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Initial-value problem (IVP)
@ Initial-value problem: find x(t) such that
{ x'(t) f(tx),
x(to) = Xo,

where f(t,x), tg, xo € R! are given.

@ Example 1:
x'(t) = xtan(t+3),
x(-3) = 1
One can verify that the analytic solution of this IVP is

x(t) = sec(t + 3). Since sect becomes oo at t = 7, the solution
is valid only for -5 <t+3 < 7.

@ Example 2:

1.

Try x(t) = ce" = cre™ = ce'* = r =1, x = ce! (general solution)

{x’(t) = x,

=
—

(=)
~—

I

Use x(0) =1 = x = ¢! (a particular solution)
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Existence of solution

@ Existence: do all IVPs have a solution? Answer: No!

Some assumptions must be made about f, and even then we can
expect the solution to exist only in a neighborhood of t = .

@ Example:
() = 1+
x(0) = 0.

Try x(t) = tant, then x(0) = 0.

sin? ¢t

cos?t + sin? t

LHS: (tant)’ = ; RHS:1+tan’t =1+

cos? t cos?t’

Hence x(t) = tant is a solution of the IVP.

@ Ift — (7r/2)~ then x(t) — oo. For the solution starting at t = 0,
it has to “stop the clock” before t = 71/2. Here we can only say
that there exists a solution for a limited time.
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Existence theorem

Consider the IVP:
{ X(t) = f(tx),

x(to) = Xo,

If f is continuous in a rectangle R centered at (t, xg), say
R={(tx): [t—to| <a, [x—x0| < B},
then the IVP has a solution x(t) for
|t — to] < min{a, B/ M},

where M is maximum of |f (t,x)| in the rectangular R.
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Example

Prove that
X'(t) = (t+sinx)?,
x(0) = 3

has a solution in the interval —1 <t < 1.
Solution:
(1) Consider f(t,x) = (t + sinx)?, where (tp,x0) = (0,3).
(2) LetR = {(t,x) : |[t| <wa,|x—3] < B}. Then
f(t,x)| < (a+1)%:=M.
(3) Wewant |t — 0| <1 < min{a, B/M}.
(4) Leta = 1then M = (1+1)? = 4 and force 8 > 4. By the

existence theorem, the IVP has a solution in the interval
|t —to| < min{a, B/M} =1, thatis, -1 <t<1. O
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Uniqueness

@ If f is continuous, we may still have more than one solution, e.g.,

x’(t) _ x2/3,
{x(O) = 0

Note that x(t) = 0 is a solution for all t. Another solution is
x(t) =13/27.

@ To have a unique solution, we need to assume somewhat more
about f.
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Uniqueness theorem

Consider the IVP:
{ () = flt),
x(l’g) = Xp.
If f and % are continuous in the rectangle R centered at (o, xo),
R={(t,x): |t —to] < &, [x— x| < B},
then the IVP has a unique solution x(t) for
|t — to] < min{a, B/ M},

where M is maximum of |f (t,x)| in the rectangular R.
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Another uniqueness theorem

Consider the IVP:
{ Xt = f(tx),
x(to) = Xo,
Iff is continuous ina < t < b, —oo < x < oo and satisfies
[f (t,x1) —f(t,x2)| < Llx1 — x2f, (*)

then the IVP has a unique solution x(t) in the interval [a, b].

Note: (%) is called the Lipschitz condition of f(, x) in the variable x.
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Example

Prove that

{x’(t) = 1+ tsin(tx),
x(0) = 0

has a solution on the interval 0 < ¢t < 2.
Solution:

(1) Since f(t,x) =1+ tsin(tx), we have |%(t,x)| = |2 cos(tx)| < 4
for0<t<2and —oo < x < oo.

(2) By the mean value theorem, 3 ¢ between x; and x; such that

Flt ) (e ) = L0 oy ),

= [f(t,x2) —f(t,x1)] < 4|xx —xq].

— f satisfies (x) with L = 4 and f is continuous in
0<t<2, —0o0<x < oo

= the IVP has a unique solution x(¢) fora <t <b. [
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Numerical methods

@ Consider the IVP:
{ () = f(tx),

x(to) = X0

@ Strategy: instead of finding x(t) for all ¢ in some interval
containing ty, we approximate x(t) at some discrete points.

(insert a graph here!)
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Taylor-series method

@ For the Taylor-series method, it is necessary to assume that
various partial derivatives of f exist.

@ We use a concrete example to illustrate the method. Consider an
IVP as
x'(t) = cost—sinx+t?,
x(-1) = 3.

@ Assume that we know x(t) and we wish to compute x(t + ). By
the Taylor expansion of x, we have

2 3 4

/ h /! h 11 h
x(E+ 1) = x() + ' (5) + 5,2 () + 3,27 () + Ex(“)(t) + O(K%).

© Suh-Yuh Yang ( Wi 1E), Math. Dept., NCU, Taiwan Numerical ODEs - 11/119



Taylor-series method (cont’d)

@ How to compute x’(t), x”(t), x""'(t) and x*) (£)?

X'(t) = cost—sinx -+t
x"(t) = —sint— (cosx)x’ +2t,
X"'(t) = —cost+sinx(x')> — (cosx)x” +2,
x® () = sint+ (cosx)(x')3 + 3(sinx)x'x” — (cosx)x"".

