MA 8020: Numerical Analysis II Numerical Differentiation and Integration

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 320317, Taiwan

First version: March 18, 2019/Last updated: April 16, 2024

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Differentiation and Integration - 1/44

Introduction

If the values of a function f are given at a few points x_0, x_1, \dots, x_n , can that information be used to estimate a derivative

f'(c)

or an integral

 $\int_{a}^{b} f(x) dx$?

Numerical differentiation

• Assume that h > 0 and $f \in C^2[x, x + h]$. By Taylor's Theorem, we have

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(\xi),$$

for some $\xi \in (x, x + h)$. Rearranging the expansion, we obtain

$$f'(x) = \frac{1}{h} \Big(f(x+h) - f(x) \Big) - \frac{h}{2} f''(\xi).$$

• If the term $-\frac{h}{2}f''(\xi)$ is small, then we have an approximation of f'(x), $f'(x) \approx \frac{1}{h} (f(x+h) - f(x)).$

The term " $-\frac{h}{2}f''(\xi)$ " is called the truncation error.

Example

Let $f(x) = \cos(x)$, $x = \pi/4$ and h = 0.01.

We know the exact solution is $f'(\frac{\pi}{4}) = -\sin(\frac{\pi}{4}) \cong -0.7071$.

$$\frac{1}{h} \Big(f(x+h) - f(x) \Big) = \frac{1}{0.01} \Big(0.700000476 - 0.707106781 \Big) \\ = -0.71063051.$$

- True error: |-0.7071 (-0.7106)| = 0.0035.
- Truncation error: $|-\frac{h}{2}f''(\xi)| = 0.005|\cos(\xi)| \le 0.005.$

Subtractive cancelation

- **Question:** *can we get a smaller error by using a smaller step size h?*
- **Example:** consider $f(x) = \tan^{-1}(x)$ at $x = \sqrt{2}$. We know that the exact solution is $f'(x) = (x^2 + 1)^{-1}$ and $f'(\sqrt{2}) = \frac{1}{3}$.

h	f(x)	f(x+h)	$f'(x) \approx$
0.62×10^{-1}	0.95531660	0.97555095	0.32374954
0.24×10^{-3}	0.95531660	0.95539796	0.33325195
0.95×10^{-6}	0.95531660	0.95531690	0.31250000
0.60×10^{-7}	0.95531660	0.95531666	1.00000000
0.15×10^{-7}	0.95531660	0.95531660	0.00000000

- When *h* is too small, f(x) and f(x+h) are too close to each other, the significant digits were canceled.
- One resolution is to use a higher order method. *h* doesn't need to be too small.

Higher order methods

• Assume that h > 0 and $f \in C^3[x - h, x + h]$. By Taylor's Theorem, we have

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(\xi_1),$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(\xi_2),$$

for some $\xi_1 \in (x, x + h)$ and $\xi_2 \in (x - h, x)$. After subtracting and rearranging, we have

$$f'(x) = \frac{1}{2h} \Big(f(x+h) - f(x-h) \Big) - \frac{h^2}{6} \frac{1}{2} \Big(f'''(\xi_1) + f'''(\xi_2) \Big).$$

• This is a more favorable result, because of the *h*² term in the error. Notice, however, the presence of *f*^{'''} in the error.

Higher order methods (cont'd)

• From the Intermediate Value Theorem, we have that there is a $\xi \in (x - h, x + h)$, such that

$$f'''(\xi) = \frac{1}{2} \Big(f'''(\xi_1) + f'''(\xi_2) \Big).$$

Hence,

$$f'(x) = \frac{1}{2h} \left(f(x+h) - f(x-h) \right) - \frac{h^2}{6} f'''(\xi).$$

Therefore,

$$f'(x) \approx \frac{1}{2h} \Big(f(x+h) - f(x-h) \Big),$$

which is a second order formula.

