MA 8020: Numerical Analysis II Approximating Functions

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 320317, Taiwan

First version: February 17, 2019/Last updated: February 22, 2025

Polynomial interpolation

• We are going to solve the following problem: given a table of n + 1 data points (x_i, y_i) ,

we seek a polynomial p_n of lowest possible degree for which

$$p_n(x_i) = y_i \quad (0 \le i \le n).$$

• Such a polynomial $p_n(x)$ is said to interpolate the data.

Theorem on polynomial interpolation

If x_0, x_1, \dots, x_n are n+1 distinct real (or complex) numbers, then for arbitrary n+1 values y_0, y_1, \dots, y_n , there exists a unique polynomial p_n of degree at most n such that

$$p_n(x_i) = y_i \quad (0 \le i \le n).$$

Proof: (uniqueness)

Suppose there were two such polynomials p_n and q_n .

Then
$$(p_n - q_n)(x_i) = 0$$
 for $0 \le i \le n$.

Since the degree of $p_n - q_n$ can be at most n, this polynomial can have at most n zeros if it is not the 0 polynomial.

Since the x_i are distinct, $p_n - q_n$ has n + 1 zeros.

Therefore , it must be 0, namely, $p_n \equiv q_n$. \square

Theorem on polynomial interpolation (cont'd)

Proof: (existence) We will use the mathematical induction on n.

- For n = 0, we take $p_0 \equiv y_0$. Then $p_0(x_0) = y_0$.
- Suppose that it is true for n = k 1, i.e., \exists a polynomial p_{k-1} of degree $\leq k-1$ with $p_{k-1}(x_i) = y_i$ for $0 \leq i \leq k-1$. We wish to prove that it is true for n = k.
 - (i) We try to construct p_k in the form

$$p_k(x) = p_{k-1}(x) + c(x - x_0)(x - x_1) \cdots (x - x_{k-1}),$$

where *c* need to be determined.

(ii) Note that $deg(p_k) \le k$ and $p_k(x_i) = p_{k-1}(x_i) = y_i$ for $0 \le i \le k - 1$. We can determine *c* from the condition $p_k(x_k) = y_k$, i.e.,

$$y_k = p_{k-1}(x_k) + c(x_k - x_0)(x_k - x_1) \cdots (x_k - x_{k-1}).$$

Therefore, we have $c = \frac{y_k - p_{k-1}(x_k)}{(x_k - x_0)(x_k - x_1) \cdots (x_k - x_{k-1})}.$

That is, it is still true for n = k. \square

Newton form of the interpolation polynomial

- We attempt to translate the constructive existence proof into an algorithm suitable for a computer program.
- Consider the first few cases:

$$p_{0}(x) = c_{0} = y_{0},$$

$$p_{1}(x) = \underbrace{c_{0} + c_{1}(x - x_{0})}_{p_{0}(x)},$$

$$p_{2}(x) = \underbrace{c_{0} + c_{1}(x - x_{0})}_{p_{1}(x)} + c_{2}(x - x_{0})(x - x_{1}),$$

$$\vdots$$

In general, we have

$$p_k(x) = p_{k-1}(x) + c_k(x - x_0)(x - x_1) \cdots (x - x_{k-1}).$$

Thus, we can solve for the coefficients:

$$c_k = \frac{y_k - p_{k-1}(x_k)}{(x_k - x_0)(x_k - x_1) \cdots (x_k - x_{k-1})}.$$

Newton form of the interpolation polynomial (cont'd)

• Notice that each p_k is obtained simply by adding a single term to p_{k-1} and p_k has the form (the interpolation polynomials in Newton's form),

$$p_k(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \cdots + c_k(x - x_0)(x - x_1) \cdots (x - x_{k-1}),$$

or expressed in more compact form,

$$p_k(x) = \sum_{i=0}^k c_i \prod_{j=0}^{i-1} (x - x_j),$$

where
$$\prod_{j=0}^{i-1} (x - x_j) := 1$$
 if $i - 1 = -1$ and
$$c_k = \frac{y_k - p_{k-1}(x_k)}{(x_k - x_0)(x_k - x_1) \cdots (x_k - x_{k-1})}, \quad k \ge 1.$$

Example

Consider the polynomial

$$f(x) = 4x^3 + 35x^2 - 84x - 954.$$

Some values of this function are given by

The coefficients computed using the above algorithm are:

$$c_0 = y_0 = 1$$
, $c_1 = 2$, $c_2 = 3$ and $c_3 = 4 \Longrightarrow$
 $p_3(x) = 1 + 2(x - 5) + 3(x - 5)(x + 7) + 4(x - 5)(x + 7)(x + 6)$, which is the Newton form of $f(x) = 4x^3 + 35x^2 - 84x - 954$.
Note that $p_3 \equiv f$.

• An alternative method is to use divided differences to compute the coefficients (see next section later).

Lagrange form of the interpolation polynomial

Consider the alternative form expressing p

$$p_n(x) = y_0 \ell_0(x) + y_1 \ell_1(x) + \dots + y_n \ell_n(x) = \sum_{k=0}^n y_k \ell_k(x),$$

where $\ell_0, \ell_1, \dots \ell_n$ are polynomials that depend on the nodes x_0, x_1, \dots, x_n , but not on the ordinates y_0, y_1, \dots, y_n .

• $\ell_0, \ell_1, \dots \ell_n$ are cardinal functions with property:

$$\ell_i(x_j) = \delta_{ij}.$$

Recall that the Kronecker delta is defined by

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Lagrange form of the interpolation polynomial (cont'd)

• Let's consider ℓ_0 . It is a polynomial of degree n that takes the value 0 at x_1, x_2, \dots, x_n and the value 1 at x_0 . It must be of the form:

$$\ell_0(x) = c(x - x_1)(x - x_2) \cdots (x - x_n) = c \prod_{j=1}^n (x - x_j).$$

• Setting $x = x_0 \implies 1 = c \prod_{j=1}^{n} (x_0 - x_j)$ or $c = \prod_{j=1}^{n} (x_0 - x_j)^{-1}$.

So, we have

$$\ell_0(x) = \prod_{j=1}^n \frac{x - x_j}{x_0 - x_j}.$$

• Each ℓ_i is obtained by similar reasoning:

$$\ell_i(x) = \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}, \quad 0 \le i \le n.$$

Example

The nodes are 5, -7, -6, 0. So we have

$$\ell_0(x) = \frac{(x+7)(x+6)x}{(5+7)(5+6)5} = \frac{1}{660}x(x+6)(x+7),$$

$$\ell_1(x) = \frac{(x-5)(x+6)x}{(-7-5)(-7+6)(-7)} = \frac{-1}{84}x(x-5)(x+6),$$

$$\ell_2(x) = \frac{(x-5)(x+7)x}{(-6-5)(-6+7)(-6)} = \frac{-1}{66}x(x-5)(x+7),$$

$$\ell_3(x) = \frac{(x-5)(x+7)(x+6)}{(0-5)(0+7)(0+6)} = \frac{-1}{210}(x-5)(x+6)(x+7).$$

Thus, the interpolating polynomial is:

$$p_3(x) = 1\ell_0(x) - 23\ell_1(x) - 54\ell_2(x) - 954\ell_3(x).$$

Other method

Assume that

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n.$$

• The interpolation conditions, $p_n(x_i) = y_i$ for $0 \le i \le n$, lead to a system of n + 1 linear equations for determining a_0, a_1, \dots, a_n :

$$\begin{bmatrix}
1 & x_0 & x_0^2 & \cdots & x_0^n \\
1 & x_1 & x_1^2 & \cdots & x_1^n \\
1 & x_2 & x_2^2 & \cdots & x_n^n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_n & x_n^2 & \cdots & x_n^n
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1 \\
a_2 \\
\vdots \\
a_n
\end{bmatrix} = \begin{bmatrix}
y_0 \\
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix}.$$

• The coefficient matrix X is called the Vandermonde matrix. It is nonsingular with $\det X = \prod_{0 \le i < j \le n} (x_j - x_i) \ne 0$, but is often ill conditioned. Therefore, this approach is not recommended.

Homework #1

Recall the Vandermonde matrix *X* in the previous page, and define

$$V_n(x) = \det \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \ddots & & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^n \\ 1 & x & x^2 & \cdots & x^n \end{bmatrix}.$$

Then obviously we have $\det X = V_n(x_n)$.

(1) Show that $V_n(x)$ is a polynomial of degree n and its roots are x_0, x_1, \dots, x_{n-1} by deriving the formula

$$V_n(x) = V_{n-1}(x_{n-1})(x - x_0)(x - x_1) \cdots (x - x_{n-1}).$$

Hint: expand the last row of $V_n(x)$ by minors to show $V_n(x)$ is a polynomial of degree n and to find the coefficient of the term x^n .