@ If we truncate at i* then the local truncation error for obtaining
x(t +h) is O(h°). We say the method is of order 4.

@ Definition: The order of the Taylor-series method is n if terms up to
and include W"x") (t) /n! are used.

@ Lett, := ty +kh and x; = x(t;). Then the Taylor-series method
for this example is defined as

~! K ~I! I >~ h ~(4)
ep1 = X+ I (b) + 573 (b) + p 27 () + X7 (), k20,

¥ (k) i= f (b xi), ¥ (t) = fr(te, xi) + fe (b i )f (B xi), -+
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Algorithm

Starting t = —1 with h = 0.01, we can compute the solution in [—1, 1]
with 200 steps:

input M <200, h < 0.01,t < —1,x <3
output 0, t, x
fork=1to M do

/

X'+ cost—sinx+t
x" « —sint— (cosx)x’ + 2t
X" ¢« —cost+sinx(x')? — (cosx)x" +2
x®  — sint+ (cosx)(x')? 4 3(sinx)x'x" — (cos x)x"
xoe xth(Y + 3+ (7 + gx®)
t — t+h
outputk, t,x

end do
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Error estimate

@ The estimate of the local truncation error is given by
1

(n n 1>!hn+1x(71+1) (t + ()h) for some 0 € (0’ 1>'

E, =

Hence 1
Ey = ath@)(t—O— 0h) forsomef € (0,1).
@ We can replace x5)(t 4 611) by a simple finite difference,
xXB(t+h) - x(4)(t)) _
h - 120
@ Suppose that the local truncation error (LTE) is O(h"*+1).

An error of this sort is present in each step of the numerical
solution. The accumulation of all LTEs gives the global
truncation error (GTE). Roughly speaking, we have

Ey =~ %h5< (x(4) (t+h) — x<4)(t)).

GTE ~ %ow“) — o),

and we say the numerical method is of O(h").
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Advantages and disadvantages of the Taylor-series method

@ Disadvantages:

(1) The method depends on repeated differentiation of the
differential equation, unless we intend to use only the
method of order 1.
= f(t,x) must have partial derivatives of sufficient high
order in the region where are solving the problem. Such an
assumption is not necessary for the existence of a solution.

(2) The various derivatives formula need to be programmed.

@ Advantages:

(1) Conceptual simplicity.

(2) Potential for high precision: If we get, e.g. 20 derivatives of
x(t), then the method is order 20 (i.e., terms up to and
including the one involving #%°).
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Euler’s method (Taylor-series method of order 1)

@ If n = 1, the Taylor series method reduces to Euler’s method.
X1 = X+ hf (te,xi), k= 0.

Disadvantage of the method is that the necessity of taking small
value for & to gain acceptable precision.

Advantage is not to require any differentiation of f.

@ In-class exercise: Consider the following IVP:

x'(t) = cost—sinx+ 12,
x(0) = 3.

Derive Euler’s method based on the Taylor series and compute
x(0.1) when h = 0.1.
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Basic concepts of Runge-Kutta methods

We wish to approximate the following IVP:

{ X(t) = f(tx),

X(l’o) = Xy

@ Suppose that f is sufficiently smooth. From the Taylor theorem,
we have

x(t+h) = x(t) + hx'(t) + Z—Tx”(t) +O(1%).

@ By the chain rule, we obtain

X(t) = fi(t,x) + (£, )7 () = fi(t, x) + fu(t, 2)f (£, %)
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Basic concepts of Runge-Kutta methods (cont’d)

@ In the Taylor expansion, we have

x(t+h)

2
(0) 4 () + 5 ((6,2) + £t f(62)) + O0F)
= x(t)+ gf(t,x) 1 g [f(t,x) FHfi(tx) + hfx(t,x)f(t,x))}
+0(h?)
= x(t)+ gf(t,x) + gf(t +h,x +hf(t,x)) + O(h?).

@ Note that the last equality above is valid by the Taylor expansion
in two variables,

F(t+h,x+hf(t,x)) = f(t,x) + hfi(t, x) + hf (£, )fx (£, x) + O(H?).
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A second-order Runge-Kutta method

@ Then a 2nd-order Runge-Kutta (RK) method is given by

x(t+h) ~ x(t) + gf(t,x) + gf(t +h,x+ hf(t,x)),

or alternating
1
x(t —I—h) = x(t) + E(Fl —l—Fz),
F1 = hf(i’, X),
F, = hf(t+h,x+F1).
It is also known as Heun’s method.

@ In practice, let x,, ~ x(t,), then we define Heun’s method as

1
le+1 = xn+§(F]+F2)/ 7’120,
F‘l = hf(tn,Xn),
F, = hf(tn+l/xn +F1)~
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The general second-order Runge-Kutta method

@ In general, the 2nd order RK method needs

x(t4+h) = x(t) + wihf + wahf (t + ah, x + Bhf) + O(13),
= x(t) + wihf + walt [f + ahfi + Bhffc] + O(K%).

@ Comparing with

x(t+h) = x(t) + hf + h;(ff + ff) + O(1®),

we have
wtw, = 1,
wr = 1/2,
wp = 1/2.

