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Introduction

If the values of a function f are given at a few points xg, x1, - - -

can that information be used to estimate a derivative
f'(e)
or an integral

/ubf(x)dx?
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Numerical differentiation

@ Assume that# > 0and f € C?[x,x + h]. By Taylor’s Theorem, we
have

2
Flath) = £(x) + 1 () + (@),

~—

for some ¢ € (x,x + h). Rearranging the expansion, we obtain

R
= () —f@) - o @),

= = ~

@ If the term — %f (&) is small, then we have an approximation of
f1(x), '
! ~ _ —
f1x) 2 (Fe+h) —f(x)

The term “— 4" ()" is called the truncation error.
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Example

Let f(x) = cos(x), x = r/4and h = 0.01.
We know the exact solution is f'(§) = —sin(§) = —0.7071.

1 1
. (f(x +h)— f(x)) = o5 (0.700000476 - 0.707106781)
—  —0.71063051.

@ Trueerror: |—0.7071 — (—0.7106)| = 0.0035.
@ Truncation error: | — %f”(§)| = 0.005| cos(¢)| < 0.005.
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Subtractive cancelation

@ Question: can we get a smaller error by using a smaller step size h?

@ Example: consider f(x) = tan~!(x) at x = /2. We know that the
exact solutionis f'(x) = (x> + 1)l and f'(v2) = L.

h f(x) fleth) | flo) =~
0.62 x10~! | 0.95531660 | 0.97555095 | 0.32374954
0.24 x1073 | 0.95531660 | 0.95539796 | 0.33325195
0.95 x107° | 0.95531660 | 0.95531690 | 0.31250000
0.60 x10~7 | 0.95531660 | 0.95531666 | 1.00000000
0.15 x10~7 | 0.95531660 | 0.95531660 | 0.00000000

@ When h is too small, f(x) and f(x + h) are too close to each other,
the significant digits were canceled.

@ One resolution is to use a higher order method. & doesn’t need
to be too small.
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Higher order methods

@ Assume that > 0and f € C3[x — h,x + h]. By Taylor’s
Theorem, we have

2 3
Fleth) = F )+ 2w+ L),

2 3
Fle—h) = f) =1 () + ") - ),

for some &; € (x,x+h) and & € (x — h,x). After subtracting
and rearranging, we have

F) = o (Fee ) — =) = =L (720 + 7).

@ This is a more favorable result, because of the h? term in the
error. Notice, however, the presence of f””/ in the error.
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Higher order methods (cont’d)

@ From the Intermediate Value Theorem, we have that there is a
¢ € (x —h,x +h), such that

1@ = S (@) +£" (@)
Hence,
2
£ = 5 (Flet ) —fe—m) =2 (@).
Therefore,

£ & o (et 1)~ f(x— ),

which is a second order formula.
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Example

Consider f(x) = tan~!(x) at x = v/2. We know that the exact solution

isf/(x) = (*+1) " and f'(v2) = §.

h fle=h) | flx+h) | fix) =

0.25 x10° 0.86112982 | 1.02972674 | 0.33719385
0.9765 x10~2 | 0.95499092 | 0.95564199 | 0.33334351
0.3815 x10~° | 0.95531535 | 0.95531786 | 0.32812500
0.1490 x10~7 | 0.95531660 | 0.95531660 | 0.00000000
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Approximation of " (x)

Assume thath > 0 and f € C*[x — h, x + h]. From Taylor’s Theorem,
we have

4
Flx+h) f

2 3
FOO) () + ) 2 f D () + e (),
3 4

y W, h h
fla=h) = @)= () + 5" () = 5/ (0 + /W (&),

for &y € (x,x+h) and &, € (x — h,x). After sum and rearrangement,
we obtain the following central difference formula:

2
) = ()~ 2600 =) — 2 (9 (@) 49 (@)

hZ
= (et k) =27+ f =) - 1Y @),

where at the last equality we use the Intermediate Value Theorem
again. Thus, we have a second order approximation of f”(x)

F10) = o (PO ) = 2 (0) + £ = 1))
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Homework

Derive the following two formulas for approximating derivatives and
show that they are both O(h*) by establishing their error terms:

F) ~ o (o 20) 8 h) — 8 — ) + £ (x —20)),
) =~ ﬁ (< e+ 28) + 167 (x + ) — 307 (x)
+16f(x — ) — f(x — 2h)).