(2) Show that

$$\det X = V_n(x_n) = \prod_{0 \le i < j \le n} (x_j - x_i).$$

Theorem on polynomial interpolation error

Let f be a given real-valued function in $C^{n+1}[a,b]$, and let p_n be the polynomial of degree at most n that interpolates the function f at n+1distinct points (nodes) x_0, x_1, \dots, x_n in the interval [a, b]. To each x in [a, b] there corresponds a point $\xi_x \in (a,b)$ such that

$$f(x) - p_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) \prod_{i=0}^n (x - x_i).$$

Proof: Let $x \in [a, b]$ be any point other than x_i , $i = 0, 1, \dots, n$. Define

$$w(t) = \prod_{i=0}^{n} (t - x_i) \quad \text{(polynomial in } t\text{),}$$

$$\varphi(t) = f(t) - p_n(t) - \lambda w(t) \quad \text{(function in } t\text{),}$$

$$\lambda = \frac{f(x) - p_n(x)}{w(x)} \quad \text{(a constant that makes } \varphi(x) = 0\text{).}$$

Then $\varphi \in C^{n+1}[a,b]$ and φ vanishes at the n+2 points x,x_0,x_1,\cdots,x_n . By Rolle's Theorem, φ' has at least n+1 distinct zeros in (a,b).

Theorem on polynomial interpolation error (cont'd)

Proof: (continued)

Repeating this process, we conclude eventually that $\varphi^{(n+1)}$ has at least one zero $\xi_x \in (a,b)$.

$$\varphi^{(n+1)}(t) = f^{(n+1)}(t) - p_n^{(n+1)}(t) - \lambda w^{(n+1)}(t)$$

= $f^{(n+1)}(t) - (n+1)!\lambda$.

Hence, we have

$$0 = \varphi^{(n+1)}(\xi_x) = f^{(n+1)}(\xi_x) - (n+1)!\lambda$$

= $f^{(n+1)}(\xi_x) - (n+1)! \frac{f(x) - p_n(x)}{w(x)}.$

This completes the proof. \Box

Example

If $f(x) = \sin x$ is approximated by a polynomial of degree 9 that interpolates f at 10 points in the interval [0,1], how large is the error on this interval?

Since

$$|f^{(10)}(\xi_x)| \le 1$$
 and $\prod_{i=0}^9 |x - x_i| \le 1$,

we have for all x in [0, 1],

$$\left| \sin x - p_9(x) \right| \le \frac{1}{10!} < 2.8 \times 10^{-7}.$$

Chebyshev polynomials

 The Chebyshev polynomials (of the first kind) are defined recursively as follows:

$$\left\{ \begin{array}{rcl} T_0(x) & = & 1, \\ T_1(x) & = & x, \\ T_{n+1}(x) & = & 2xT_n(x) - T_{n-1}(x) \quad \textit{for } n \geq 1. \end{array} \right.$$

• The explicit forms of the next few T_n are:

$$T_2(x) = 2x^2 - 1,$$

$$T_3(x) = 4x^3 - 3x,$$

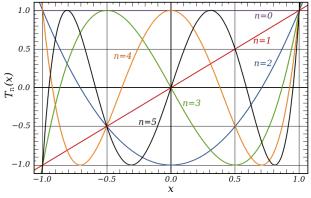
$$T_4(x) = 8x^4 - 8x^2 + 1,$$

$$T_5(x) = 16x^5 - 20x^3 + 5x,$$

$$T_6(x) = 32x^6 - 48x^4 + 18x^2 - 1.$$

• These polynomials arose when Chebyshev was studying the motion of linkages in a steam locomotive.

Some Chebyshev polynomials: T_0, T_1, \dots, T_5



(quoted from wikipedia.org)

Properties of the Chebyshev polynomials

• **Theorem:** For x in the interval [-1,1],

$$T_n(x) = \cos(n\cos^{-1}x)$$
 for $n \ge 0$.

Proof: Recall the addition formula for the cosine:

$$\cos(n+1)\theta = \cos\theta\cos n\theta - \sin\theta\sin n\theta,$$

$$\cos(n-1)\theta = \cos\theta\cos n\theta + \sin\theta\sin n\theta.$$

Thus, we have $\cos(n+1)\theta = 2\cos\theta\cos n\theta - \cos(n-1)\theta$. (*)

Let $\theta = \cos^{-1} x$. Then $x = \cos \theta$. Define

$$f_n(x) = \cos(n\cos^{-1}x) = \cos(n\theta).$$

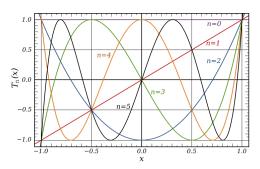
From (\star) , we have

$$\begin{cases} f_0(x) &= 1, \\ f_1(x) &= x, \\ f_{n+1}(x) &= 2xf_n(x) - f_{n-1}(x) \text{ for } n \ge 1. \end{cases}$$

Therefore, $f_n = T_n$ for all $n \ge 0$. \square

Properties of the Chebyshev polynomials (cont'd)

- $|T_n(x)| \le 1$ for $-1 \le x \le 1$.
- $T_n(\cos \frac{i\pi}{n}) = (-1)^i$ for $0 \le i \le n$, where $x_i = \cos \frac{i\pi}{n}$ are the location of absolute extreme points of T_n on [-1,1].
- $T_n(\cos\frac{2i-1}{2n}\pi) = 0$ for $1 \le i \le n$, where $x_i = \cos\frac{2i-1}{2n}\pi$ are the location of zero roots of T_n on [-1,1] (in fact, on \mathbb{R}).



Monic polynomials

- A monic polynomial is one in which the term of highest degree has a coefficient of unity.
- From the definition of the Chebyshev polynomials, we see that in $T_n(x)$ the term of highest degree is $2^{n-1}x^n$ for $n \ge 1$. Therefore, $2^{1-n}T_n$ is a monic polynomial for $n \ge 1$.
- **Theorem:** *If p is a monic polynomial of degree n, then*

$$||p||_{\infty} := \max_{-1 \le x \le 1} |p(x)| \ge 2^{1-n}.$$

Proof: Suppose that $|p(x)| < 2^{1-n}$ for $-1 \le x \le 1$. Let $q(x) = 2^{1-n}T_n(x)$ and $x_i = \cos(\frac{i\pi}{n})$, $0 \le i \le n$. Then q is a monic polynomial of degree n. We have

$$\begin{aligned} (-1)^{i}p(x_{i}) &\leq |p(x_{i})| < 2^{1-n} = (-1)^{i}q(x_{i}) \\ &\Longrightarrow (-1)^{i}(q(x_{i}) - p(x_{i})) > 0, \quad \textit{for } 0 \leq i \leq n. \end{aligned}$$

This shows that q - p oscillates in sign at least n + 1 times on [-1, 1].

Therefore, q - p have at least n roots in (-1, 1).

This is a contradiction since q - p has degree at most n - 1

(Note that x^n will not appear in q - p). \square

Choosing the nodes

Theorem: If the nodes x_i are the roots of the Chebyshev polynomial T_{n+1} , then the error formula for the interpolation polynomial p_n yields

$$|f(x) - p_n(x)| \le \frac{1}{2^n(n+1)!} \max_{|t| \le 1} |f^{(n+1)}(t)|, \quad -1 \le x \le 1.$$

Proof: By the error formula of the polynomial interpolation p_n of f,

$$\max_{|x| \le 1} |f(x) - p_n(x)| \le \frac{1}{(n+1)!} \max_{|t| \le 1} \left| f^{(n+1)}(t) \right| \max_{|x| \le 1} \left| \prod_{i=0}^{n} (x - x_i) \right|.$$

By the theorem on the previous page, we have

$$\max_{|x|\leq 1} \left| \prod_{i=0}^n (x-x_i) \right| \geq 2^{-n}.$$

Let $x_i = \cos\left(\frac{2i+1}{2n+2}\pi\right)$ for $0 \le i \le n$, the roots of T_{n+1} . Then we can show that $2^{-n}T_{n+1}(x) = \prod_{i=0}^n (x-x_i)$. Since $|T_n(x)| \le 1$ for $-1 \le x \le 1$, we have

$$\max_{|x| \le 1} \left| \prod_{i=0}^{n} (x - x_i) \right| = \max_{|x| \le 1} |2^{-n} T_{n+1}(x)| \le 2^{-n}. \quad \Box$$

(cf. pp. 221-229, E. Isaacson and H. B. Keller, Analysis of Numerical Methods, 1966)

