MA 8020：Numerical Analysis II Syllabus and Introduction

Suh－Yuh Yang（楊肅暟）

Department of Mathematics，National Central University Jhongli District，Taoyuan City 320317，Taiwan

First version：February 12，2019／Last updated：February 7， 2024

Syllabus

－Instructor：Prof．Suh－Yuh Yang（楊肅暟）
－Office：M315，Hong－Jing Hall
－Phone：03－4227151 ext． 65130
－Office hours：Tuesday 10：00 \sim 12：00 am or by appointment． No teaching assistant！
－Prerequisites：Calculus，Linear Algebra and some knowledge of the software MATLAB：https：／／portal．ncu．edu．tw／校園授權軟體服務網裡面有關於Matlab的下載方式説明！
－Assignments：approximately every two weeks，will consist of theoretical problems or computer projects．The students are encouraged to discuss homework with other classmates．Direct copying is absolutely not allowed．
－Examinations：there will be a midterm and a final exam．
－Grading policy：assignments 40% ，midterm 30% and final 30% ．

Course objectives

（1）This course introduces students to various types of mathematical analysis that are commonly needed in scientific computing．
（2）The subject of numerical analysis is treated from a mathematical point of view，offering a complete analysis of methods for scientific computing with appropriate motivations and careful proofs．

Textbook

David Kincaid and Ward Cheney，Numerical Analysis：Mathematics of Scientific Computing，Third Edition，2002，Brooks／Cole．

http：／／www．ma．utexas．edu／CNA／NA3／index．html
Errata：http：／／www．ma．utexas．edu／CNA／NA3／errata．html

Important dates

－The period for adding and dropping：February 14－29， 2024
－The period for withdrawing：April 01－May 10， 2024
－Peace Memorial Day 2／28（Wed）：recess，no class！
Spring break 04／03（Wed）：recess，no class！
－Midterm：April 10 （Wed）， 2024
－Final exam：June 12 （Wed）， 2024

Outline of the course

－Approximating functions（§6．1－§6．4，§6．7－§6．8）
－Numerical differentiation and integration（§7．1－§7．5）
－Numerical solution of ordinary differential equations （§8．1－§8．9，§8．12）
－Numerical solution of partial differential equations （§9．1－§9．4）

Topic 1：Approximating functions

－Polynomial interpolation：we are given $n+1$ data points $\left(x_{i}, y_{i}\right), i=0,1, \cdots, n$ ，and we seek a polynomial p such that $p\left(x_{i}\right)=y_{i}, 0 \leq i \leq n$ ，where $y_{i}=f\left(x_{i}\right)$ for some function f ．
－Hermite interpolation：the interpolation of a function and some of its derivatives at a set of nodes．e．g．，find a polynomial p such that $p\left(x_{i}\right)=f\left(x_{i}\right)$ and $p^{\prime}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right), i=0,1$ ．
－Spline interpolation：a spline function of degree k is a piecewise polynomial of degree at most k having continuous derivatives of all orders up to $k-1$ ．
－Taylor series and best approximation

Topic 2：Numerical differentiation and integration

－Numerical differentiation
－Based on Taylor＇s theorem：$f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(\xi)$ ．
－Based on polynomial interpolation：let p be the Lagrange interpolation of f ．Then $f^{\prime}(x) \approx p^{\prime}(x)$ ．
－Numerical integration based on interpolation：let p be the Lagrange interpolation of f ．Then $\int_{a}^{b} f(x) d x \approx \int_{a}^{b} p(x) d x$ ．
－Gaussian quadrature：find A_{i} and $x_{i}, i=0,1, \cdots, n$ ，such that $\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n} A_{i} f\left(x_{i}\right)$ and it will be exact for polynomials of degree $\leq 2 n+1$ ．
－Adaptive quadrature：the user supplies only $f,[a, b]$ and the accuracy ε desired for computing $\int_{a}^{b} f(x) d x$ ．The program then divides $[a, b]$ into pieces of varying length so that the numerical integration produce results of acceptable precision．

Topic 3：Numerical solution of ordinary differential equations

－Existence and uniqueness of the initial value problem：

$$
\left\{\begin{aligned}
x^{\prime}(t) & =f(t, x) \\
x\left(t_{0}\right) & =x_{0} .
\end{aligned}\right.
$$

－Taylor－series method：

$$
x(t+h)=x(t)+h x^{\prime}(t)+\frac{h^{2}}{2!} x^{\prime \prime}(t)+\frac{h^{3}}{3!} x^{\prime \prime \prime}(t)+\cdots
$$

－Runge－Kutta methods：in Taylor－series method，we have to determine $x^{\prime \prime}, x^{\prime \prime \prime}, x^{(4)}, \cdots$ ．RKs avoid this difficulty．
－Multistep methods：e．g．，the Adams－Bashforth of order 5，

$$
x_{n+1}=x_{n}+\frac{h}{720}\left\{1901 f_{n}-2774 f_{n-1}+2616 f_{n-2}-1274 f_{n-3}+251 f_{n-4}\right\} .
$$

－Convergence，stability and consistency：for multistep method， we have convergent \Longleftrightarrow stable + consistent．
－Boundary value problems：shooting method，FDM．

Topic 4：Numerical solution of partial differential equations

－Parabolic problems：finite difference method－explicit，implicit．
－Elliptic problems：finite difference and finite element methods．
－Hyperbolic problems：characteristics．