(see Textbook, page 477, #6)

© Suh-Yuh Yang ( ), Math. Dept., NCU, Taiwan Differentiation and Integration — 10/44



Differentiation via polynomial interpolation

Goal: given f at n + 1 points xo,xq, - - -, X,. We wish to compute f'(xy),
where x,, is any of the node points.
@ We interpolate f with a polynomial its Lagrange form is

n

x)—éf(xi)fi( eSO CE

i=0

Define w(x) = [Tio(x — x;).
@ Taking the above equation derivative, we obtain

n , 1 ) /
gf(xi)fi(x) + o 1)!f( 1) (&) (2)

1 d .,
MCESMGr AN
Hence,
/ 1 (n+1) s s
Zf )i (xa) ( +1)!f (gx)jzl(;jlﬂ(xa x/)-
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Example

@ Use the equation above when n = 1 and &« = 0. The two
Lagrange cardinal functions are

lo(x) = 2= and 4y(x) = 20
Xp — X1 X1 —Xo
Their derivatives are
1 -1 1 1
él = = — d g/ - - 7.
O(x) X0 — X1 h an 1(.X') X1 — X h

@ Hence we have

Fxo) = O IO Ay ),
:>f/(x0) _ f(xl) ;f(xo) _ gf//(gx)~
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Richardson extrapolation

@ Richardson extrapolation is a general procedure to improve
accuracy.

@ Assume that f is sufficiently smooth and

flx+h) Z k'hkf ®(x) and f(x—h) = i %(—1)khkf(k) (x).
k=0 """

After subtraction and rearrangement, we obtain
1
F0) = 5 (fe+h) —fx—h)
1 1 1
— <§h2f(3) (x) + §h‘lf(5)( )+ 7'h6f(7) (x) + - )/
or in an abstract form

L=¢h)+ (a2h2+a4h4+a6h6+---).
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Richardson extrapolation (cont’d)

@ We rewrite the formula in the previous page as
L=¢(h)+ <a2h2 +aght +agh® + - -- ) (%)

If a; # 0, the truncation error is O(h?). How can we get rid of
this term? Rewrite the abstract form for 11/2 to get

_ h a5 4,4 | 6,6
Multiplying (**) by 4 and subtracting from (*), we obtain

_A 1 (%44 D866
L_é‘P(E) 3¢(h) (4h+16h+ )

@ This formula is the first step in Richardson extrapolation. It
shows that a simple combination of ¢ (1) and ¢(h/2) furnishes
an estimate of L with accuracy O(h*).
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Numerical integration

Question: How to compute | Hb f(x)dx numerically?

@ If we know the antiderivative of f, say F(x), then we have

/'b F(x)dx = F(b) — Fa).

@ Otherwise, we can find an approximation of f(x), say g(x)
whose integral is easy to compute. Then

/abf(x)dx R~ ./H.hg(x)dx.
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Integration using polynomial interpolation

@ We select some interpolation points xo, x1, - - - , X, in [a, b], and
define the Lagrange interpolation of f,

n

glx) =p(x) = }_f(xi)li(x),

i=0
where ¢;,i =1,2,--- ,n, are the cardinal functions,
n X — X;
li(x) = H L fori=0,1,---,n.
A Xi — X
j=0j#i ]

@ Then we have

b b b 1 b
[ fax [Cpax= [1Yfaax = Vst [
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Integration using polynomial interpolation (cont’d)

@ Let us denote )
Aj = / li(x)dx,
a

which is independent of f(x). Then we have a numerical
integration formula:

/:f(x)dx ~ Zn(:)ALf(xi).