The convergence of interpolating polynomials

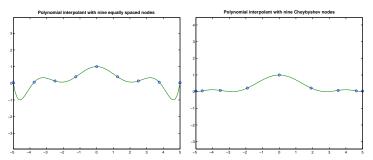
Assume that $f \in C[a, b]$, and if interpolating polynomials p_n of higher and higher degree are constructed for f, then the *natural expectation* is that these polynomials will converge to f uniformly on [a, b]. i.e.,

$$||f-p_n||_{\infty} := \max_{a \le x \le b} |f(x)-p_n(x)| \to 0 \text{ as } n \to \infty.$$

- This is true for $f(x) = \sin x$ on [0,1] for any given nodes (p.15).
- Runge example: $f(x) = \frac{1}{1+x^2}$ on [-5,5]. If interpolating polynomials p_n are constructed using equally spaced nodes in [-5,5], the sequence $\{a_n := \|f-p_n\|_{\infty}\}$ is not bounded.
- **Faber's Theorem:** For any prescribed, $a \le x_0^{(n)} < \cdots < x_n^{(n)} \le b$, $n \ge 0$, $\exists f \in C[a,b]$ s.t. the interpolating polynomials for f using these nodes fail to converge uniformly to f.
- **Theorem on convergence of interpolants:** *If* $f \in C[a,b]$, *then* \exists $a \le x_0^{(n)} < x_1^{(n)} < \dots < x_n^{(n)} \le b$, $n \ge 0$, *s.t. the interpolating polynomials* p_n *for* f *using these nodes satisfy* $\lim_{n\to\infty} ||f p_n||_{\infty} = 0$.

Polynomial interpolants with different sets of nodes

Consider the function
$$f(x) = \frac{1}{1+x^2}$$
 for $x \in [-5,5]$.



The technique for choosing points to minimize the interpolating error can be extended to a general closed interval [a, b] by using the *change* of variables,

$$\widetilde{x} = \frac{1}{2} \left((b-a)x + a + b \right),$$

to shift the numbers x_i in [-1,1] into the corresponding numbers \tilde{x}_i .

Divided differences (均差)

- Let f be a function whose values are given at points (nodes) $x_0, x_1, \dots x_n$.
- We assume that these nodes are distinct, but they need not be ordered.
- We know there is a unique polynomial p_n of degree at most n such that

$$p(x_i) = f(x_i)$$
 for $0 \le i \le n$.

• p_n can be constructed as a linear combination of $1, x, x^2, \dots, x^n$.

Instead, we use the Newton form of the interpolating polynomial. Let

$$q_0(x) = 1,$$

$$q_1(x) = (x - x_0),$$

$$q_2(x) = (x - x_0)(x - x_1),$$

$$q_3(x) = (x - x_0)(x - x_1)(x - x_2),$$

$$\vdots$$

$$q_n(x) = (x - x_0)(x - x_1)(x - x_2) \cdots (x - x_{n-1}).$$

Then we have

$$p_n(x) = \sum_{j=0}^n c_j q_j(x)$$

for some c_i given on page 6.

• The interpolation conditions give rise to a linear system of equations Ac = f for the unknown coefficients c_j 's:

$$\sum_{j=0}^{n} c_j q_j(x_i) = f(x_i) \quad \text{for } 0 \le i \le n.$$

• The elements of the coefficient matrix $A = (a_{ij})$ are

$$a_{ij} = q_j(x_i)$$
 for $0 \le i, j \le n$.

• The $(n+1) \times (n+1)$ matrix A is lower triangular because

$$q_{j}(x) = \prod_{k=0}^{j-1} (x - x_{k})$$

$$\implies a_{ij} = q_{j}(x_{i}) = \prod_{k=0}^{j-1} (x_{i} - x_{k}) = 0 \quad \text{if } i \le j - 1.$$

• For example, consider the case of three nodes with

$$p_2(x) = c_0q_0(x) + c_1q_1(x) + c_2q_2(x)$$

= $c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1).$

Setting $x = x_0$, $x = x_1$, and $x = x_2$, we have a lower triangular system

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & (x_1 - x_0) & 0 \\ 1 & (x_2 - x_0) & (x_2 - x_0)(x_2 - x_1) \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ f(x_2) \end{bmatrix}.$$

• Thus, c_n depends on f at x_0, x_1, \dots, x_n , and define the notation

$$c_n := f[x_0, x_1, \cdots, x_n],$$

which is called a *divided difference* of *f* .

• $f[x_0, x_1, \dots, x_n]$ is the coefficient of q_n when $\sum_{k=0}^n c_k q_k$ interpolates f at x_0, x_1, \dots, x_n .

Note that

$$f[x_0] = f(x_0), \quad f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}.$$

• Theorem on higher-order divided differences (均差): In general, divided differences satisfy the equation:

$$f[x_0,x_1,\cdots,x_n] = \frac{f[x_1,x_2,\cdots,x_n] - f[x_0,x_1,\cdots,x_{n-1}]}{x_n - x_0}.$$

Proof: Denote p_k the polynomial of degree $\leq k$ that interpolates f at x_0, x_1, \cdots, x_k . Let q denote the polynomial of degree $\leq n-1$ that interpolates f at x_1, x_2, \cdots, x_n . Then we can check that

$$p_n(x) = q(x) + \frac{x - x_n}{x_n - x_0} (q(x) - p_{n-1}(x)).$$

This is because that the both sides of the equality have the same values at x_0 , x_1 , \cdots , x_n and same degree $\leq n$. Examining the coefficient of x^n on the both sides, we arrive at the assertion. \square

Table of divided differences

• If a table of function values $(x_i, f(x_i))$ is given, we can construct from it a table of divided differences as follows:

$$x_0$$
 $f[x_0]$ $f[x_0, x_1]$ $f[x_0, x_1, x_2]$ $f[x_0, x_1, x_2, x_3]$
 x_1 $f[x_1]$ $f[x_1, x_2]$ $f[x_1, x_2, x_3]$
 x_2 $f[x_2]$ $f[x_2, x_3]$
 x_3 $f[x_3]$

 Note that the Newton interpolating polynomial can be written in the form

$$p_n(x) = \sum_{k=0}^n f[x_0, x_1, \cdots, x_k] \prod_{j=0}^{k-1} (x - x_j).$$

• The coefficients required in the Newton interpolating polynomial occupy the top row in the divided difference table.

Example

Compute a divided difference table from

Solution:

The Newton interpolating polynomial can be written as

$$p_3(x) = 1 + 2(x-3) - \frac{3}{8}(x-3)(x-1) + \frac{7}{40}(x-3)(x-1)(x-5).$$

Properties of divided differences

• **Theorem A:** If $(z_0, z_1, \dots z_n)$ is a permutation of $(x_0, x_1, \dots x_n)$, then

$$f[z_0,z_1,\cdots,z_n]=f[x_0,x_1,\cdots,x_n].$$

• **Theorem B (Theorem on the interpolation error):** *Let* p_n *be the polynomial of degree* $\leq n$ *that interpolates* f *at* n+1 *distinct nodes* x_0, x_1, \dots, x_n . *If* $t \neq x_i, i = 0, 1 \dots, n$, *then*

$$f(t) - p_n(t) = f[x_0, x_1, \dots, x_n, t] \prod_{j=0}^{n} (t - x_j).$$

• Theorem C (Theorem on derivatives and divided differences): If $f \in C^n[a,b]$ and x_0, x_1, \dots, x_n are distinct points in [a,b], there exists a point $\xi \in (a,b)$ such that

$$f[x_0, x_1, \cdots, x_n] = \frac{1}{n!} f^{(n)}(\xi).$$

Proof of Theorem A

- $f[z_0, z_1, \dots, z_n]$ is the coefficient of x^n in the polynomial of degree $\leq n$ that interpolates f at the nodes z_0, z_1, \dots, z_n .
- $f[x_0, x_1, \dots, x_n]$ is the coefficient of x^n in the polynomial of degree $\leq n$ that interpolates f at the nodes x_0, x_1, \dots, x_n .
- ullet These two polynomials are the same. This leads to the conclusion. \Box

Proof of Theorem B

Let q be the polynomial of degree $\leq n+1$ that interpolates f at the nodes x_0, x_1, \dots, x_n, t . Then

$$q(x) = p_n(x) + f[x_0, x_1, \dots, x_n, t] \prod_{j=0}^{n} (x - x_j).$$

Since q(t) = f(t), we obtain

$$f(t) = q(t) = p_n(t) + f[x_0, x_1, \dots, x_n, t] \prod_{j=0}^{n} (t - x_j).$$

Therefore,

$$f(t) - p_n(t) = f[x_0, x_1, \cdots, x_n, t] \prod_{i=0}^{n} (t - x_i).$$

Proof of Theorem C

Let p_{n-1} be the polynomial of degree $\leq n-1$ that interpolates f at x_0, x_1, \dots, x_{n-1} . By the *Theorem on Polynomial Interpolation Error* on page 13, $\exists \ \xi \in (a,b)$ such that

$$f(x_n) - p_{n-1}(x_n) = \frac{1}{n!} f^{(n)}(\xi) \prod_{j=0}^{n-1} (x_n - x_j).$$