© Suh-Yuh Yang Math. Dept., NCU, Taiwan Numerical ODEs - 20/119



Modified Euler method

@ The previous method (Heun’s method) is obtained by setting

{ w1:w2:1/2,

@ Setting

w1 =0,
wy =1,
a=p=1/2,
we obtain the following modified Euler method:

Xn41 Xn + FZ/ n Z 0/
F1 = hf(tn,xn),
1 1
F2 = hf(tn+ ih,xn‘i' iFl)
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Fourth-order RK methods

@ The derivations of higher order RK methods are tedious.
However, the formulas are rather elegant and easily
programmed once they have been derived.

@ The most popular 4th order RK is:

1
x(t+h) =~ x(t)+ 6(F1 +2F, +2F3 + Fy),

B = K(bx), Er=hf(t+ g,er )
F3 = hf(t+g,x+%F2), Fy =hf(t+h,x+F3).
That is, the 4th order RK is defined as
Xpp1 = Xn+ %(Fl +2F, +2F3+Fy), n>0,
Fio= Wf(tum),  Fai=hf(bt o3t F),
F3 = hf(ty+ g,xn + %Fz), Fy := hf (ty41, %0 + F3).
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Homework

@ Use the most popular 4th order RK with 1 = 1/128 to solve the
following IVP for t € [1,3] and then plot the piecewise linear
approximate solution:

{x’(t) = t72(tx —x?),
x(1) = 2.

@ Also plot the exact solution:

x(t) = (1/2+Int) " 1t.
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Algorithm

input M < 256, t < 1.0, h < 0.0078125, x < 2.0
define f(t,x) = (tx — x2) />

define u(t) =t/(1/2+Int)

e < |u(t) — x|

output0,f,x,e

fork =1toMdo

Fi <« hf(t,x)

Fy « hf(t+54x+1F)

F3 + hf(t+54x+1F)

Fy <« hf(t+hx+F;3)

X « x+ :(F+2F+2F;+Fy)
t «— t+h

e+ |u(t)—x|

outputk, t,x,e
end do
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How to estimate the local truncation error of RK4?

@ For RK4, the local truncation error is of O(h°). The local
truncation error at the first step is

X (fo+h)—x1 = O(hS),

where x*(ty + h) is exact value and x; is computed value. That
is, the truncation error behaves like Ch® for small h. Here C is a
number independent of 1 but dependent on ¢y and x*.

@ Let v be the value of the approximate solution at ¢y + / obtained
by taking one step of length & from ty. Let u be the approximate
solution at ¢y + h, obtained by taking two steps of size 1/2 from
to. Then we have

X*(tg+h) ~v+Ch® and x*(tg+h) ~ u+2C(h/2)°.
By substraction, we obtain

u—o

local truncation error = Ch® ~
1—2-4

~U—07.
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Basic concepts of multistep methods

Taylor-series and RK methods are examples of single-step
methods, i.e. use information only at ¢ to get f 4 .

Consider the IVP: x'(t) = f(t,x) and x(ty) = xp. Assume that we
want to approximate x(t) at fo, ty,- -+ , t;, - - - . Let x; be the

approximate solution of x(t;). Then by the Fundamental Theorem
of Calculus, we have

[ 0t = 1)~ x(t)

and then
'[)Hrl

X(tugr) = x(ta) = [ f(Ex(t))dt.
One of the basic idea of the multistep method is to interpolate
the integrand f (¢, x(t)) by using t, t,_1, - - - . Then we have
Xp1 = Xn +afy +bfy_1 +cfu—2+---, wheref; :=f(t;,x;).

An equation of this type is called an Adams-Bashforth formula.
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Adams-Bashforth formula of order 5

@ To derive the A.-B. formula of order 5, we consider (on equally
spaced points: t; = ty + ih)

tuH

F(t x(t))dt ~ h(Afn +Bfy_1+ Cfyn + Dfy_s + Efn,4>.

- t”

@ We wish the numerical integration is exact for polynomials of
degree < 4.

Without loss of generality, we may consider t;, =0and h =1
(= tht1 =1).

Then apply the method of undetermined coefficients.
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Adams-Bashforth formula of order 5 (cont’d)

@ As abasis for I'l4, we consider

po(t) 1,

pi(t) =t

p2(t) = tt+1),

pa(t) = tt+1)(t+2),

pa(t) = tE+1)(t+2)(t+3).

@ For each of these polynomials the following formula should be
exact

[ pdt = Ap(©) + Bp(~1) + Cpi(~2)
+Dpi(=3) + Epr(—4).
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Adams-Bashforth formula of order 5 (cont’d)

@ By direct computations, we have

po(t) = 1= A+B+C+D+E=1,

pi(t) = t=> —B—2C—3D—4E=1/2,

p2(t) = t{t+1) = CH+6D+12E=15/6,

ps(t) = t(t+1)(t+2)= —6D—24E=9/4,

pa(t) = t{t+1)(t+2)(t+3) = 24E = 251/30.
By backward substitution, we obtain

251 1274 2616 2774 1901
E=20 P= 700 70 P 00 AT 70

@ Therefore, we have forn > 4
1
Xt = %+ oo (1901f,, 2774f, 1 +2616f,_» — 1274f, 5+ 251fn,4),

xn & x(tn) = x(0), X411 = x(ty11) = x(1), and f; := f(t;, x;).
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Adams-Bashforth formula of order 5 (cont’d)

@ We need to change the interval from [0, 1] to [t,, t,11] with

t —t t
A(s) = ”‘1*'170"5—0—1:10:}154—1‘”.