@ If the interpolation points are equally spaced, then this is called a
Newton-Cotes formula.
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Trapezoid rule

@ If n =1 and the interpolation points are xy = 4, and x; = b.
Then we have

x—>b X—a
Eo(x):a_b and El(x):b_a.
bx—b 1 bx—ag 1
AO_./a a—b_ﬁ(b_a) and Al_./u b—a_i(b_a)'

@ The corresponding quadrature formula is

b 1 .
/ﬂ fx)dx ~ i(b —a) (f(a) +f(b)) = trapezoid rule.
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Error term in the trapezoid rule

@ The error term in the trapezoid rule: Assume that f € C2[a, b].
Using the error term in the Lagrange interpolation and the
mean-value theorem for integrals, we have

b)

[0 ptorte = [0 ===,

b
= —of'Q) [ P+ @+ bx—abdy= o =~ (- )" (Q),
2 Ja 12
where f”(&y) = 2(f(x) — p(x))/ (x> — (a + b)x + ab) is continuous
on (a,b) and can be continuously extended to [a, b] by using the
L'Hospital rule to calculate lim,_,,+ f” (&) and lim,_,,- " (Cx).

@ The trapezoid rule is exact for all f € IT;. The error is large if the
interval size is large.

@ The mean-value theorem for integrals (cf. Textbook, page 19):
Assume that u € Cla,b], v € Ra, b] and v doesn’t change sign on

[a,b]. Then 3 & € (a,b) such that fab uvdx = u(g) jﬂb vdx.
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Composite trapezoid rule

@ Partition the interval [a,b] intoa = xp < x; < --- < x, = b, and
then use the two-point trapezoid rule on each subinterval.

b n X; 120
[ fax= X [ f@as 5 3= xn) (Flaioa) +£6).

Xi—1

@ If the points are equally spaced, then we can introduce a step
size h = (b — a)/n, where n is the number of subintervals. The
interpolation points are x; = a + ih. The composite trapezoid
rule becomes

b n—1

Flod~ 1 (@) +2 Y £ () +£0)).

a i=1
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Error term in the composite trapezoid rule

Assume that f € C?[a,b]. For uniform partition, the error term for the
composite trapezoid rule is

. )y b)) = — % (b — )"
[ F@s =3 (@) +2 D) +0) = =50 - alif"(©),

for some & € (a,b). (= exact for all f € ITy)
Proof. Using the error formula for the trapezoid rule, we have

flayx - 33 0) =3y - Ly
[ Fx =3 (7@ +2 C ) +70) = =507 60

— _112h2i_ilhf//<gi) _ _112h21é (b;a)f”(gz)
= _%(b _a)hzrlzi_ilf”(gi) = —f—z(b—a)h2f”(§), for some ¢ € (a,b),

where we use the intermediate value theorem for continuous
functions at the last equality. [
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Examples

@ For example, if n =2, and [a,b] = [0, 1], then xy = 0,x; = 0.5,
and x, = 1, we have h = 1/2. The composite trapezoid rule is

/Olf(x)dx ~ 2 (0) + 2 (05) + 2 (1),

@ If we take n =2 and [4,b] = [0, 1] in the Newton-Cotes
procedure, we have

[ e 10+ 208) + ),
Solution:
Lo(x) =2(x—05)(x—1), #1(x) = —4x(x—1), o(x) = 2x(x—0.5),

1 1 1
AO = /0 fo(X)dx = 8/ Al = /0 El(x)dx = 5’ A2 - / fz(X)

(This formula is called Simpson’s rule. It will be derived again
by the method of undetermined coefficients below)

O\\H
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Recall the Newton-Cotes rule

@ Recall the Newton-Cotesrule: xp =a < x1 < ---<x, =D,
h=xj—xj_qforalli=1,2,--- ,n. (equally spaced!)