On the other hand, by Theorem B with $t = x_n$, we have

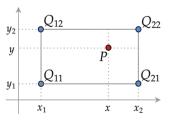
$$f(x_n) - p_{n-1}(x_n) = f[x_0, x_1, \cdots, x_n] \prod_{j=0}^{n-1} (x_n - x_j).$$

Therefore, we have

$$f[x_0, x_1, \cdots, x_n] = \frac{1}{n!} f^{(n)}(\xi). \quad \Box$$

Bilinear interpolation

Assume that the function values of *f* are given at four points: $Q_{11} = (x_1, y_1), Q_{12} = (x_1, y_2), Q_{21} = (x_2, y_1), \text{ and } Q_{22} = (x_2, y_2).$



(cited from "omni calculator")

Then by the Lagrange linear interpolation, we have

$$f(x,y_1) \approx \frac{x-x_2}{x_1-x_2}f(Q_{11}) + \frac{x-x_1}{x_2-x_1}f(Q_{21}),$$

$$f(x,y_2) \approx \frac{x-x_2}{x_1-x_2}f(Q_{12}) + \frac{x-x_1}{x_2-x_1}f(Q_{22}).$$

Bilinear interpolation (cont'd)

Let P = (x, y) be a given point in the rectangular region enclosed by Q_{11} , Q_{12} , Q_{21} , and Q_{22} . By the Lagrange linear interpolation again,

$$f(x,y) \approx p_{11}(x,y) = \frac{y-y_2}{y_1-y_2} f(x,y_1) + \frac{y-y_1}{y_2-y_1} f(x,y_2)$$

$$= \frac{y-y_2}{y_1-y_2} \left(\frac{x-x_2}{x_1-x_2} f(Q_{11}) + \frac{x-x_1}{x_2-x_1} f(Q_{21}) \right)$$

$$+ \frac{y-y_1}{y_2-y_1} \left(\frac{x-x_2}{x_1-x_2} f(Q_{12}) + \frac{x-x_1}{x_2-x_1} f(Q_{22}) \right)$$

$$= \frac{1}{(x_1-x_2)(y_1-y_2)} \left((f(Q_{11})(x-x_2)(y-y_2) + f(Q_{21})(x-x_1)(y_2-y) + f(Q_{12})(x_2-x)(y-y_1) + f(Q_{22})(x-x_1)(y-y_1) \right)$$

$$= \frac{1}{(x_1-x_2)(y_1-y_2)} \left[\frac{x_2-x}{x-x_1} \right]^{\top} \left[f(Q_{11}) f(Q_{12}) \right] \left[\frac{y_2-y}{y-y_1} \right].$$

A direct approach: bilinear and bicubic interpolations

For bilinear interpolation, a direct approach is given by

$$f(x,y) \approx p_{11}(x,y) = a + bx + cy + dxy,$$

where the four coefficients are determined from the four equations in four unknowns a, b, c, d:

$$f(Q_{11}) = a + bx_1 + cy_1 + dx_1y_1,$$

$$f(Q_{12}) = a + bx_1 + cy_2 + dx_1y_2,$$

$$f(Q_{21}) = a + bx_2 + cy_1 + dx_2y_1,$$

$$f(Q_{22}) = a + bx_2 + cy_2 + dx_2y_2.$$

• For bicubic interpolation, a direct approach is given by

$$f(x,y) \approx p_{33}(x,y) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^{i} y^{j},$$

where the 16 coefficients a_{ij} , $0 \le i, j \le 3$ are determined from the 16 equations with 16 unknowns, using the function values of the 16 nearest neighboring points in the rectangular region.

Hermite interpolation

 Regular interpolation (Lagrange interpolation) refers to the interpolation of a function at a set of nodes:

$$f(x_i)$$
, $i = 0, 1, \dots, n$, are given.

• **Hermite interpolation** refers to the interpolation of a function and some of its derivatives at a set of nodes:

$$f(x_i), i = 0, 1, \dots, n$$
, are given,

and

some of
$$f'(x_i)$$
, $i = 0, 1, \dots, n$, are given.

Basic concepts

• Given f and its derivative f' at two distinct points, say x_0 and x_1 , find a polynomial with the lowest degree such that

$$p(x_i) = f(x_i)$$
 and $p'(x_i) = f'(x_i)$ for $i = 0, 1$.

• What degree? Since there are four conditions, a polynomial of degree 3 seems reasonable; i.e., find *a*, *b*, *c*, *d* such that

$$p(x) = a + bx + cx^2 + dx^3$$

satisfies all the four conditions. Notice that

$$p'(x) = b + 2cx + 3dx^2.$$

• (a, b, c, d) is the solution of the following system:

$$p(x_0) = a + bx_0 + cx_0^2 + dx_0^3 = f(x_0),$$

$$p(x_1) = a + bx_1 + cx_1^2 + dx_1^3 = f(x_1),$$

$$p'(x_0) = b + 2cx_0 + 3dx_0^2 = f'(x_0),$$

$$p'(x_1) = b + 2cx_1 + 3dx_1^2 = f'(x_1).$$

• Does this have a solution? Unique? How to solve it?

Basic concepts (cont'd)

A better form of a polynomial of degree 3

$$p(x) = a + b(x - x_0) + c(x - x_0)^2 + d(x - x_0)^2(x - x_1)$$

and

$$p'(x) = b + 2c(x - x_0) + 2d(x - x_0)(x - x_1) + d(x - x_0)^2.$$

• The four conditions on *p* can now be written in the form

$$f(x_0) = a,$$

 $f'(x_0) = b,$
 $f(x_1) = a + bh + ch^2,$
 $f'(x_1) = b + 2ch + dh^2,$

where $h := x_1 - x_0$.

Some difficulties

- How general is this linear system approach?
- An example: find a polynomial p that assumes these values: p(0) = 0, p(1) = 1, $p'(\frac{1}{2}) = 2$.

$$p(x) = a + bx + cx^2.$$

- (1) p(0) = 0 leads to a = 0.
- (2) the other two conditions lead to

$$1 = p(1) = b + c$$
,

$$2 = p'(\frac{1}{2}) = b + c.$$

• It doesn't work!

Birkhoff interpolation

Let us try a cubic polynomial

$$p(x) = a + bx + cx^2 + dx^3.$$

We discover that a solution exists but not unique.

- (1) notice that a = 0 (: p(0) = 0).
- (2) the remaining conditions are

1 =
$$b+c+d$$
 (: $p(1) = 1$),
2 = $b+c+\frac{3}{4}d$ (: $p'(\frac{1}{2}) = 2$).

• The solution of this system is d = -4 and b + c = 5 (*infinitely many solution*).

Hermite interpolation

• In a Hermite interpolation, it is assumed that whenever a derivative $p^{(j)}(x_i)$ is prescribed at note x_i , then $p^{(j-1)}(x_i)$, $p^{(j-2)}(x_i)$, \cdots , $p'(x_i)$ and $p(x_i)$ will also be prescribed.

That is at node x_i , $k_i := j + 1$ interpolation conditions are prescribed. Notice that k_i may vary with i.

• Let nodes be x_0, x_1, \dots, x_n . Suppose that at node x_i these interpolation conditions are given:

$$p^{(j)}(x_i) = c_{ij}$$
 for $0 \le j \le k_i - 1$ and $0 \le i \le n$.

• The total number of conditions on p denoted by m + 1, i.e.,

$$m+1 := k_0 + k_1 + \cdots + k_n$$
.

Theorem on Hermite interpolation

There exists a unique polynomial $p \in \Pi_m$ fulfilling the Hermite interpolation conditions, where Π_m is the space containing all polynomials of degree less than or equal to m.

Sketch of the proof:

From the interpolation conditions, we have an associated linear system problem, say Ax = b, where A is an $(m + 1) \times (m + 1)$ matrix.

To prove that A is nonsingular, it suffices to prove that Ax = 0 has only the 0 solution.

That is, we need to show that if $p \in \Pi_m$ such that

$$p^{(j)}(x_i) = 0$$
 for $0 \le j \le k_i - 1$ and $0 \le i \le n$,

then $p(x) \equiv 0$. Such polynomial has a zero of multiplicity k_i at x_i for $0 \le i \le n$. Therefore, p must be a multiple of $q(x) := \prod_{i=0}^{n} (x - x_i)^{k_i}$.

