{0}\left(\frac{3}{4} \pi\right)^{2}+2 A_{1}\left(\frac{1}{4} \pi\right)^{2} .
\end{aligned}
$$

－Solving the system，we obtain $A_{1}=A_{2}=-A_{0}=-A_{3}=4 / \pi$ ．

$$
\int_{-\pi}^{\pi} f(x) \cos (x) d x \approx \frac{4}{\pi}\left\{-f\left(-\frac{3}{4} \pi\right)+f\left(-\frac{1}{4} \pi\right)+f\left(\frac{1}{4} \pi\right)-f\left(\frac{3}{4} \pi\right)\right\}
$$

Exercise

－Find a formula

$$
\int_{0}^{1} f(x) e^{x} d x \approx A_{0} f(0)+A_{1} f(1)
$$

that is exact when f is a polynomial of degree one．
－Verify the formula by computing

$$
\int_{0}^{1}(2 x+3) e^{x} d x
$$

（The formula should be exact for this definite integral！）

Change of intervals

－Suppose we have a numerical integration formula for an interval $[c, d]$ ，can we use it for a problem defined on a different interval $[a, b]$ ？
－Suppose a formula is given

$$
\int_{c}^{d} f(t) d t \approx \sum_{i=0}^{n} A_{i} f\left(t_{i}\right)
$$

and we don＇t know，or care，where the formula comes from．

Change of intervals（cont＇d）

－Define a linear function λ that maps the interval $[c, d]$ to another interval $[a, b]$ such that if t traverses $[c, d], \lambda(t)$ will traverse $[a, b]$ ．
－That means $\lambda(c)=a$ and $\lambda(d)=b$ ，and λ is given explicitly by

$$
\lambda(t)=a \frac{t-d}{c-d}+b \frac{t-c}{d-c}\left(=\frac{b-a}{d-c} t+\frac{a d-b c}{d-c}\right)
$$

or

$$
x=a \frac{t-d}{c-d}+b \frac{t-c}{d-c} .
$$

Change of intervals（cont＇d）

－To make the change of variable，we also need to compute $d x$ in terms of $d t$ ．Taking the derivative，we have

$$
d x=\left(a \frac{1}{c-d}+b \frac{1}{d-c}\right) d t=\frac{b-a}{d-c} d t
$$

which implies

$$
\int_{a}^{b} f(x) d x=\int_{c}^{d} f(\lambda(t)) \frac{b-a}{d-c} d t .
$$

－So we have

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{d-c} \sum_{i=0}^{n} A_{i} f\left(a \frac{t_{i}-d}{c-d}+b \frac{t_{i}-c}{d-c}\right)
$$

Exercise

Suppose that we have derived Simpson＇s rule

$$
\int_{0}^{1} f(x) d x \approx \frac{1}{6} f(0)+\frac{2}{3} f(0.5)+\frac{1}{6} f(1)
$$

using the method of undermined coefficients．Use the change of intervals to derive a corresponding formula for

$$
\int_{a}^{b} f(x) d x
$$

（The formula is given on page 25！）

Error analysis

－Recall the interpolation error

$$
f(x)-p(x)=\frac{1}{(n+1)!} f^{(n+1)}\left(\xi_{x}\right) \prod_{i=0}^{n}\left(x-x_{i}\right) .
$$

Taking the integral，we have

$$
\int_{a}^{b} f(x) d x-\sum_{i=0}^{n} A_{i} f\left(x_{i}\right)=\frac{1}{(n+1)!} \int_{a}^{b} f^{(n+1)}\left(\xi_{x}\right) \prod_{i=0}^{n}\left(x-x_{i}\right) d x
$$

where

$$
A_{i}=\int_{a}^{b} \ell_{i}(x) d x
$$

－If $\left|f^{(n+1)}(x)\right| \leq M$ on $[a, b]$ ，then we have

$$
\left|\int_{a}^{b} f(x) d x-\sum_{i=0}^{n} A_{i} f\left(x_{i}\right)\right| \leq \frac{M}{(n+1)!} \int_{a}^{b} \prod_{i=0}^{n}\left|\left(x-x_{i}\right)\right| d x .
$$

Therefore，The accuracy depends on the distribution of the points．

Gaussian quadrature

－The formula

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n} A_{i} f\left(x_{i}\right)
$$

is obtained in two steps：
（1）select the nodes $x_{0}, x_{1}, \cdots, x_{n}$
（2）determine A_{i} so that the formula is exact for polynomials of degree $\leq n$
－Question：since we have $2 n+2$ parameters to choose，$x_{0}, x_{1}, \cdots, x_{n}$ and $A_{0}, A_{1}, \cdots, A_{n}$ ，can we make a formula that is exact for all polynomials of degree $\leq 2 n+1$ ？