[/ Feyi~ Y,

where

b
Ai:/ Ei(x)dx.
a

@ This formula is exact for all f € IT,,.
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Method of undetermined coefficients

@ Let us look at an example. Forn = 2,
1
/O F(x)dx & Agf(0) + Arf(0.5) + Arf (1).

@ What are the coefficients Ay, A1 and A;? We seek the formula
that will be exact for all polynomials of degree < 2. It must be

exact for f(x) = 1, f(x) = xand f(x) = x?, i.e.,

1 / ldx = Ag + A1 + Ay,
0

1 1 1

- = =-A+A

5 ./0 xdx > 1+ Ay,

1 Ly, 1

—_ fr— d :*A A.

3 /Ox X 1 1+ A

@ Solving the 3 x 3 linear system, we obtain Ay = 1/6, A =2/3,
and A, = 1/6. This formula is called Simpson’s rule on [0, 1].
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Simpson’s rule

@ If we repeat the previous exercise for the interval [, b], we have
Simpson’s rule on [4, b]:

b a
| £y = 2 (f@) + 47 () +£0).

@ We know that Simpson’s rule is exact for all polynomials of
degree < 2. Surprisingly, Simpson’s rule is exact for cubic
polynomials.

@ Let [a,b] C (c,d). Assume that f € C*[c,d]. Then the error term
of Simpson’s rule is

a+Db

910< ) f(4 (&), forsome¢ € (a,b).

(See next three pages for the derivation)

@ It is large if the interval size is large, but can be more accurate
than the trapezoid rule if b — a is small.
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Error term of Simpson’s rule

Let h = (b —a) /2. The numerical integration formula takes the form

a+2h h
| e~ 3 (@) + 4G+ 1)+ fa+-21) ). ()

Using Taylor’s theorem, we have

2 3 4
flath) = fla)+hf @)+ of @)+ oof @) + o (@),

2 3 4
farm = s+ @+ Blp@+ G+ @),

for some ¢y € (a,a+h) and &, € (a,a + 2h). Substituting above
equations into the right-hand side of (*) yields

" (@) + 4 (a+ 1)+ fla -+ 20) ()
— 2hf(a) + thf/([l) + %h‘o’fﬂ(ﬂ) + §h4f///(a)

+ah(GF @) + o9 (@)).
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Error term of Simpson’s rule (cont’d)

X
Define F(x) := / f(#)dt for x € [c,d]. Then by the Fundamental

a
Theorem of Calculus, part I, we have F/(x) = f(x) for x € [a,a + 2h].
Using Taylor’s theorem on the left-hand side of (*), we obtain

a-+2h ! (Zh)z /"
/a f(x)dx = F(a+2h) = F(a) + (2h)F'(a) + T!F (a) (%)
2h)3 2n)* 2h)°
+%F (a)+(4—!)F(4>(a)+ (5!) FO) (i)

= 0+ 20 () + 22 (a) + SIF" (@) + 2Hf" (@) + 2 hF O ),
for some 1 € (a,a 4 2h). Comparing (**) and (***), we have
a+2h h
| @i = 3 (F@) + 4@+ +fa+2n)

=S (@) + @) + 2 ).
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Error term of Simpson’s rule (cont’d)

Notice that Simpson’s rule is exact for f(x) = x,i=0,1,2,3. Assume
that

/aa+2hf(x)dx = 2 (Fa) + 40+ 1)+ fla+20)) + KFO Q).