Since
$$degree(q) = \sum_{i=0}^{n} k_i = m+1$$
, we have $p(x) \equiv 0$. \square

Remark

What happens in Hermite interpolation when there is only one node? In this case, we require a polynomial p of degree k, for which

$$p^{(j)}(x_0) = c_{0j}$$
 for $0 \le j \le k$.

The solution is the Taylor polynomial:

$$p(x) = c_{00} + c_{01}(x - x_0) + \frac{c_{02}}{2!}(x - x_0)^2 + \dots + \frac{c_{0k}}{k!}(x - x_0)^k.$$

Newton form of Hermite interpolation

Suppose that we are going to find a quadratic polynomial of the form

$$p(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)^2,$$

which satisfies the requirements:

$$p(x_0) = f(x_0), \quad p'(x_0) = f'(x_0) \quad and \quad p(x_1) = f(x_1).$$

Then

$$p'(x) = c_1 + 2c_2(x - x_0)$$

and we have a lower triangular system

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & (x_1 - x_0) & (x_1 - x_0)^2 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f'(x_0) \\ f(x_1) \end{bmatrix}.$$

Thus, $c_0 = f(x_0) = f[x_0]$, c_1 depends on $f'(x_0)$, and c_2 depends on $f(x_0)$, $f'(x_0)$, and $f(x_1)$.

Newton form of Hermite interpolation (cont'd)

• Since $\lim_{x \to x_0} f[x_0, x] = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$, we define

$$f[x_0,x_0] := f'(x_0).$$

Then $c_1 = f'(x_0) = f[x_0, x_0]$. From

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0},$$

we have

$$f[x_0, x_0, x_1] = \frac{f[x_0, x_1] - f[x_0, x_0]}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{(x_1 - x_0)^2} - \frac{c_1}{x_1 - x_0} = c_2.$$

We can check that

$$p(x) = f(x_0) + f[x_0, x_0](x - x_0) + f[x_0, x_0, x_1](x - x_0)^2.$$

(see Problem 6.3.5)

Remarks

• We write the divided difference table in this form:

$$\begin{array}{c|c} x_0 & f[x_0] & f[x_0, x_0] & ? \\ x_0 & f[x_0] & ? & ? \\ x_1 & f[x_1] & & ? & \end{array}$$

The question marks stand for entries that are not yet computed. Observe that x_0 appears twice and the prescribed value of $f'(x_0) (= f[x_0, x_0])$ has been placed in the column of first-order divided differences.

From Theorem C (page 31),

$$f[x_0, x_1, \cdots, x_k] = \frac{1}{k!} f^{(k)}(\xi),$$

where ξ belongs to the open interval containing x_0, x_1, \dots, x_k . Hence, we define

$$f[x_0, x_0, \cdots, x_0] := \frac{1}{k!} f^{(k)}(x_0).$$

Notice that when $k \ge 2$ need to include 1/k! in the table.

Example

 Use the extended Newton divided difference algorithm to determine a polynomial that that takes these values:

The interpolating polynomial is

$$p(x) = 2 + 3(x-1) + (x-1)^2 + 2(x-1)^2(x-2) - (x-1)^2(x-2)^2.$$

Lagrange form of Hermite interpolation

Let us try to satisfy

$$p(x_i) = c_{i0}$$
 and $p'(x_i) = c_{i1}$, $0 \le i \le n$

by a polynomial of the form

$$p(x) = \sum_{i=0}^{n} c_{i0} A_i(x) + \sum_{i=0}^{n} c_{i1} B_i(x).$$

Similar to the Lagrange formula, we wish the following properties:

$$\begin{cases}
A_i(x_j) = \delta_{ij}, \\
A'_i(x_j) = 0;
\end{cases}
\begin{cases}
B_i(x_j) = 0, \\
B'_i(x_j) = \delta_{ij}.
\end{cases}$$

Recall the notation

$$\ell_i(x) = \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j}.$$

Then, A_i and B_i can be defined as follows

$$\begin{cases} A_i(x) = [1 - 2(x - x_i)\ell_i'(x_i)]\ell_i^2(x) & 0 \le i \le n, \\ B_i(x) = (x - x_i)\ell_i^2(x) & 0 \le i \le n. \end{cases}$$

Lagrange form of Hermite interpolation (cont'd)

Take a two-point case:

$$p(x) = f(x_0)A_0(x) + f(x_1)A_1(x) + f'(x_0)B_0(x) + f'(x_1)B_1(x),$$

where

$$A_0(x) = (1 - 2(x - x_0)\ell'_0(x_0))\ell^2_0(x),$$

$$A_1(x) = (1 - 2(x - x_1)\ell'_1(x_1))\ell^2_1(x),$$

$$B_0(x) = (x - x_0)\ell^2_0(x),$$

$$B_1(x) = (x - x_1)\ell^2_1(x),$$

and

$$\begin{array}{rcl} \ell_0(x) & = & \frac{x-x_1}{x_0-x_1}, \\ \ell_1(x) & = & \frac{x-x_0}{x_1-x_0}, \\ \ell_0'(x) & = & \frac{1}{x_0-x_1}, \\ \ell_1'(x) & = & \frac{1}{x_1-x_0}. \end{array}$$

Theorem on Hermite interpolation error estimate

Let x_0, x_1, \dots, x_n be distinct nodes in [a, b] and let $f \in C^{2n+2}[a, b]$. If p_{2n+1} is the polynomial of degree at most 2n + 1 such that

$$p_{2n+1}(x_i) = f(x_i), \quad p'_{2n+1}(x_i) = f'(x_i) \quad \text{for } 0 \le i \le n,$$

then to each x in [a,b] there corresponds a point ξ in (a,b) such that

$$f(x) - p_{2n+1}(x) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \prod_{i=0}^{n} (x - x_i)^2.$$

<u>Sketch of the proof:</u> The proof is similar to the proof of Theorem on Lagrange interpolation error estimate, pp. 13-14.

Let $x \in [a, b]$ be any point other than x_i , $i = 0, 1, \dots, n$. Define

$$w(t) = \prod_{i=0}^{n} (t - x_i)^2$$
 (polynomial in t),
$$\varphi(t) = f(t) - p_{2n+1}(t) - \lambda w(t)$$
 (function in t),
$$\lambda = \frac{f(x) - p_{2n+1}(x)}{w(x)}$$
 (a constant that makes $\varphi(x) = 0$). \square

Spline interpolation (樣條插值)

- A spline function consists of polynomial pieces on subintervals joined together with certain continuity conditions. Formally, suppose that n+1 points (knots) t_0, t_1, \dots, t_n have been specified and satisfy $t_0 < t_1 < \dots < t_n$.
- A spline function of degree *k* is a function *S* such that
 - (1) on each interval $[t_{i-1}, t_i)$, S is a polynomial of degree $\leq k$.
 - (2) *S* has a continuous (k-1)st derivative on $[t_0, t_n]$.
- **Example:** A spline of degree 0 is a piecewise constant function. A spline of degree 0 can be given explicitly in the form:

$$S(x) = \begin{cases} S_0(x) = c_0 & x \in [t_0, t_1), \\ S_1(x) = c_1 & x \in [t_1, t_2), \\ \vdots & \vdots \\ S_{n-1}(x) = c_{n-1} & x \in [t_{n-1}, t_n]. \end{cases}$$

A spline of degree 1

A spline function of degree 1 takes the following form:

$$S(x) = \begin{cases} S_0(x) = a_0 x + b_0 & x \in [t_0, t_1), \\ S_1(x) = a_1 x + b_1 & x \in [t_1, t_2), \\ \vdots & \vdots & \vdots \\ S_{n-1}(x) = a_{n-1} x + b_{n-1} & x \in [t_{n-1}, t_n]. \end{cases}$$

- Note that when k = 1, the k 1 derivative has to be continuous, i.e., S(x) has to be continuous on $[t_0, t_n]$.
- The pieces are not independent. They have to satisfy the conditions

$$S_i(t_{i+1}) = S_{i+1}(t_{i+1})$$
 for $i = 0, 1, \dots, n-2$.

Cubic splines (k = 3)

- Cubic splines are most famous and often used in practice.
- We assume that a table of value has been given

On each interval $[t_0, t_1]$, $[t_1, t_2]$, \cdot , $[t_{n-1}, t_n]$, S is given by a different cubic polynomial.