Example

Consider $f(x) = \tan^{-1}(x)$ at $x = \sqrt{2}$. We know that the exact solution is $f'(x) = (x^2 + 1)^{-1}$ and $f'(\sqrt{2}) = \frac{1}{3}$.

h	f(x-h)	f(x+h)	$f'(x) \approx$
0.25×10^{0}	0.86112982	1.02972674	0.33719385
0.9765×10^{-3}	0.95499092	0.95564199	0.33334351
0.3815×10^{-5}	0.95531535	0.95531786	0.32812500
0.1490×10^{-7}	0.95531660	0.95531660	0.00000000

Approximation of f''(x)

Assume that h > 0 and $f \in C^4[x - h, x + h]$. From Taylor's Theorem, we have

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f^{(3)}(x) + \frac{h^4}{4!}f^{(4)}(\xi_1),$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f^{(3)}(x) + \frac{h^4}{4!}f^{(4)}(\xi_2),$$

for $\xi_1 \in (x, x + h)$ and $\xi_2 \in (x - h, x)$. After sum and rearrangement, we obtain the following central difference formula:

$$f''(x) = \frac{1}{h^2} \Big(f(x+h) - 2f(x) + f(x-h) \Big) - \frac{h^2}{12} \frac{1}{2} \Big(f^{(4)}(\xi_1) + f^{(4)}(\xi_2) \Big) \\ = \frac{1}{h^2} \Big(f(x+h) - 2f(x) + f(x-h) \Big) - \frac{h^2}{12} f^{(4)}(\xi),$$

where at the last equality we use the Intermediate Value Theorem again. Thus, we have a second order approximation of f''(x)

$$f''(x) \approx \frac{1}{h^2} \Big(f(x+h) - 2f(x) + f(x-h) \Big).$$

Homework

Derive the following two formulas for approximating derivatives and show that they are both $O(h^4)$ by establishing their error terms:

$$\begin{aligned} f'(x) &\approx \frac{1}{12h} \Big(-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h) \Big), \\ f''(x) &\approx \frac{1}{12h^2} \Big(-f(x+2h) + 16f(x+h) - 30f(x) \\ &+ 16f(x-h) - f(x-2h) \Big). \end{aligned}$$

(see Textbook, page 477, #6)

Differentiation via polynomial interpolation

Goal: given f at n + 1 points x_0, x_1, \dots, x_n . We wish to compute $f'(x_\alpha)$, where x_α is any of the node points.

• We interpolate *f* with a polynomial, its Lagrange form is

$$f(x) = \sum_{i=0}^{n} f(x_i)\ell_i(x) + \frac{1}{(n+1)!}f^{(n+1)}(\xi_x)\prod_{i=0}^{n} (x-x_i).$$

Define $w(x) = \prod_{i=0}^{n} (x - x_i)$.

• Taking the above equation derivative, we obtain

$$f'(x) = \sum_{i=0}^{n} f(x_i)\ell'_i(x) + \frac{1}{(n+1)!}f^{(n+1)}(\xi_x)w'(x) + \frac{1}{(n+1)!}w(x)\frac{d}{dx}f^{(n+1)}(\xi_x).$$

Hence,

$$f'(x_{\alpha}) = \sum_{i=0}^{n} f(x_{i})\ell'_{i}(x_{\alpha}) + \frac{1}{(n+1)!}f^{(n+1)}(\xi_{x})\prod_{j=0, j\neq\alpha}^{n} (x_{\alpha} - x_{j})$$

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan

Example

• Use the equation above when n = 1 and $\alpha = 0$. The two Lagrange cardinal functions are

$$\ell_0(x) = \frac{x - x_1}{x_0 - x_1}$$
 and $\ell_1(x) = \frac{x - x_0}{x_1 - x_0}$.

Their derivatives are

$$\ell'_0(x) = \frac{1}{x_0 - x_1} = \frac{-1}{h}$$
 and $\ell'_1(x) = \frac{1}{x_1 - x_0} = \frac{1}{h}$.

Hence we have

$$f'(x_0) = \frac{-f(x_0)}{h} + \frac{f(x_1)}{h} + \frac{1}{2}f''(\xi_x)(x_0 - x_1),$$

$$\Longrightarrow f'(x_0) = \frac{f(x_1) - f(x_0)}{h} - \frac{h}{2}f''(\xi_x).$$

Richardson extrapolation

- Richardson extrapolation is a general procedure to improve accuracy.
- Assume that *f* is sufficiently smooth and

$$f(x+h) = \sum_{k=0}^{\infty} \frac{1}{k!} h^k f^{(k)}(x)$$
 and $f(x-h) = \sum_{k=0}^{\infty} \frac{1}{k!} (-1)^k h^k f^{(k)}(x).$

After subtraction and rearrangement, we obtain

$$f'(x) = \frac{1}{2h} (f(x+h) - f(x-h)) - \left(\frac{1}{3!} h^2 f^{(3)}(x) + \frac{1}{5!} h^4 f^{(5)}(x) + \frac{1}{7!} h^6 f^{(7)}(x) + \cdots \right),$$

or in an abstract form

$$L = \phi(h) + \left(a_2h^2 + a_4h^4 + a_6h^6 + \cdots\right).$$

Richardson extrapolation (cont'd)