3
Using f(x) = x*, we have f(4) (&) = 24 and
%((a 12K — ) = g (a4 Fa@+h)t + (a+ zh)4) + 24K,
which implies
o

Notice that
(@) + @) + B )
= — 3P (@) - g @) + 1O ()

= 1 (5 (&) + 20 (&) —24f Y (1) ).
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Composite Simpson’s rule

@ We partition the interval [g, b] into 1 subintervals (even number)
withx; =a+ih,and h = (b —a)/n. Then,

/ab f(x)dx /Xz fx)dx + / ':4 fd ot | 2 i

n/2

JXi— 2

Using Sirnpson’s rule on each interval [xp;_ 5, Xp;|, we have

b I n/2
[ s~ 2 Y (Floai-2) + 4 (i) + )
: i=1

h n/2 n/2
= (760 + 2 ) + 4 L i) +f )
i=2

@ The error is fllﬁ (b—a)h*f*) (&) for some ¢ € (a,b).
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More general integration formulas

@ Consider the definite integral

/abf(x)w x)dx

where w(x) is a given weight function. For example
w(x) = cos(x).

@ We want a formula of the form

/abf(x)w(x)dxz/ Zf xi)4i( deZAlf xi),

where )
A; = / Li(x)w(x)dx, i=0,1,---,n.
a

In general, A; is hard to compute without using the method of
undetermined coefficients.
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More general integration formulas (cont’d)

@ An important question to ask before using the method of
undetermined coefficients: what is highest degree of polynomials
that the integration scheme can evaluate without error?

@ Example: Find a formula
g 3 1
/ﬂTf(x) cos(x)dx = Aof(— 171) + A]f(— 171)
1 3
+af (3m) + 4 (57)
that is exact when f is a polynomial of degree 3. Since a
polynomial of degree 3 is a linear combination of 4 polynomials

1, x, x2 and x>, thus we can determine the four coefficients
Ap, A1, Ay, Az using the four conditions.
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More general integration formulas (cont’d)

@ An observation: the problem is symmetric! Therefore Ay = A3
and A; = Ap. Lety = —x. Thendy = —dx and

s T
/ f(x) cos(x)dx = / f(—=y)cos(—y)dy = / f(—=y)cos(y)dy
—7T —7T
We only need to determine two coefficients
7T
0 = / 1cos(x)dx = 2Ag + 2A4,
—T7T
4 = M — o4y (3 1) 1)
4 = /_nx cos(x)dx—2A0(47r) —|—2A1(47T) .

@ Solving the system, we obtain A] = Ay = —Ag = —Az = 4/m.

[ st 2 {r(=3m) (= 3m) +(37) S
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Exercise

@ Find a formula

/Olf(x)exdx ~ Aof (0) +A1f (1)

that is exact when f is a polynomial of degree one.

@ Verify the formula by computing

1
/ (2x + 3)e“dx.
0

(The formula should be exact for this definite integral!)
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Change of intervals

@ Suppose we have a numerical integration formula for an
interval [c, d|, can we use it for a problem defined on a different
interval [a,]]?

@ Suppose a formula is given

[ a3 st

and we don’t know, or care, where the formula comes from.

Differentiation and Integration — 34/44



Change of intervals (cont’d)

@ Define a linear function A that maps the interval [c, d] to another
interval [a, b] such that if ¢ traverses [c,d], A(t) will traverse [a, b].

@ That means A(c) =aand A(d) = b, and A is given explicitly by

t—d t—c b—a ad — be
At) =a— + b <_ t+ )

—c d—c d—c
or
x*at_d—i-bt_c
T c—d  Td-—c
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Change of intervals (cont’d)

@ To make the change of variable, we also need to compute dx in
terms of dt. Taking the derivative, we have

1 b—a
dx-(c 7 T >dt_dcdt

which implies

d b—a

'/a.bf(x)dx: (A1) .

JC

@ So we have

b b—a i’l‘—d t,—c
af(x)dxwdchLf(acd—l—bd >

c
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Exercise

Suppose that we have derived Simpson’s rule

[ s o)+ 305) + L)

using the method of undermined coefficients. Use the change of
intervals to derive a corresponding formula for

/abf(x)dx

(The formula is given on page 25!)
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Error analysis

@ Recall the interpolation error
1 n
fx) = p(x) = FUD (G [Tx = x).
(n+1)! Pl !
Taking the integral, we have

b n 1 b "
[ F@d= o Af ) = gy [ [T -

where

Ai:/b&-(x)dx.
o If [f("+1)(x)| < Mon [a,b], then we have
b n
dx — ) Aif(x)| < )|d
[ o= LA < 52 /H| x;)|dx.