• Let S_i be the cubic polynomial that represent S on $[t_i, t_{i+1}]$. Thus,

$$S(x) = \begin{cases} S_0(x) & x \in [t_0, t_1], \\ S_1(x) & x \in [t_1, t_2], \\ \vdots & \vdots \\ S_{n-1}(x) & x \in [t_{n-1}, t_n]. \end{cases}$$

Cubic splines (cont'd)

• The polynomials S_{i-1} and S_i interpolate the same value at the point t_i and therefore

$$S_{i-1}(t_i) = y_i = S_i(t_i)$$
 for $1 \le i \le n-1$.

This implies that S(x) is continuous.

- Now, since k = 3, we also need to have both S'(x) and S''(x) to be continuous.
- How do we satisfy these conditions?
 - (1) we have 4n coefficients for n cubic polynomials.
 - (2) on each subinterval $[t_i, t_{i+1}]$, we have 2 interpolation conditions: $S(t_i) = y_i$ and $S(t_{i+1}) = y_{i+1} \Longrightarrow 2n$ conditions.
 - (3) continuity of $S' \Longrightarrow$ one condition at each knot: $S'_{i-1}(t_i) = S'_i(t_i) \Longrightarrow n-1$ conditions.
 - (4) similarly for $S'' \Longrightarrow n-1$ conditions.
 - (5) total: 4n 2 conditions, 4n coefficients. \implies *two degrees of freedom*.

Derive the equation for $S_i(x)$ **on** $[t_i, t_{i+1}]$

• Let $z_i := S''(t_i)$ for $0 \le i \le n$. S''(x) is continuous everywhere including the nodes

$$\lim_{x \downarrow t_i} S''(x) = z_i = \lim_{x \uparrow t_i} S''(x) \quad \text{for } 1 \le i \le n-1.$$

• Since S_i is a cubic polynomial on $[t_i, t_{i+1}]$, $S_i''(x)$ is a degree 1 polynomial (linear function) satisfying $S_i''(t_i) = z_i$ and $S_i''(t_{i+1}) = z_{i+1}$. Then

$$S_i''(x) = \frac{z_i}{h_i}(t_{i+1} - x) + \frac{z_{i+1}}{h_i}(x - t_i),$$

where $h_i = t_{i+1} - t_i$.

• Taking the integral twice to obtain *S*_i itself,

$$S_i(x) = \frac{z_i}{6h_i}(t_{i+1} - x)^3 + \frac{z_{i+1}}{6h_i}(x - t_i)^3 + C(x - t_i) + D(t_{i+1} - x),$$

where *C* and *D* are integration constants.

Derive the equation for $S_i(x)$ **on** $[t_i, t_{i+1}]$ **(cont'd)**

- We need to use other conditions to determine *C* and *D*.
- Using the interpolation conditions

$$S_i(t_i) = y_i$$
 and $S_i(t_{i+1}) = y_{i+1}$,

we obtain

$$S_{i}(x) = \frac{z_{i}}{6h_{i}}(t_{i+1} - x)^{3} + \frac{z_{i+1}}{6h_{i}}(x - t_{i})^{3} + (\frac{y_{i+1}}{h_{i}} - \frac{z_{i+1}h_{i}}{6})(x - t_{i}) + (\frac{y_{i}}{h_{i}} - \frac{z_{i}h_{i}}{6})(t_{i+1} - x).$$

• **Note:** We still do not know the values of z_i and z_{i+1} .

Derive the equation for $S_i(x)$ **on** $[t_i, t_{i+1}]$ **(cont'd)**

• Let us use the condition that S' is continuous. This means

$$\begin{split} S'_{i-1}(t_i) &= S'_i(t_i), \\ S'_i(t_i) &= -\frac{h_i}{3}z_i - \frac{h_i}{6}z_{i+1} - \frac{y_i}{h_i} + \frac{y_{i+1}}{h_i}, \\ S'_{i-1}(t_i) &= \frac{h_{i-1}}{6}z_{i-1} + \frac{h_{i-1}}{3}z_i - \frac{y_{i-1}}{h_{i-1}} + \frac{y_i}{h_{i-1}}. \end{split}$$

Hence, we have

$$h_{i-1}z_{i-1} + 2(h_i + h_{i-1})z_i + h_i z_{i+1} = \frac{6}{h_i}(y_{i+1} - y_i) - \frac{6}{h_{i-1}}(y_i - y_{i-1}),$$

where z_{i-1} , z_i and z_{i+1} are the unknowns, everything else is known.

- The above equation is valid only for points t_1, t_2, \dots, t_{n-1} . Why?
- **Boundary conditions:** For z_0 and z_n , we can pick any values. *natural cubic spline:* $z_0 = z_n = 0$.

A linear system

• Putting all the conditions togethers, for $i = 1, 2, \dots, n - 1$, we have

$$\begin{bmatrix} u_1 & h_1 & & & & & \\ h_1 & u_2 & h_2 & & & & \\ & h_2 & u_3 & h_3 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & h_{n-1} & u_{n-2} & h_{n-2} \\ & & & & h_{n-2} & u_{n-1} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ \vdots \\ z_{n-2} \\ z_{n-1} \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_{n-2} \\ v_{n-1} \end{bmatrix},$$

where

$$h_i = t_{i+1} - t_i$$
, $u_i = 2(h_i + h_{i-1})$,
 $b_i = \frac{6}{h_i}(y_{i+1} - y_i)$, $v_i = b_i - b_{i-1}$.

• The matrix is strictly diagonally dominant, therefore it is nonsingular!

Smoothness properties

• Theorem on optimality of natural cubic splines: If f'' is continuous in [a,b], then

$$\int_{a}^{b} (S''(x))^{2} dx \le \int_{a}^{b} (f''(x))^{2} dx.$$

Proof: See Textbook, page 355. □

• Recall, the curvature of a smooth function $f : \mathbb{R} \to \mathbb{R}$ is

$$|f''(x)|(1+(f'(x))^2)^{-3/2} \approx |f''(x)|$$
 if $f'(x)$ is small.

• The natural cubic spline function has a curvature "smaller" than that of f over an interval [a, b].

A classical problem in best approximation

Problem: A continuous function f is defined on an interval [a, b].
 For a fixed n, we ask for a polynomial p of degree at most n such that

$$\max_{a \le x \le b} |f(x) - p(x)| \quad \text{is minimized.}$$

Remarks:

- Interpolations use pointwise values, e.g., Lagrange interpolation: $p(x_i) = f(x_i)$.
- Approximations use global information.

Some backgrounds

Consider a normed linear space $(E, \|\cdot\|)$ and a subspace G in E.

• For any $f \in E$, the distance from f to G is defined as

$$dist(f,G) = \inf_{g \in G} ||f - g||.$$

• If an element $g^* \in G$ has the property

$$||f - g^*|| = dist(f, G) = \inf_{g \in G} ||f - g||,$$

then g^* achieves this minimum deviation. It is a best approximation of f from G.

The meaning of best approximation thus depends on the norm chosen for the problem.

Some backgrounds (cont'd)

• In the classic problem mentioned on page 62, the normed space is E := C[a, b], the space of all continuous functions defined on [a, b], and the norm is defined by

$$||f||_{\infty} := \max_{a \le x \le b} |f(x)| \quad for f \in C[a, b].$$

The subspace *G* is the space Π_n of all polynomials of degree $\leq n$.

• In general, best approximations are not unique. For example, let $f(x) = \cos x$ on $[0, \pi/2]$. Then $f \in C[0, \pi/2]$. Let $G = span\{x\}$, then G is a finite-dimensional subspace of $C[0, \pi/2]$. Then $g(x) = \lambda x$ are best approximations for all $0 \le \lambda \le 2/\pi$ in $\|\cdot\|_{\infty}$.

Solution: By definition, we have

$$dist(f,G) = \inf_{g \in G} ||f - g||_{\infty} = \inf_{g \in G} \max_{0 \le x \le \pi/2} |f(x) - g(x)|$$
$$= \inf_{\lambda \in \mathbb{R}} \max_{0 \le x \le \pi/2} |\cos x - \lambda x| = 1,$$
and $||f - \lambda x||_{\infty} = 1$, $\forall 0 < \lambda < 2/\pi$.

Theorem on existence of best approximation

If G is a finite-dimensional subspace in a normed linear space E, then each point of E possesses at least one best approximation in G.

Sketch of the proof:

Let $f \in E$. If $g \in G$ is a best approximation of f, then $||f - g|| \le ||f - 0|| = ||f||$ (since $0 \in G$).

Define $K = \{h \in G : ||f - h|| \le ||f||\}$. Then K is closed and bounded.

Since *G* is a finite-dimensional space and $K \subseteq G$, *K* is compact.