• We rewrite the formula in the previous page as

$$L = \phi(h) + \left(a_2h^2 + a_4h^4 + a_6h^6 + \cdots\right). \quad (*)$$

If $a_2 \neq 0$, the truncation error is $O(h^2)$. How can we get rid of this term? Rewrite the abstract form for h/2 to get

$$L = \phi(\frac{h}{2}) + \left(\frac{a_2}{4}h^2 + \frac{a_4}{16}h^4 + \frac{a_6}{64}h^6 + \cdots\right). \quad (**)$$

Multiplying (**) by 4 and subtracting from (*), we obtain

$$L = \frac{4}{3}\phi(\frac{h}{2}) - \frac{1}{3}\phi(h) - \left(\frac{a_4}{4}h^4 + \frac{5a_6}{16}h^6 + \cdots\right).$$

• This formula is the first step in Richardson extrapolation. It shows that a simple combination of $\phi(h)$ and $\phi(h/2)$ furnishes an estimate of *L* with accuracy $O(h^4)$.

Numerical integration

Question: How to compute $\int_a^b f(x) dx$ numerically?

• If we know the antiderivative of f, say F(x), then we have

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

• Otherwise, we can find an approximation of *f*(*x*), say *g*(*x*) whose integral is easy to compute. Then

$$\int_{a}^{b} f(x) dx \approx \int_{a}^{b} g(x) dx$$

Integration using polynomial interpolation

• We select some interpolation points *x*₀, *x*₁, · · · , *x*_n in [*a*, *b*], and define the Lagrange interpolation of *f*,

$$g(x) = p(x) = \sum_{i=0}^{n} f(x_i) \ell_i(x),$$

where ℓ_i , $i = 1, 2, \cdots, n$, are the cardinal functions,

$$\ell_i(x) = \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j}, \text{ for } i = 0, 1, \cdots, n.$$

• Then we have

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} p(x)dx = \int_{a}^{b} \sum_{i=0}^{n} f(x_{i})\ell_{i}(x)dx = \sum_{i=0}^{n} f(x_{i}) \int_{a}^{b} \ell_{i}(x)dx.$$

Integration using polynomial interpolation (cont'd)

Let us denote

$$A_i = \int_a^b \ell_i(x) dx,$$

which is independent of f(x). Then we have a numerical integration formula:

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} A_{i} f(x_{i}).$$

• If the interpolation points are *equally spaced*, then this is called a Newton-Cotes formula.

Trapezoid rule

• If n = 1 and the interpolation points are $x_0 = a$, and $x_1 = b$. Then we have

$$\ell_0(x) = \frac{x-b}{a-b} \quad and \quad \ell_1(x) = \frac{x-a}{b-a}.$$

$$A_0 = \int_a^b \frac{x-b}{a-b} = \frac{1}{2}(b-a) \quad and \quad A_1 = \int_a^b \frac{x-a}{b-a} = \frac{1}{2}(b-a).$$

• The corresponding quadrature formula is

$$\int_{a}^{b} f(x)dx \approx \frac{1}{2}(b-a)\left(f(a)+f(b)\right) \Longrightarrow \text{trapezoid rule.}$$

Error term in the trapezoid rule

The error term in the trapezoid rule: Assume that *f* ∈ *C*²[*a*, *b*]. Using the error term in the Lagrange interpolation and the mean-value theorem for integrals, we have

$$\int_{a}^{b} f(x) - p(x)dx = \int_{a}^{b} f''(\xi_{x}) \frac{(x-a)(x-b)}{2} dx$$
$$= -\frac{1}{2} f''(\xi) \int_{a}^{b} -x^{2} + (a+b)x - abdx = \dots = -\frac{1}{12} (b-a)^{3} f''(\xi),$$
where $f''(\xi) = 2(f(x) - n(x))/(x^{2} - (a+b)x + ab)$ is continuous

where $f''(\xi_x) = 2(f(x) - p(x))/(x^2 - (a+b)x + ab)$ is continuous on (a, b) and can be continuously extended to [a, b] by using the L'Hospital rule to calculate $\lim_{x\to a^+} f''(\xi_x)$ and $\lim_{x\to b^-} f''(\xi_x)$.