Therefore, The accuracy depends on the distribution of the
points.
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Gaussian quadrature

@ The formula

[ Fyte~ Vg

is obtained in two steps:

(1) select the nodes xg,x1,- - , Xy
(2) determine A; so that the formula is exact for polynomials of
degree < n

@ Question: since we have 2n + 2 parameters to choose, xg, X1, - -+ , Xy
and Ao, A1, - - -, Ay, can we make a formula that is exact for all
polynomials of degree < 2n + 12
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Example

Let us take a two-point case as an example. Consider the interval
[—1,1], let us pick two point xg,x; € [—1,1] such that

[ F@x ~ A o) + Aaf(x)

is exact for polynomials of degree < 3. That means the formula
produces no error for the functions 1, x,x2, and x°.

2 — /;11 ldx = Ag + Ay,

0 = /‘l1 xdx = xpAg + x1A1,
z /_1 xPdx = x3Ag + A
3 1 0410 1411/
0 = /11 x3dx = xSAO + x?Al,

We have four equations and four unknowns, a nonlinear system of
equations. (In general, it is difficult to solve the nonlinear system!)
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Example (cont’d)

@ Solutionis Ag =A; =landx; = —xp = 1//3.

@ The two-point Gaussian formula is:

[ e F(-1/V3) +£1/3).

It is exact for polynomials of degree < 3.

© Suh-Yuh Yang ( Math. Dept., NCU, Taiwan Differentiation and Integration — 41/44



Theorem on Gaussian quadrature

Let w(x) be a positive weight function and let q(x) be a nonzero polynomial
of degree n + 1 that is w-orthogonal to the space 11, in the sense that

b
/ g(x)p(x)w(x)dx =0 forall p(x) € I1,.
a
Ifxg,x1,- -, Xy are the roots of g(x) = 0, then the formula

[ 7ot ~ 3 g

n —
X X]

b
is exact for all f (x) € Iy, 1 with A; = / w(x)
S
Proof. (cf. Textbook, page 493)
f el = f =gp+rforsomep,reIl, = f(x;) = r(x;).

b b b n
/u fwdx:/ﬂ qu+rwdx:/a rwdx\:/ZAir(xi) =Y Af(x:).
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How to find g(x)?

@ Note: It can be proved that the polynomial q(x) only has simple roots
and all roots are in [a, b] (cf. Textbook, page 494).
Proof. -1 € T, fab 1qwdx = 0 and w > 0 on [a,b].
.. q changes sign at least once.
Suppose that g changes sign only r times with » < n. Let
a=ty<t < -+ <t <ty =bandq(t;) =0,i=12,---,r.
Then q is of one sign on each (to, t1), (t1,t2), - - -, (tr, tr41).
p(x) :=TI_; (x — t;) € I, has the same sign property.
) ub gpwdx # 0, a contradiction!

@ How do we find this g(x)? On [—1,1], w(x) =1,
n! d'((x* —1)")

Legendre polynomials : q,(x) =

(2n)! dx"
1 1
gi(x) = x, root:0, go(x)=x>— 3, roots: — —=, —,
3 3 ’ 3 v3va
p(x) = x> — Zx, roots: — 1/ =,0,4/=.
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Convergence and error analysis

@ Theorem: Iff(x) is continuous, then Gaussian quadrature

| /  F)w(x)dx ~ ;) Anif ()

converges as n — .
Proof. See page 497 of the textbook.

@ Theorem: Gaussian formula with error term is
b n—1
/ fw(x)dx = Y Af(x;) +E.
Ja i=0

Foran f € C?"[a, b], we have

(2n)

wherea < & < band q(x) = H?;Ol (x — x;).
Proof. See page 497 of the textbook.
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