(**Note:** A normed linear space is finite-dimensional if and only if every bounded subset is "relatively compact")

- ∴ The function $F : G \to \mathbb{R}$ defined by F(h) := ||f h|| is continuous.
- \therefore *F* attains minimum on the compact set *K*.
- $\therefore \exists g \in K \text{ such that } ||f g|| = \min_{h \in K} ||f h|| (\underbrace{=}_{(why?)} \inf_{h \in G} ||f h||). \square$

Inner product spaces

- A real inner product space is a real linear space E with an inner product $\langle \cdot, \cdot \rangle : E \times E \to \mathbb{R}$ satisfying the following properties: for any $f, g \in E$,
 - (1) $\langle f, f \rangle \ge 0$ and $\langle f, f \rangle = 0$ if and only if f = 0.
 - (2) $\langle f, h \rangle = \langle h, f \rangle$.
 - (3) $\langle f, \alpha h + \beta g \rangle = \alpha \langle f, h \rangle + \beta \langle f, g \rangle$, for any $\alpha, \beta \in \mathbb{R}$.
- A natural norm associated with the inner product is defined as $||f|| = \sqrt{\langle f, f \rangle}$.
- We write $f \perp g$ if $\langle f, g \rangle = 0$. We write $f \perp G$ if $f \perp g$ for all $g \in G$.

Examples

Two important inner-product spaces are

 \bullet \mathbb{R}^n with

$$\langle x,y\rangle = \sum_{i=1}^n x_i y_i.$$

• $C_w[a, b]$, the space of continuous functions on [a, b], with

$$\langle f, g \rangle = \int_a^b f(x)g(x)w(x)dx,$$

where w(x) is a fixed continuous positive function (for example, $w(x) \equiv 1$).

Lemma on inner product space properties

In an inner product space, we have

$$\bullet \left\langle \sum_{i=1}^n a_i f_i, g \right\rangle = \sum_{i=1}^n a_i \left\langle f_i, g \right\rangle.$$

- $||f + g||^2 = ||f||^2 + 2\langle f, g \rangle + ||g||^2$.
- If $f \perp g$, then $||f + g||^2 = ||f||^2 + ||g||^2$ (Pythagorean law).
- $|\langle f, g \rangle| \le ||f|| ||g||$ (Schwarz inequality).
- $||f + g||^2 + ||f g||^2 = 2||f||^2 + 2||g||^2$.

Proof: see Textbook, page 395. □

Theorem on characterizing best approximation

Let G *be a subspace in an inner product space* E. For $f \in E$ and $g \in G$, the *following two properties are equivalent:*

- **1** *g is a best approximation to f in G.*
- $(f-g)\bot G.$

Proof: (2) ⇒ (1): If $f - g \bot G$, then for any $h \in G$ we have, by the Pythagorean law,

$$||f - h||^2 = ||(f - g) + (g - h)||^2 = ||f - g||^2 + ||g - h||^2 \ge ||f - g||^2.$$

∴ we have (1).

(1) \Rightarrow (2): Let $h \in G$ and $\lambda > 0$. Then

$$\begin{array}{lll} 0 & \leq & \|f - g + \lambda h\|^2 - \|f - g\|^2 \\ & = & \|f - g\|^2 + 2\lambda \langle f - g, h \rangle + \lambda^2 \|h\|^2 - \|f - g\|^2 \\ & = & \lambda \{2\langle f - g, h \rangle + \lambda \|h\|^2\}. \end{array}$$

Letting $\lambda \to 0^+$, we obtain $\langle f - g, h \rangle \ge 0$. Replacing h by -h, we have $\langle f - g, -h \rangle \ge 0$. Therefore $\langle f - g, h \rangle = 0$. Since h is arbitrary in G, $(f - g) \perp G$. \square

Example

• Determine the best approximation of the function $f(x) = \sin x$ by a polynomial $g(x) = c_1x + c_2x^3 + c_3x^5$ on the interval [-1,1] using the inner product:

$$\langle f,g\rangle := \int_{-1}^{1} f(x)g(x)dx, \quad \forall f,g \in L^{2}(-1,1).$$

• The optimal function g has the property $(f - g) \perp G$. G is the space generated by $g_1(x) = x$, $g_2(x) = x^3$, and $g_3(x) = x^5$. Thus, $\langle g - f, g_i \rangle = 0$ is required for i = 1, 2, 3.

$$c_1\langle g_1,g_i\rangle+c_2\langle g_2,g_i\rangle+c_3\langle g_3,g_i\rangle=\langle f,g_i\rangle$$
 for $i=1,2,3$.

• These are called the normal equations.

Example (cont'd)

Putting in the details, we have

$$\left\{ \begin{array}{rcl} c_1 \int_{-1}^1 x^2 dx + c_2 \int_{-1}^1 x^4 dx + c_3 \int_{-1}^1 x^6 dx & = & \int_{-1}^1 x \sin x dx, \\ c_1 \int_{-1}^1 x^4 dx + c_2 \int_{-1}^1 x^6 dx + c_3 \int_{-1}^1 x^8 dx & = & \int_{-1}^1 x^3 \sin x dx, \\ c_1 \int_{-1}^1 x^6 dx + c_2 \int_{-1}^1 x^8 dx + c_3 \int_{-1}^1 x^{10} dx & = & \int_{-1}^1 x^5 \sin x dx. \end{array} \right.$$

• Results in a 3×3 linear system:

$$\begin{bmatrix} \frac{1}{3} & \frac{1}{5} & \frac{1}{7} \\ \frac{1}{5} & \frac{1}{7} & \frac{1}{9} \\ \frac{1}{7} & \frac{1}{9} & \frac{1}{11} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} \alpha - \beta \\ -3\alpha + 5\beta \\ 65\alpha - 101\beta \end{bmatrix},$$

where $\alpha = \sin 1$ and $\beta = \cos 1$. Solving this system, we obtain $c_1 \approx -0.99998$, $c_2 \approx -0.16652$, and $c_3 \approx 0.00802$.

 This coefficient matrix is an example of the ill-conditioned Hilbert matrix.

The Gram matrix

- Let $\{u_1, u_2, \dots, u_n\}$ be any basis for a subspace U. In order that an element $u \in U$ be the best approximation to f, it is necessary and sufficient that $u f \perp U$ by the *Theorem on characterizing best approximation* (cf. page 69).
- An equivalent condition is that $\langle u f, u_i \rangle = 0$ for $1 \le i \le n$. Setting $u = \sum_{j=1}^n c_j u_j$, we find

$$\sum_{j=1}^n c_j \langle u_j, u_i \rangle = \langle f, u_i \rangle \quad \textit{for } 1 \leq i \leq n.$$

- These are the normal equations: n linear equations in the n unknowns c_1, c_2, \cdots, c_n . The coefficient matrix G is called a Gram matrix, where $G_{ij} = \langle u_i, u_i \rangle = \langle u_i, u_i \rangle$.
- Lemma on Gram matrix: If $\{u_1, u_2, \dots, u_n\}$ is linearly independent, then its Gram matrix is nonsingular (see page 403).

Orthonormal systems

- A sequence of vectors f_1, f_2, \cdots in an inner product space is
 - (1) orthogonal if $\langle f_i, f_j \rangle = 0$ for $i \neq j$.
 - (2) orthonormal if $\langle f_i, f_j \rangle = \delta_{ij}$ for all i, j.
- **Theorem on constructing best approximation:** Let $\{g_1, \dots, g_n\}$ be an orthonormal system in an inner product space E. The best approximation of f by an element $\sum_{i=1}^n c_i g_i$ is obtained if and only if $c_i = \langle f, g_i \rangle$.

Proof: Let
$$G = span\{g_1, g_2, \cdots, g_n\}$$
. Then

$$\sum_{i=1}^{n} c_i g_i$$
 is a best approximation of f in G

$$\iff$$
 $(f - \sum_{i=1}^{n} c_i g_i) \perp G \iff (f - \sum_{i=1}^{n} c_i g_i) \perp g_j \text{ for } j = 1, 2, \cdots, n.$

$$\iff 0 = \left\langle f - \sum_{i=1}^{n} c_i g_i, g_j \right\rangle = \left\langle f, g_j \right\rangle - \sum_{i=1}^{n} c_i \left\langle g_i, g_j \right\rangle = \left\langle f, g_j \right\rangle - c_j. \quad \Box$$

Example

We reconsider the previous example: $\sin x \approx c_1 x + c_2 x^3 + c_3 x^5$. It is known that an orthonormal basis for our three-dimensional subspace is provided by three Legendre polynomials as follows:

$$g_1(x) = \frac{x}{\sqrt{2/3}},$$

$$g_2(x) = \frac{5x^3 - 3x}{2\sqrt{2/7}},$$

$$g_3(x) = \frac{63x^5 - 70x^3 + 15x}{8\sqrt{2/11}}.$$

Example (cont'd)

The solution is then the polynomial $\sum_{i=1}^{3} c_i g_i$, where $c_i = \langle f, g_i \rangle$.

$$c_1 = \sqrt{3/2} \int_{-1}^1 x \sin x dx = 2\sqrt{3/2} (\alpha - \beta),$$

$$c_2 = \frac{1}{2} \sqrt{7/2} \int_{-1}^1 \sin x (5x^3 - 3x) dx = \sqrt{7/2} (-18\alpha + 28\beta),$$

$$c_3 = \frac{1}{8} \sqrt{11/2} \int_{-1}^1 \sin x (63x^5 - 70x^3 + 15x) dx$$

$$= \frac{1}{4} \sqrt{11/2} (4320\alpha - 6728\beta),$$

where $\alpha = \sin 1$ and $\beta = \cos 1$. The approximate solution is $c_1 \approx 0.738$, $c_2 \approx -3.37 \times 10^{-2}$, and $c_3 \approx 4.34 \times 10^{-4}$.