- The trapezoid rule is exact for all *f* ∈ Π₁. The error is large if the interval size is large.
- The mean-value theorem for integrals (cf. Textbook, page 19): Assume that $u \in C[a, b]$, $v \in \mathcal{R}[a, b]$ and v doesn't change sign on [a, b]. Then $\exists \xi \in (a, b)$ such that $\int_a^b uvdx = u(\xi) \int_a^b vdx$.

Composite trapezoid rule

• Partition the interval [a, b] into $a = x_0 < x_1 < \cdots < x_n = b$, and then use the two-point trapezoid rule on each subinterval.

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f(x)dx \approx \frac{1}{2} \sum_{i=1}^{n} (x_{i} - x_{i-1}) \left(f(x_{i-1}) + f(x_{i}) \right).$$

• If the points are equally spaced, then we can introduce a step size h = (b - a)/n, where *n* is the number of subintervals. The interpolation points are $x_i = a + ih$. The composite trapezoid rule becomes

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} \Big(f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \Big).$$

Error term in the composite trapezoid rule

Assume that $f \in C^2[a, b]$. For uniform partition, the error term for the composite trapezoid rule is

$$\int_{a}^{b} f(x)dx - \frac{h}{2} \left(f(a) + 2\sum_{i=1}^{n-1} f(x_i) + f(b) \right) = -\frac{1}{12} (b-a)h^2 f''(\xi),$$

for some $\xi \in (a, b)$. (\Longrightarrow exact for all $f \in \Pi_1$)

Proof. Using the error formula for the trapezoid rule, we have

$$\int_{a}^{b} f(x)dx - \frac{h}{2} \left(f(a) + 2\sum_{i=1}^{n-1} f(x_{i}) + f(b) \right) = \sum_{i=1}^{n} -\frac{1}{12}h^{3}f''(\xi_{i})$$
$$= -\frac{1}{12}h^{2}\sum_{i=1}^{n}hf''(\xi_{i}) = -\frac{1}{12}h^{2}\sum_{i=1}^{n}\frac{(b-a)}{n}f''(\xi_{i})$$
$$= -\frac{1}{12}(b-a)h^{2}\frac{1}{n}\sum_{i=1}^{n}f''(\xi_{i}) = -\frac{1}{12}(b-a)h^{2}f''(\xi), \text{ for some } \xi \in (a,b),$$

where we use the intermediate value theorem for continuous functions at the last equality. $\hfill \Box$

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Differentiation and Integration - 21/44

Examples

• For example, if n = 2, and [a, b] = [0, 1], then $x_0 = 0, x_1 = 0.5$, and $x_2 = 1$, we have h = 1/2. The composite trapezoid rule is

$$\int_0^1 f(x)dx \approx \frac{1}{4}f(0) + \frac{1}{2}f(0.5) + \frac{1}{4}f(1).$$

• If we take *n* = 2 and [*a*, *b*] = [0, 1] in the Newton-Cotes procedure, we have

$$\int_0^1 f(x)dx \approx \frac{1}{6}f(0) + \frac{2}{3}f(0.5) + \frac{1}{6}f(1).$$

Solution:

$$\ell_0(x) = 2(x - 0.5)(x - 1), \ \ell_1(x) = -4x(x - 1), \ \ell_2(x) = 2x(x - 0.5),$$

$$A_0 = \int_0^1 \ell_0(x) dx = \frac{1}{6}, A_1 = \int_0^1 \ell_1(x) dx = \frac{2}{3}, A_2 = \int_0^1 \ell_2(x) dx = \frac{1}{6}.$$

(This formula is called Simpson's rule. It will be derived again by the method of undetermined coefficients below)

Recall the Newton-Cotes rule

• Recall the Newton-Cotes rule: $x_0 = a < x_1 < \cdots < x_n = b$, $h = x_i - x_{i-1}$ for all $i = 1, 2, \cdots, n$. (equally spaced!)

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} A_{i} f(x_{i}),$$

where

$$A_i = \int_a^b \ell_i(x) dx.$$

• This formula is exact for all $f \in \Pi_n$.

Method of undetermined coefficients

• Let us look at an example. For n = 2,

$$\int_0^1 f(x)dx \approx A_0 f(0) + A_1 f(0.5) + A_2 f(1).$$

• What are the coefficients A_0 , A_1 and A_2 ? We seek the formula that will be exact for all polynomials of degree ≤ 2 . It must be exact for f(x) = 1, f(x) = x and $f(x) = x^2$, i.e.,

$$1 = \int_0^1 1 dx = A_0 + A_1 + A_2$$

$$\frac{1}{2} = \int_0^1 x dx = \frac{1}{2}A_1 + A_2,$$

$$\frac{1}{3} = \int_0^1 x^2 dx = \frac{1}{4}A_1 + A_2.$$

• Solving the 3 × 3 linear system, we obtain $A_0 = 1/6$, $A_1 = 2/3$, and $A_2 = 1/6$. This formula is called Simpson's rule on [0, 1].