Then A'(s) = h. Hence,

t}l

+1 1
F(t,x)dt = /0 FIAS), x(A(s)))N (s)ds.

t”

@ Finally, we have the Adams-Bashforth formula of order 5: for
n>4

I
X1 = %+ 75 (1901fn 2774f, 1 +2616f,_» — 1274f, 3 +251fn,4),

where x, ~ x(ty), X341 = x(ty11), and f; := f(t;, x;).
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Adams-Moulton formula of order 5

@ A formula of the type

Xpi1 = Xn +afy1 +bfn +cfy1+- -

is called an Adams-Moulton formula, where f; := f(#;, x;).

@ To derive the A.-M. formula of order 5, we consider (on equally
spaced points: t; = ty + ih)

byl

[ f(x(0)dt = h(Afyr +Bfy + it + Dfya + Efya).

@ We wish the numerical integration is exact for polynomials of
degree < 4.

Without loss of generality, we may consider t, = 0and h = 1.

Then apply the method of undetermined coefficients.

© Suh-Yuh Yang ( Wi 1E), Math. Dept., NCU, Taiwan Numerical ODEs - 31/119



Adams-Moulton formula of order 5 (cont’d)

@ As abasis for I'l4, we consider

po(t) 1,

pi(t) = t-1,

pa(t) = (t=1),

pa(t) = (t=DHt+1),
pa(t) = (F=Dtt+1)(t+2).

@ For each of these polynomial the following formula should be
exact

[ pdoar = ap1) + Bpy(0) + Cpi(-1)
+Dpi(=2) + Ep(=3).
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Adams-Moulton formula of order 5 (cont’d)

@ Thus we have

po(t) = 1= A+B+C+D+E=1,

pi(t)y = t—-1= —B—-2C—-3D—4E=-1/2,

pp(t) = 2 —t= 2C+6D+12E= —1/6,

p3(t) = t—t= —2D-24E=-1/4,

pa(t) = 428 - -2t= 2E=-19/30.
By backward substitution, we obtain

19 106 264 646 251

E=—oy D=y, C=-5, B=—5 A=,

@ By changing of variable, we finally have

I
Kbt = X+ s (251f,1+1 + 646f, — 264f,_1 + 106f,_» — 19fn,3).
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A predictor-corrector method

@ In multistep methods, we need a start-up method to get started.
Here, for example, we can use RK method of order 4 to get
X1,X2,X3,X4.

@ Note that in the A.-M. method, x,, 1 occurs on both sides of the
equation! a1 = f(bpa1, Xpe1)-

@ First strategy:
use the A.-B. formula of order 5 as a predictor to compute x},
and then use the A.-M formula of order 5 as corrector with
for1 = f(tnsa, x2+1)'

+1

This method is known as a predictor-corrector method.
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Second strategy: a fixed-point method

@ Define the mapping

251
QD(Z) = %hf(thrlrz) +T,

where T is composed of all the other terms in the A.-M. formula.

@ Then this reduces to a fixed-point problem:

251
21 = @(z) = 2o hf (bev,2i) + T (k2 0).
It will converge to a fixed point of ¢ under appropriate
hypotheses.

@ Thus, if ¢ is the fixed point, zy should be in the interval centered
at ¢ such that |¢/(z)| < 1, where

/ _ @ of (tn+1,2)
(@) =202

This can be made less than 1 by setting / is small enough.

© Suh-Yuh Yang ( Wi 1E), Math. Dept., NCU, Taiwan Numerical ODEs - 35/119



Linear multistep methods

@ Linear multistep methods (LMMs) are methods of the form
AXn + g 1Xn—1 + -+ + a0y = W{bifu + bx_1fu—1+ - +bofui}, (%)

where a; # 0, f; := f(t;,x;) and t; = ty + ih. This a k-step method
ifag # 0or by # 0.

@ (%) is used to compute x, assuming that x,, ,---,x,_1 are
already known. If by = 0, the method is said to be explicit.
Otherwise, the method is said to be implicit.

@ To define the order of a linear multistep method, let us consider
the linear functional L over differentiable functions x(t),

k
Lx = Z <aix(ih) — hb,-x’(ih)). < local truncation error
i=0

Here we take k = n for simplicity and assume the first value
begins at t =ty = O rather than att = £, 4.
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Analysis of linear multistep methods

@ By using the Taylor series for x, one can express L as

Lx = dox(0) 4 d1hx' (0) + doh®x" (0) + - - -

@ To compute the coefficients, d;, we write the Taylor series for x
and x":

I AV 00
x(ih) =Y @x@ (0) and «'(ih)=Y_ Q G+1) ().
=0 I’ j=0
@ By the comparison of coefficients, we obtain
k k k1 )
do = Zai, dl = Z(ia,- — bi)/ dz = Z(zl a; — Zbl),
i=0 i=0 i=0
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Theorem on linear multistep method

The following three properties of the linear multistep method are equivalent:
Qdy=di=---=dn=0.
Q Lp=0forp eIl
@ Lxis O(h"*1) forall x € C"+1.