Theorem on Gram-Schmidt process

Let $\{v_1, v_2, \dots, v_n\}$ be a basis for a subspace U in an inner-product space. Define recursively

$$u_i = \left\| v_i - \sum_{j=1}^{i-1} \langle v_i, u_j \rangle u_j \right\|^{-1} \left(v_i - \sum_{j=1}^{i-1} \langle v_i, u_j \rangle u_j \right) \quad \text{for } i = 1, 2, \cdots, n.$$

Then $\{u_1, u_2, \dots, u_n\}$ is an orthonormal base for U.

Proof: see Textbook, page 399. □

Theorem on orthogonal polynomials

The sequence of polynomial defined inductively as following is orthogonal:

$$p_n(x) = (x - a_n)p_{n-1}(x) - b_n p_{n-2}(x)$$
 for $n \ge 2$,

with $p_0(x) = 1$, $p_1(x) = x - a_1$, and

$$a_n = \langle xp_{n-1}, p_{n-1} \rangle / \langle p_{n-1}, p_{n-1} \rangle$$
 for $n \ge 1$,
 $b_n = \langle xp_{n-1}, p_{n-2} \rangle / \langle p_{n-2}, p_{n-2} \rangle$ for $n \ge 2$,

where $\langle \cdot, \cdot \rangle$ is any inner product provided it has the property:

$$\langle fg,h\rangle = \langle f,gh\rangle, e.g., \langle f,g\rangle = \int_a^b f(x)g(x)w(x)dx.$$

Proof: Since each p_i is a monic polynomial of degree i, $\langle p_i, p_i \rangle \neq 0$ for all i. We show by induction on n that

$$\langle p_n, p_i \rangle = 0$$
, for $i = 0, 1, \dots, n-1$.

$$n=1: \langle p_1, p_0 \rangle = \langle (x-a_1)p_0, p_0 \rangle = \langle xp_0, p_0 \rangle - a_1 \langle p_0, p_0 \rangle = 0.$$

Proof of the theorem on orthogonal polynomials (cont'd)

Suppose that the assertion holds for n - 1. We wish to prove that it is still true for n.

For $i = 0, 1, \dots, n - 3$, we have

$$\langle p_n, p_i \rangle = \langle xp_{n-1}, p_i \rangle - a_n \langle p_{n-1}, p_i \rangle - b_n \langle p_{n-2}, p_i \rangle = \langle p_{n-1}, xp_i \rangle$$

$$= \langle p_{n-1}, p_{i+1} + a_{i+1}p_i + b_{i+1}p_{i-1} \rangle = 0.$$

Legendre polynomials

Combining the inner product $\langle f,g\rangle := \int_{-1}^{1} f(x)g(x)dx$ with the theorem above, we have the Legendre polynomials:

$$p_0(x) = 1.$$

$$a_1 = \langle xp_0, p_0 \rangle / \langle p_0, p_0 \rangle = 0.$$

$$p_1(x) = x.$$

$$a_2 = \langle xp_1, p_1 \rangle / \langle p_1, p_1 \rangle = 0.$$

$$b_2 = \langle xp_1, p_0 \rangle / \langle p_0, p_0 \rangle = \frac{1}{3}.$$

$$p_2(x) = x^2 - \frac{1}{3}.$$

Similarly, we have

$$p_3(x) = x^3 - \frac{3}{5}x.$$

$$p_4(x) = x^4 - \frac{6}{7}x^2 + \frac{3}{35}.$$

$$p_5(x) = x^5 - \frac{10}{2}x^3 + \frac{5}{24}x.$$

Chebyshev polynomials

The Chebyshev polynomials form an orthogonal system on [-1,1] using the following inner product:

$$\langle f, g \rangle := \int_{-1}^{1} f(x)g(x) \frac{dx}{\sqrt{1 - x^2}}.$$

Solution: Changing of variable $x = \cos \theta$, we have

$$\langle f, g \rangle := \int_0^{\pi} f(\cos \theta) g(\cos \theta) d\theta.$$

Since $T_n(x) = \cos(n\cos^{-1}x)$, we have for $n \neq m$,

$$\langle T_n, T_m \rangle = \int_0^{\pi} \cos(n\theta) \cos(m\theta) d\theta = \frac{1}{2} \int_0^{\pi} \cos(n+m)\theta + \cos(n-m)\theta d\theta$$

$$= \frac{1}{2} \left[\frac{\sin(n+m)\theta}{n+m} + \frac{\sin(n-m)\theta}{n-m} \right]_0^{\pi} = 0.$$

Least squares approximation

- Given a data set $\{(x_i, y_i), i = 1, 2, \dots, m\}$. We would like to approximate the data set using functions in the following space: $F = span\{\phi_1, \phi_2, \dots, \phi_n\}$, where $\phi_1, \phi_2, \dots, \phi_n$ are the basis functions of the function space F. In general, $m \gg n$. Functions in F take the form $\phi(x) = c_1\phi_1(x) + \dots + c_n\phi_n(x)$.
- **Question:** can we find a $\phi(x) \in F$, such as all conditions in the data set are satisfied:

$$\phi(x_i)=y_i, i=1,2,\cdots,m,$$

which is the same as saying the following

$$c_1\phi_1(x_1) + c_2\phi_2(x_1) + \dots + c_n\phi_n(x_1) = y_1,$$

$$c_1\phi_1(x_2) + c_2\phi_2(x_2) + \dots + c_n\phi_n(x_2) = y_2,$$

$$\vdots$$

$$c_1\phi_1(x_m) + c_2\phi_2(x_m) + \dots + c_n\phi_n(x_m) = y_m.$$

• We obtain $A_{m \times n} c_{n \times 1} = y_{m \times 1}$. This is not a square system, and usually has no solution.

Least squares approximation (cont'd)

- No solution in the classical sense, but we can define a least squares solution.
- Define $d_i = y_i (c_1\phi_1(x_i) + c_2\phi_2(x_i) + \dots + c_n\phi_n(x_i))$ for $1 \le i \le m$. That is, d := y Ac, where $d = (d_1, d_2, \dots, d_m)^{\top}$, $y = (y_1, y_2, \dots, y_m)^{\top}$, $c = (c_1, c_2, \dots, c_n)^{\top}$, and

$$A = \begin{bmatrix} \phi_1(x_1) & \phi_2(x_1) & \cdots & \phi_n(x_1) \\ \phi_1(x_2) & \phi_2(x_2) & \cdots & \phi_n(x_2) \\ & & \vdots & \\ \phi_1(x_m) & \phi_2(x_m) & \cdots & \phi_n(x_m) \end{bmatrix}_{m \times n}.$$

• If we can't make all $d_i = 0$, can we make all of them small? We then consider the least squares problem:

$$\min_{c} \|d\|_{2}^{2} = \min_{c} \|y - Ac\|_{2}^{2}.$$

Least squares approximation (cont'd)

Define

$$\Psi(c_1,c_2,\cdots,c_n):=\|d\|_2^2=\sum_{i=1}^m\Big(y_i-\sum_{j=1}^nc_j\phi_j(x_i)\Big)^2.$$

• We want to find c_1, c_2, \dots, c_n such that $\Psi(c_1, c_2, \dots, c_n)$ is minimized:

$$\frac{\partial \Psi}{\partial c_k} = 0$$
, for $k = 1, 2, \dots, n$.

This leads to a linear system problem:

$$A^{\top}Ac = A^{\top}y,$$

where $A^{\top}A$ is an $n \times n$ Gram matrix.

• In general, the column vectors of matrix A are linearly independent, provided $\phi_1, \phi_2, \cdots, \phi_n$ are linearly independent and data points x_1, x_2, \cdots, x_m are sufficiently numerous and well-distributed. In that case, $A^{\top}A$ is nonsingular.