Simpson's rule

• If we repeat the previous exercise for the interval [*a*, *b*], we have Simpson's rule on [*a*, *b*]:

$$\int_a^b f(x)dx \approx \frac{b-a}{6} \Big(f(a) + 4f(\frac{a+b}{2}) + f(b) \Big).$$

- We know that Simpson's rule is exact for all polynomials of degree ≤ 2. Surprisingly, Simpson's rule is exact for cubic polynomials.
- Let $[a, b] \subset (c, d)$. Assume that $f \in C^4[c, d]$. Then the error term of Simpson's rule is

$$-\frac{1}{90}\left(\frac{b-a}{2}\right)^5 f^{(4)}(\xi), \quad \text{for some } \xi \in (a,b).$$

(See next three pages for the derivation)

• It is large if the interval size is large, but can be more accurate than the trapezoid rule if b - a is small.

Error term of Simpson's rule

Let h = (b - a)/2. The numerical integration formula takes the form $\int_{a}^{a+2h} f(x)dx \approx \frac{h}{3} \Big(f(a) + 4f(a+h) + f(a+2h) \Big). \quad (*)$

Using Taylor's theorem, we have

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \frac{h^3}{3!}f'''(a) + \frac{h^4}{4!}f^{(4)}(\xi_1),$$

$$f(a+2h) = f(a) + 2hf'(a) + \frac{(2h)^2}{2!}f''(a) + \frac{(2h)^3}{3!}f'''(a) + \frac{(2h)^4}{4!}f^{(4)}(\xi_2),$$

for some $\xi_1 \in (a, a+h)$ and $\xi_2 \in (a, a+2h).$ Substituting above
equations into the right-hand side of (*) yields

$$\frac{h}{2!}(f(a) + 4f(a+h) + f(a+2h)) \qquad (**)$$

$$\begin{aligned} &\frac{h}{3} \Big(f(a) + 4f(a+h) + f(a+2h) \Big) & (**) \\ &= 2hf(a) + 2h^2 f'(a) + \frac{4}{3}h^3 f''(a) + \frac{2}{3}h^4 f'''(a) \\ &+ \frac{1}{3}h \Big(\frac{1}{3!}h^4 f^{(4)}(\xi_1) + \frac{16}{4!}h^4 f^{(4)}(\xi_2) \Big). \end{aligned}$$

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan

Error term of Simpson's rule (cont'd)

Define $F(x) := \int_{a}^{x} f(t)dt$ for $x \in [c, d]$. Then by the Fundamental Theorem of Calculus, part I, we have F'(x) = f(x) for $x \in [a, a + 2h]$. Using Taylor's theorem on the left-hand side of (*), we obtain

$$\int_{a}^{a+2h} f(x)dx = F(a+2h) = F(a) + (2h)F'(a) + \frac{(2h)^{2}}{2!}F''(a) \quad (***)$$
$$+ \frac{(2h)^{3}}{3!}F'''(a) + \frac{(2h)^{4}}{4!}F^{(4)}(a) + \frac{(2h)^{5}}{5!}F^{(5)}(\eta)$$
$$= 0 + 2hf(a) + 2h^{2}f'(a) + \frac{4}{3}h^{3}f''(a) + \frac{2}{3}h^{4}f'''(a) + \frac{32}{5!}h^{5}f^{(4)}(\eta),$$

for some $\eta \in (a, a + 2h)$. Comparing (**) and (***), we have

$$\begin{aligned} \int_{a}^{a+2h} f(x)dx &= \frac{h}{3} \Big(f(a) + 4f(a+h) + f(a+2h) \Big) \\ &- \frac{1}{3}h \Big(\frac{1}{3!} h^4 f^{(4)}(\xi_1) + \frac{16}{4!} h^4 f^{(4)}(\xi_2) \Big) + \frac{32}{5!} h^5 f^{(4)}(\eta). \end{aligned}$$

Error term of Simpson's rule (cont'd)

Notice that Simpson's rule is exact for $f(x) = x^i$, i = 0, 1, 2, 3. Assume that

$$\int_{a}^{a+2h} f(x)dx = \frac{h}{3} \left(f(a) + 4f(a+h) + f(a+2h) \right) + K f^{(4)}(\xi).$$