Proof:
@ (1) = (2):Sincedy =dy = --- =dy = 0, we have
Lx = dy B D (0) 4 -
If x € I, then x("+1) = x(m+2) — ... = 0 which implies Lx = 0.

@ (2) = (3) : If x € C"*, then Taylor theorem implies x = p +7,
where p € I, and r is a function with (k) (0) =0for0 <k <m.

Hence Lx = Lr = dy 1 B0 (0) 4 - = O(W"+1).
@ (3) = (1) : Lx = dox(0) + dihx'(0) + dph?x" (0) + - - - reduces
Lx = dy " x(m D (0) 4 ... Hencedy =dy = - - - = dyy, = 0.

0
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Order of a linear multistep method

@ Define the order of an LMM to be the number m such that

d0:d1:"':dm:07édm+l~

@ Example: what is the order of the LMM:
1
Xp —Xp—2 = gh(](n +4fu1 +fn72)?
Solution:
(ﬂo,al,llz) = (—1,0,1) and (bo,bl,bz) = (1/3,4/3,1/3).
dy=dy=dy=d3=dy =0.
ds = (1/120a; — 1/24by) + (4/15a; —2/3by) = —1/90.

The order of the method is 4.
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Vector space of infinite sequences

@ A complex sequence is a complex-valued function x : N — C.
We write x = [x1,x2, -+, Xp, -+ |.

@ Let V be the set of all infinite sequences of complex numbers.
Then there is a 0 element in V, namely, 0 = [0,0,0,- - -]. We
define two operations +: VxV — Vand - : Cx V = V, for
X = [xllle... ,xn,...},y: [yllyzl. e Yn, ] cVanda € C,

x+y = [x1+y11x2+y2/"'/xll+yn/"'}/
ax = [axy,axp, e, XXy, .
or more compactly (x + ), := x, + yn and (ax), = ax,.
@ V is a vector space and its dimension is infinite.

The set of vectors is linearly independent: {v(l) =11,0,0,0,---],
v =10,1,0,0,-- -], =[0,0,1,0,---], - - - }
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Linear difference operator

@ Consider the following linear operator E : V — V defined by
Ex = [x,x3,x4,- -], wherex = [x1,xp,X3,X4 " ].
We call E the shift operator or displacement operator. Thus,
(Ex)n = x, 11 and (EEx), = X, 2. In general, (EFx),, = x,,44.

@ We define a linear difference operator as a linear combination of
powers of E,

m .
L=) cFE,
i=0

where EU is the identity operator, i.e., (E%), = (Ix), = xu.

Lis a polynomialin E, i.e., L = p(E), where p is called the

characteristic polynomial of L and defined by p(A) = Y17, ;A"
@ Theset {x € V : Lx = 0} is a linear subspace of V and it is called

the null space (kernel) of L. So we need to find a basis that spans
the null space in order to solve Lx = 0.
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Example: Lx =0

@ Let

m )
L= ZC{EZ, withcy =2,c4 = =3,c0 =1,¢; =0fori > 3.

We have the linear difference equation, which can be written in
three forms:

(E*? —3E' +2E%x = o,
Xpt2 —3Xp1+2x, = 0 (n> 1)
p(E)x = 0 p(A)=A"—=31+2.

@ How to solve it? Putting x, = A", we get

An+2_3An+l +2)\” = 0
A"p(A) = 0
MA—1)A—2) = 0
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Example: Lx = 0 (cont’d)

@ A = 0: trivial solution;
A=1lu,:=1"=1;
A=20,:=2"
We can show that 1, and v, form a basis for the solution space of
Lx = 0, i.e., any solution is a linear combination of them

Xy =1+ p2".

(By induction, see page 30 for the details)
Once we specify the starting values x; and x,, then x;, is
determined uniquely. In general, we have following theorem:

@ Theorem: If p is a polynomial and A is a zero of p then one solution of
the difference equation p(E)x = 0is [A,A2,A3,- - -]. If all the zeros of
p are simple and nonzero, then each solution of difference equation is a
linear combination of such special solutions.

(see page 31 for the proof)
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Multiple zeros

@ Letx(A) = [A,A%, A3, .]. If p is any polynomial then

p(E)x(A) = p(A)x(A).

Differentiating with respect to A, we get
p(E)¥'(A) = p'(M)x(A) +p(A)x'(A).

@ If A is a multiple zero of p, then p(A) = p’(A) = 0. Hence, x())
and x’(A) are solutions of the difference equation p(E)x = 0.
That is,

x(A) = [MAZA3, 0] and X/(A) =[1,24,3A%,- -]
are solutions of p(E)x = 0.

@ If A # 0, then x(A) and x’(A) are linearly independent.
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Multiple zeros (cont’d)

@ Similarly, if A is a zero of p having multiplicity k, then the
following are solutions of the difference equation p(E)x = 0.

x(A) = [AAZAS,,
X' (A) = [1,24,3A2%,--],
K'(A) = [0,2,6A,---],
N dlk=1)
Xk 1))(/\) — d/\kq[/\')‘zf)‘s"”]'

@ Theorem: Let p be a polynomial satisfying p(0) # 0. Thus a basis for
null space of p(E) is obtained as follows: with each zero A of p having
multiplicity k, associate the k solutions, x(A),x'(A),-- -, x(k=1) (A),
where x(A) = [A, A2, A3, ].
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An example

Find general solution of 4x,, + 7x,_1 + 2x,_2 — x,_3 = 0.
Solution:

The characteristic polynomial is p(A) = 4A3 + 7A% +2A — 1 = 0.
Rootsare Ay = Ap = —1land A3 = 1/4.