Example

Let us take a two－point case as an example．Consider the interval $[-1,1]$ ，let us pick two point $x_{0}, x_{1} \in[-1,1]$ such that

$$
\int_{-1}^{1} f(x) d x \approx A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)
$$

is exact for polynomials of degree ≤ 3 ．That means the formula produces no error for the functions $1, x, x^{2}$ ，and x^{3} ．

$$
\begin{aligned}
2 & =\int_{-1}^{1} 1 d x=A_{0}+A_{1} \\
0 & =\int_{-1}^{1} x d x=x_{0} A_{0}+x_{1} A_{1} \\
\frac{2}{3} & =\int_{-1}^{1} x^{2} d x=x_{0}^{2} A_{0}+x_{1}^{2} A_{1} \\
0 & =\int_{-1}^{1} x^{3} d x=x_{0}^{3} A_{0}+x_{1}^{3} A_{1}
\end{aligned}
$$

We have four equations and four unknowns，a nonlinear system of equations．（In general，it is difficult to solve the nonlinear system！）

Example（cont＇d）

－Solution is $A_{0}=A_{1}=1$ and $x_{1}=-x_{0}=1 / \sqrt{3}$ ．
－The two－point Gaussian formula is：

$$
\int_{-1}^{1} f(x) d x \approx f(-1 / \sqrt{3})+f(1 / \sqrt{3}) .
$$

It is exact for polynomials of degree ≤ 3 ．

Theorem on Gaussian quadrature

Let $w(x)$ be a positive weight function and let $q(x)$ be a nonzero polynomial of degree $n+1$ that is w－orthogonal to the space Π_{n} in the sense that

$$
\int_{a}^{b} q(x) p(x) w(x) d x=0 \quad \text { for all } p(x) \in \Pi_{n}
$$

If $x_{0}, x_{1}, \cdots, x_{n}$ are the roots of $q(x)=0$ ，then the formula

$$
\int_{a}^{b} f(x) w(x) d x \approx \sum_{i=0}^{n} A_{i} f\left(x_{i}\right)
$$

is exact for all $f(x) \in \Pi_{2 n+1}$ with $A_{i}=\int_{a}^{b} w(x) \prod_{j=0, j \neq i}^{n} \frac{x-x_{j}}{x_{i}-x_{j}} d x$ ．
Proof．（cf．Textbook，page 493）
$f \in \Pi_{2 n+1} \Longrightarrow f=q p+r$ for some $p, r \in \Pi_{n} \Longrightarrow f\left(x_{i}\right)=r\left(x_{i}\right)$.
$\therefore \int_{a}^{b} f w d x=\int_{a}^{b} q p w+r w d x=\int_{a}^{b} r w d x \underbrace{=}_{\text {exact }} \sum_{i=0}^{n} A_{i} r\left(x_{i}\right)=\sum_{i=0}^{n} A_{i} f\left(x_{i}\right)$ ．

How to find $q(x)$ ？
－Note：It can be proved that the polynomial $q(x)$ only has simple roots and all roots are in $[a, b]$（cf．Textbook，page 494）．
Proof．$\because 1 \in \Pi_{n}, \int_{a}^{b} 1 q w d x=0$ and $w>0$ on $[a, b]$ ．
$\therefore q$ changes sign at least once．
Suppose that q changes sign only r times with $r \leq n$ ．Let $a=t_{0}<t_{1}<\cdots<t_{r}<t_{r+1}=b$ and $q\left(t_{i}\right)=0, i=1,2, \cdots, r$ ．
Then q is of one sign on each $\left(t_{0}, t_{1}\right),\left(t_{1}, t_{2}\right), \cdots,\left(t_{r}, t_{r+1}\right)$ ． $p(x):=\prod_{i=1}^{r}\left(x-t_{i}\right) \in \Pi_{n}$ has the same sign property．
$\therefore \int_{a}^{b} q p w d x \neq 0$ ，a contradiction！
－How do we find this $q(x)$ ？On $[-1,1], w(x)=1$ ， Legendre polynomials ：$q_{n}(x)=\frac{n!}{(2 n)!} \frac{d^{n}\left(\left(x^{2}-1\right)^{n}\right)}{d x^{n}}$ ． $q_{1}(x)=x$ ，root： $0, \quad q_{2}(x)=x^{2}-\frac{1}{3}$, roots：$-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$ ，
$q_{3}(x)=x^{3}-\frac{3}{5} x$ ，roots：$-\sqrt{\frac{3}{5}}, 0, \sqrt{\frac{3}{5}}$ ．

Convergence and error analysis

－Theorem： $\operatorname{If} f(x)$ is continuous，then Gaussian quadrature

$$
\int_{a}^{b} f(x) w(x) d x \approx \sum_{i=0}^{n} A_{n i} f\left(x_{n i}\right)
$$

converges as $n \rightarrow \infty$ ．
Proof．See page 497 of the textbook．
－Theorem：Gaussian formula with error term is

$$
\int_{a}^{b} f(x) w(x) d x=\sum_{i=0}^{n-1} A_{i} f\left(x_{i}\right)+E
$$

For an $f \in C^{2 n}[a, b]$ ，we have

$$
E=\frac{f^{(2 n)}(\xi)}{(2 n)!} \int_{a}^{b} q^{2}(x) w(x) d x
$$

where $a<\xi<b$ and $q(x)=\prod_{i=0}^{n-1}\left(x-x_{i}\right)$ ．
Proof．See page 497 of the textbook．