Using $f(x) = x^{4}$, we have $f^{(4)}(\xi) = 24$ and
 $\frac{1}{5}((a+2h)^{5} - a^{5}) = \frac{h}{3} \left(a^{4} + 4(a+h)^{4} + (a+2h)^{4} \right) + 24K,$

which implies

$$K = -\frac{h^5}{90}. \quad \Box$$

Notice that

$$\begin{aligned} &-\frac{1}{3}h\Big(\frac{1}{3!}h^4f^{(4)}(\xi_1) + \frac{16}{4!}h^4f^{(4)}(\xi_2)\Big) + \frac{32}{5!}h^5f^{(4)}(\eta) \\ &= -\frac{1}{18}h^5f^{(4)}(\xi_1) - \frac{2}{9}h^5f^{(4)}(\xi_2) + \frac{4}{15}h^5f^{(4)}(\eta) \\ &= \frac{-1}{90}h^5\Big(5f^{(4)}(\xi_1) + 20f^{(4)}(\xi_2) - 24f^{(4)}(\eta)\Big). \end{aligned}$$

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan

Composite Simpson's rule

• We partition the interval [a, b] into n subintervals (even number) with $x_i = a + ih$, and h = (b - a)/n. Then,

$$\int_{a}^{b} f(x)dx = \int_{x_{0}}^{x_{2}} f(x)dx + \int_{x_{2}}^{x_{4}} f(x)dx + \dots + \int_{x_{n-2}}^{x_{n}} f(x)dx$$
$$= \sum_{i=1}^{n/2} \int_{x_{2i-2}}^{x_{2i}} f(x)dx.$$

Using Simpson's rule on each interval $[x_{2i-2}, x_{2i}]$, we have

$$\begin{aligned} \int_{a}^{b} f(x)dx &\approx \frac{h}{3} \sum_{i=1}^{n/2} \Big(f(x_{2i-2}) + 4f(x_{2i-1}) + f(x_{2i}) \Big) \\ &= \frac{h}{3} \Big(f(x_{0}) + 2 \sum_{i=2}^{n/2} f(x_{2i-2}) + 4 \sum_{i=1}^{n/2} f(x_{2i-1}) + f(x_{n}) \Big). \end{aligned}$$

• The error is $-\frac{1}{180}(b-a)h^4f^{(4)}(\xi)$ for some $\xi \in (a,b)$.

More general integration formulas

• Consider the definite integral

$$\int_{a}^{b} f(x)w(x)dx,$$

where w(x) is a given weight function. For example $w(x) = \cos(x)$.

• We want a formula of the form

$$\int_a^b f(x)w(x)dx \approx \int_a^b \sum_{i=0}^n f(x_i)\ell_i(x)w(x)dx \approx \sum_{i=0}^n A_i f(x_i),$$

where

$$A_i = \int_a^b \ell_i(x) w(x) dx, \quad i = 0, 1, \cdots, n.$$

In general, A_i is hard to compute without using the method of undetermined coefficients.

More general integration formulas (cont'd)

- An important question to ask before using the method of undetermined coefficients: *what is highest degree of polynomials that the integration scheme can evaluate without error?*
- Example: Find a formula

$$\int_{-\pi}^{\pi} f(x) \cos(x) dx \approx A_0 f\left(-\frac{3}{4}\pi\right) + A_1 f\left(-\frac{1}{4}\pi\right) + A_2 f\left(\frac{1}{4}\pi\right) + A_3 f\left(\frac{3}{4}\pi\right)$$

that is exact when *f* is a polynomial of degree 3. Since a polynomial of degree 3 is a linear combination of 4 polynomials 1, *x*, x^2 and x^3 , thus we can determine the four coefficients A_0, A_1, A_2, A_3 using the four conditions.