The basic solutions are

x(-1) = [-1,1,-1,1,---],
X(-1) = [1,-2,3,—4,---],
x(1/4) = [1/4,1/16,1/64,---].

The general solution is

X = a(—1)" + Bn(~1)"" 4 4(1/4)"
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Stable difference equations

@ Definition: An element x = [x1,x2,x3,- -+ | € V is bounded if
Jc > 0such that |x,| <c,Vn=>1,ie, sup,,~q |xn| < oo.

@ Definition: A difference equation of the form p(E)x = 0 is said to be
stable if all of its solution is bounded.

Example: x,,; 2 —3x,41 +2x, =0,n > 1.

The general solution is x, = « - 1 + $2". Since 2" is not bounded,
so the difference equation is unstable.

@ Theorem on stable difference equations: For any polynomial p
satisfying p(0) # 0, the following are equivalent:

(1) The difference equation p(E)x = 0 is stable.
(2) All zeros of p satisfy |z| < 1 and all multiple zeros satisfy
z| < 1.
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Linear multistep methods

@ Recall the IVP:

{ x'(t) f(tx(t)),
(to) = xo.
The LMM can be written as
AXn + g 1Xn—1 + - - + a0y = h{bifu + bx_1fu—1+ - +bofui},
where a;, # 0, f;i = f(t;,x;), and t; = to + ih.
@ We assume xg, x1, - - -, Xx_1 have been obtained by some other

method (e.g., RK4).

(1) if by # 0 then the method is implicit. e.g., A-M formula of
order 5 (4-step method):
Xn —Xp—1 =
h{%gl n+ %6 n— 26gfn 2+ ;86 n—3 — %0]%74}

(2) if by = 0 then the method is explicit. e.g., A-B formula of
order 5 (5-step method):
Xn —Xp—1 =
h{%fnfl - % n—2 + 2762106 n— 1722761 n—a 1 72(1)fn 5}
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Convergence

@ Definition: The LMM is said to be convergent if

limx(h,t) = x(t), (tfixed) (x)

h—0
where x(h, t) is the approximate solution using the step size h and x(t)
is exact solution, V't € [ty, ty,], provided that starting values obey the
same equation, that is,

limx(h,to+nh) =x9 (0<n<k) (%*)
h—0

and f satisfies the hypotheses of the existence-uniqueness theorem: f is
continuous in the strip ty < t < t,,, —00 < x < oo and satisfies a
Lipschitz condition in the second variable.
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Stability and consistency

@ Consider the following polynomials associated with the LMM:

p(z) = a2k a1 4 Fag,
4(z) = b4+ 12+ + by

It can be shown that certain desirable properties of the LMM
depend on the location of the roots of the polynomials p and 4.

@ Definition: The LMM is stable if all the roots of p lie in the disk
|z| <1 and if each root of modulus 1 is simple.

@ Definition: The LMM is consistent if p(1) = 0 and p'(1) = q(1).
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Main theorem of the LMM

For the LMM to be convergent, it is necessary and sufficient that it be stable
and consistent.

Proof: (stability is necessary)

@ Suppose that the method is not stable. Then either p has a root A
satisfying |A| > 1 or p has a root A satisfying |A| = 1 and
p'(A) =0.

@ In either case we consider a simple IVP whose solution is

x(t) = 0:
{ X(t) = 0,
x(0) = 0.

In this case, the LMM becomes
GXy + Q1% 1+ apX, = 0. (x%%)

This is a linear difference equation. One solution is x, = hA™.
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Proof: stability is necessary (cont’d)

@ Assume that [A| > 1implies for0 < n < k
|x(h,nh)| = h|A"| < BIA]F =0 ash — 0.
Thus the condition (**) is verified.
@ However, if t = nhthenh = tn—! and
|x(h,t) = |x(h,nh)| = tn HA|" = 00 ash — 0,
since n — oo as h — 0 and |A| > 1. Thus, (*) is violated.

@ Now assume |A| = 1and p’(A) =0, ie., A is a multiple roots,
then a solution of (x % *) is x, = hnA"~1. Again (%) is satisfied,
since for 0 < n < k we have

|x(h,nh)| = hn|A|" Y =hn < hk — 0 ash — 0.
@ However, the condition (x) is violated because
x(h, )] = (bn~ DnlA" = £ £ 0

and does not go to zero as h — 0.

Therefore, if the LMM is convergent then it is stable.
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Proof: consistency is necessary

@ Suppose that the method is convergent. Consider a simple IVP
problem whose solution is x(t) = 1.