More general integration formulas (cont'd)

• An observation: the problem is symmetric! Therefore $A_0 = A_3$ and $A_1 = A_2$. Let y = -x. Then dy = -dx and

$$\int_{-\pi}^{\pi} f(x) \cos(x) dx = \int_{-\pi}^{\pi} f(-y) \cos(-y) dy = \int_{-\pi}^{\pi} f(-y) \cos(y) dy.$$

We only need to determine two coefficients

$$0 = \int_{-\pi}^{\pi} 1\cos(x)dx = 2A_0 + 2A_1,$$

$$-4\pi = \int_{-\pi}^{\pi} x^2 \cos(x)dx = 2A_0 \left(\frac{3}{4}\pi\right)^2 + 2A_1 \left(\frac{1}{4}\pi\right)^2.$$

• Solving the system, we obtain $A_1 = A_2 = -A_0 = -A_3 = 4/\pi$.

$$\int_{-\pi}^{\pi} f(x) \cos(x) dx \approx \frac{4}{\pi} \left\{ -f\left(-\frac{3}{4}\pi\right) + f\left(-\frac{1}{4}\pi\right) + f\left(\frac{1}{4}\pi\right) - f\left(\frac{3}{4}\pi\right) \right\}$$

Exercise

• Find a formula

$$\int_{0}^{1} f(x)e^{x}dx \approx A_{0}f(0) + A_{1}f(1)$$

that is exact when *f* is a polynomial of degree one.

• Verify the formula by computing

$$\int_0^1 (2x+3)e^x dx.$$

(The formula should be exact for this definite integral!)

Change of intervals

- Suppose we have a numerical integration formula for an interval [*c*, *d*], can we use it for a problem defined on a different interval [*a*, *b*]?
- Suppose a formula is given

$$\int_{c}^{d} f(t)dt \approx \sum_{i=0}^{n} A_{i}f(t_{i})$$

and we don't know, or care, where the formula comes from.

Change of intervals (cont'd)

- Define a linear function λ that maps the interval [c, d] to another interval [a, b] such that if t traverses [c, d], λ(t) will traverse [a, b].
- That means $\lambda(c) = a$ and $\lambda(d) = b$, and λ is given explicitly by

$$\lambda(t) = a\frac{t-d}{c-d} + b\frac{t-c}{d-c} \left(= \frac{b-a}{d-c}t + \frac{ad-bc}{d-c} \right)$$

or

$$x = a\frac{t-d}{c-d} + b\frac{t-c}{d-c}.$$

Change of intervals (cont'd)

• To make the change of variable, we also need to compute *dx* in terms of *dt*. Taking the derivative, we have

$$dx = \left(a\frac{1}{c-d} + b\frac{1}{d-c}\right)dt = \frac{b-a}{d-c}dt$$

which implies

$$\int_{a}^{b} f(x)dx = \int_{c}^{d} f(\lambda(t)) \frac{b-a}{d-c} dt.$$

• So we have

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{d-c} \sum_{i=0}^{n} A_{i} f\left(a \frac{t_{i}-d}{c-d} + b \frac{t_{i}-c}{d-c}\right).$$

Exercise

Suppose that we have derived Simpson's rule

 $\int_{0}^{1} f(x)dx \approx \frac{1}{6}f(0) + \frac{2}{3}f(0.5) + \frac{1}{6}f(1)$

using the method of undermined coefficients. Use the change of intervals to derive a corresponding formula for

 $\int_{a}^{b} f(x) dx.$

(The formula is given on page 25!)

Error analysis

• Recall the interpolation error

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) \prod_{i=0}^n (x - x_i).$$

Taking the integral, we have

$$\int_{a}^{b} f(x)dx - \sum_{i=0}^{n} A_{i}f(x_{i}) = \frac{1}{(n+1)!} \int_{a}^{b} f^{(n+1)}(\xi_{x}) \prod_{i=0}^{n} (x-x_{i})dx,$$

where

$$A_i = \int_a^b \ell_i(x) dx.$$

• If $|f^{(n+1)}(x)| \le M$ on [a, b], then we have

$$\left| \int_{a}^{b} f(x) dx - \sum_{i=0}^{n} A_{i} f(x_{i}) \right| \leq \frac{M}{(n+1)!} \int_{a}^{b} \prod_{i=0}^{n} |(x-x_{i})| dx.$$

Therefore, The accuracy depends on the distribution of the points.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Differentiation and Integration - 38/44

Gaussian quadrature

The formula

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} A_{i} f(x_{i})$$

is obtained in two steps:

- (1) select the nodes x_0, x_1, \cdots, x_n
- (2) determine A_i so that the formula is exact for polynomials of degree ≤ n
- **Question:** since we have 2n + 2 parameters to choose, x_0, x_1, \dots, x_n and A_0, A_1, \dots, A_n , can we make a formula that is exact for all polynomials of degree $\leq 2n + 1$?