X'(t) = 0,
x(0) = 1.
@ For this IVP, the LMM becomes (x x x) again. One solution is

obtained by setting xo = x; = - - - = x;_1 = 1 and then use
(% * *) to generate the remaining values, x, Xx; 1, - -

@ Since the method is convergent, 1i_r>n X, = 1. Substituting this
n—o0

into (% * ) implies

G +ap 1+---+a=0 or p(l)=0.
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Proof: consistency is necessary (cont’d)

@ Now consider a simple IVP problem whose solution is x(t) = t:

{x/(t) = 1t

For this IVP, the LMM becomes
AXn + A1 X1+ FaoXy g = h{bp +b 1+ +bof. (xxx)
@ Since the method is convergent, it is stable by the preceding

proof which implies p(1) = 0 and p’(1) # 0, i.e., no multiple
roots of size 1.
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Proof: consistency is necessary (cont’d)

@ Let us verify that x, = (n +k)hy with v :=¢q(1)/p'(1) isa
solution of (x % %):
h'y{ak(n +k) +(1k,1(71 +k— 1) + e —|—a0n}
=nhy (ag+ap_1+---+ag) +hy (kag + (k—D)ag_1+---+ay)

p(1)=0 p'(1)#0
1
=hyp'(1) = hp/((l)) p'(1) = b+ by + - +bo}

@ Notice that the starting values in this numerical solution are
consistent with the initial value x(0) = 0 = x( because
}lirré(n +khy=0=xgforn=0,1,--- ,k— 1. Thatis, (%) holds.
—
@ The convergence condition demands that li_r>n Xy = tifnh =t.
n—oo
Hence we have nlLHJO (n+k)hy = t. We can conclude y = 1 or

/ — 3 —
p'(1) = g(1) because nlglgokh =0.
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Example

Consider the Milne method

1 4 1
Xn — Xp—2 = h(éfn + gfnfl + gfn72)-
@ p(z) =22 —1 =0 = z = £1: simple root. Hence, the method is
stable.

@ p'(z) =2zand q(z) = 122+ 4z + 1. Thenp’(1) =2 = q(1) and
p(1) = 0. Hence, the method is consistent.

Therefore we can conclude that the method is convergent.
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Local truncation error

@ Assume that all previous steps of the LMM are computed
correctly, i.e., x; = x(t;) forn —k <i < n — 1. Here x(t) denotes
the exact solution of the IVP. We now want to to compute x;,.

Definition: The local truncation error is defined as x(t,) — x,. Note
that the round-off error is not included.

@ Theorem: If the LMM is of order m, and if x € C"2 and % is
continuous, then under the assumption above we have

x(ty) —xy = (%)hnlJrlx(nHl)(tn,k) + O(hm+2).

The coefficient dy. are defined in Section 8.4, p. 553.

Proof: see page 561.

The theorem states that if the method has order m, then the local
truncation error will be O(h"*1).
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Global truncation error

@ The question is how do local truncation errors propagate during
the solution process. Consider the IVP

{x’(f) = fltx(t)),
x(0) = s.

Assume that fy(t, x) is continuous and fx(t,x) < Ain [0, T] x R.

@ To see how the solution is affected by a change in the initial

value s, first write the solution of the IVP as x(f;s). Assume that

x(t;s) is smooth. Then define u(t) := axgi;s)-

@ Differentiate the IVP with respect to s, we obtain the variational
equation:
u'(t) = fe(t,x)u,
{ u(0) = 1.

Solving for 1, we see how a change in s can affect the solution to
the IVP.
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Example

Find u for the following IVP:

=
—~
(=]
=

|

%)

Solution:

Here f(t,x) = x?> = f; = 2x. The variational equation is:

{u’(t) = 2xu,
u(0) = 1.

Since the solution to the first IVP is x(t) = s(1 — st) !, we then have

W' (£) = 2s(1 —st) u(t) = u(t) = (1 —st) %
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Theorem on variational equation

Iffy < A, the solution to the variational equation satisfies |u(t)| < e for
t>0.

Proof: Recall the variational equation

w(t) = fltx)u,
{u(O) = 1

From the variational equation,
w/u=f=A—uat),
where a(t) > 0. Integrating

In|u|) = At — /Otzx(r)dr — AE—A(D).

Sincet >0=A>0=1In(jul) <At= |u| <eM. O
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Theorem on solution curves

Assume that fy < A. If the IVP

{X’(f) = ftx),
x(0) = s

is solved with initial values s and s + 0, then the solution curves at t differ
by at most |5|eM.

Proof: By the MVT, the definition of u, and the above Theorem, we
have

x(t:s) — x(ts +8)| = \;’wasw) 11

u(®)][0] < [8]e".
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Theorem on global truncation error bound

If the local truncation errors at ty,tp, - - -, t, do not exceed 6 in magnitude,
then the global truncation error at t, does not exceed

(5( en)\h o 1)
(e)\}'l _ 1) :
Proof: Let truncation errors of J1,dy, - - - be associated with numerical
solution at ¢y, fp, - - - . In computing x; there was an error of J; in the

initial condition, by above Theorem, the effect at f; is at most |67 |eM’.
Thus, the global truncation error at ¢, is at most

1611 +16].
The effect of this error at t3 is no greater than
(18] + |82] ).
The global truncation error at ¢3 is at most

(|611e™ 4 182])eM + |33).
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Theorem on global truncation error bound (cont’d)

Continuing in this way, we find that the global truncation error at f,
is no greater than

i ‘5k|€(n7k))\h < 6 f e(nfk))\h
k=1 k=1

n—1
- 5 Z e(nfkfl)/\h
k=0

n—1
_ n—1)Ah —kAh
= Je Z e

k=0

Al
—  seln=1An < 11— e 7”“:)
—e

en/\h -1

= Syt
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Theorem on global truncation error approximation

If the local truncation errors in the numerical solution are O(h"*1), then
the global truncation error is O(h™).