Example

Let us take a two-point case as an example. Consider the interval [-1, 1], let us pick two point $x_0, x_1 \in [-1, 1]$ such that

$$\int_{-1}^{1} f(x) dx \approx A_0 f(x_0) + A_1 f(x_1)$$

is exact for polynomials of degree ≤ 3 . That means the formula produces no error for the functions 1, *x*, *x*², and *x*³.

$$2 = \int_{-1}^{1} 1 dx = A_0 + A_1,$$

$$0 = \int_{-1}^{1} x dx = x_0 A_0 + x_1 A_1,$$

$$\frac{2}{3} = \int_{-1}^{1} x^2 dx = x_0^2 A_0 + x_1^2 A_1,$$

$$0 = \int_{-1}^{1} x^3 dx = x_0^3 A_0 + x_1^3 A_1,$$

We have four equations and four unknowns, a nonlinear system of equations. (*In general, it is difficult to solve the nonlinear system!*)

Example (cont'd)

- Solution is $A_0 = A_1 = 1$ and $x_1 = -x_0 = 1/\sqrt{3}$.
- The two-point Gaussian formula is:

$$\int_{-1}^{1} f(x) dx \approx f(-1/\sqrt{3}) + f(1/\sqrt{3}).$$

It is exact for polynomials of degree \leq 3.

Theorem on Gaussian quadrature

1

Let w(x) be a positive weight function and let q(x) be a nonzero polynomial of degree n + 1 that is w-orthogonal to the space Π_n in the sense that

$$\int_a^b q(x)p(x)w(x)dx = 0 \quad \text{for all } p(x) \in \Pi_n.$$

If x_0, x_1, \dots, x_n *are the roots of* q(x) = 0*, then the formula*

$$\int_{a}^{b} f(x)w(x)dx \approx \sum_{i=0}^{n} A_{i}f(x_{i})$$

is exact for all $f(x) \in \prod_{2n+1} with A_{i} = \int_{a}^{b} w(x) \prod_{j=0, j \neq i}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} dx.$

Proof. (cf. Textbook, page 493)
$$f \in \Pi_{2n+1} \Longrightarrow f = qp + r$$
 for some $p, r \in \Pi_n \Longrightarrow f(x_i) = r(x_i)$.

$$\therefore \int_{a}^{b} fwdx = \int_{a}^{b} qpw + rwdx = \int_{a}^{b} rwdx \underbrace{=}_{exact} \sum_{i=0}^{n} A_{i}r(x_{i}) = \sum_{i=0}^{n} A_{i}f(x_{i}). \quad \Box$$

How to find q(x)?

• Note: It can be proved that the polynomial q(x) only has simple roots and all roots are in [a, b] (cf. Textbook, page 494).

Proof. :
$$1 \in \prod_{n} \int_{a}^{b} 1qwdx = 0$$
 and $w > 0$ on $[a, b]$.

 \therefore *q* changes sign at least once.

Suppose that *q* changes sign only *r* times with $r \le n$. Let $a = t_0 < t_1 < \cdots < t_r < t_{r+1} = b$ and $q(t_i) = 0, i = 1, 2, \cdots, r$. Then *q* is of one sign on each $(t_0, t_1), (t_1, t_2), \cdots, (t_r, t_{r+1})$. $p(x) := \prod_{i=1}^r (x - t_i) \in \prod_n$ has the same sign property. $\therefore \int_a^b qpw dx \ne 0$, a contradiction!

• How do we find this q(x)? On [-1, 1], w(x) = 1, Legendre polynomials : $q_n(x) = \frac{n!}{(2n)!} \frac{d^n((x^2 - 1)^n)}{dx^n}$. $q_1(x) = x$, root: 0, $q_2(x) = x^2 - \frac{1}{3}$, roots: $-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{$

Convergence and error analysis

• **Theorem:** If f(x) is continuous, then Gaussian quadrature

$$\int_{a}^{b} f(x)w(x)dx \approx \sum_{i=0}^{n} A_{ni}f(x_{ni})$$

converges as $n \to \infty$.

Proof. See page 497 of the textbook.

• Theorem: Gaussian formula with error term is

$$\int_{a}^{b} f(x)w(x)dx = \sum_{i=0}^{n-1} A_{i}f(x_{i}) + E.$$

For an $f \in C^{2n}[a, b]$, we have

$$E = \frac{f^{(2n)}(\xi)}{(2n)!} \int_{a}^{b} q^{2}(x)w(x)dx,$$

where $a < \xi < b$ and $q(x) = \prod_{i=0}^{n-1} (x - x_i)$. *Proof.* See page 497 of the textbook.