Proof: By the above Theorem, set 6 = O(h"*!). Then

nz
GIE < O(h’”“)(%) (z:= AR)

~ omt)E (eZ:1+z+lzz+~~)
z 2!
_ O(hmﬂ)% (nh = t)

— O(h™)t.
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Stiff equations: introduction

@ Euler’s method for the IVP
X(t) = f(tx),
{ x(ty) = xo,
is given by
Xpt1 = Xn + hf (tn, xn) n > 0.
@ Consider the results of Euler’s method on the simple test

problem: x(t) = Ax and x(0) = 1. The exact solution is
x(t) = eM.

Solution: Euler’s method produces the numerical solution:

xp = 1,
Xnp1 = Xp+hAxy,
= o= (1+h)"
= x, = (14+hA)"
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Stiff equations (cont’d)

@ For A < 0, the exact solution is exponentially decaying. The
numerical solution will tend to 0 if and only if
1+hA| <1l<= -1<1+hA<1<=h<-2/A.

@ For example, if A = —20, we have to take i < 0.1. Thus, the
numerical solution must proceed with small steps in a region
where the nature of the exact solution indicates that large steps
may be taken.

Olsk
£ o

x(t) = e72%
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Implicit Euler’s method

@ Implicit Euler’s method for the IVP
{ X(t) = fltx),
x(to) = xo,
is given by
Xpi1 = Xp + W (tye1,Xp01) 1> 0.
@ Consider the results of implicit Euler’s method on the problem:
x'(t) = Ax and x(0) = 1. The exact solution is x(t) = e*.

Solution: Implicit Euler’s method produces

xo = 1,
Xpe1 = Xn+hAx, 1.
Xpr1 = (1 - h/\)il
x, = (1—hA)""

For A < 0,wehave 1 —hA > land then |1 —hA|"1 <1V h > 0.
° Exp11c1t Euler s method is cheap but Condltlonally stable.
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General linear multistep methods

@ The LMM has the form:
agXn +ag 1xp—1 + a0y = h{bfu +bx_1fu—1+ - +bofy «}

@ When this is applied to the test problem: x’(t) = Ax and
x(0) = 1, we obtain

agXn +ag 1Xp—1+ -+ aoxy g = hA{bexn +bx 1241+ - - +box, g}

@ Thus, our numerical solution will solve the homogeneous linear
difference equation:

(ax — hAbg)xn + (ag 1 — hAbg_1)xp—1+ - -+ (a0 — hAbo)x, = 0.
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General linear multistep methods (cont’d)

@ The solutions of the homogeneous linear difference equation are
determined by the roots of the characteristic polynomial:

¢(2) == (ap — hAb)Z" + (a1 — hAb_1)Z" - 4 (ag — hAby).

e.g., If ris a zero of ¢(z), then x, = " is a solution of the linear
difference equation.

@ Note that
¢(z) = p(z) —hAq(z),
where
p(z) = e + a2+ 4 az 4 ag,
q(z) = b +b 12+ bz + by
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A-stability

@ If A < 0, then the solution x(t) = e of the test problem is
exponentially decaying. It is necessary that all roots of the
polynomial ¢ = p(z) — hAq(z) lie in the disk |z| < 1. If
A = p +ivis complex,

x(t) = eM = eMe! = et (cos vt + isinvt).

In this case, exponential decay means y < 0.

@ Definition: We say the LMM is A-stable if the roots of ¢ to be interior
to the unit disk whenever h > 0 and Re(A) < 0.

@ Definition: The region of absolute stability of the LMM is the set of
complex numbers w such that the roots of p — wq lie in the interior of
the unit disk.

@ An LMM is A-stable if and only if its region of absolute stability
contains the left half-plane.
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Examples

@ By definition, the implicit Euler method is A-stable. Another
example is the implicit trapezoid method defined by

1
Xn — Xp—1 = Eh{fn +Jcﬂ*]}r

then ¢(z) =z —1— Ah{3z+ 1}.

Ah Ah 2+ Ah
ROOtZ(l—?)—1+?:>Z—m

When h > 0 and Re(A) < 0, we have |z] < 1 = A-stable.
@ What about the explicit Euler method? Here

Xn — Xp—1 = hfn—l-

p(z) =z—1landq(z) = 1.
$p(z)=z—1-Ah=0=z=1+ A= |1+ w| <1, adiskof
radius 1 centered at —1. It is not A-stable.
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Remarks

@ WARNING: If you are not using an A-stable method, you have
to make sure that Al lies in the region of absolute stability for
the method.

@ An important theorem, due to Dahlquist [1963], states that an
A-stable LMM must be an implicit method, and its order cannot
exceed 2. This result places a severe restriction on A-stable
methods.

@ The implicit trapezoid rule is often used on stiff equations
because it has the least truncation error among all A-stable
linear multistep methods.
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Homework

Consider the LMM
Xpy1 = Xn—1 + 2hfy

to approximate the IVP: x’(t) = f(t,x) and x(ty) = xo.
Is the method

@ stable?

@ consistent?

@ convergent?

@ A-stable?
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A system of first-order differential equations

The standard form for a system of first-order ODEs is given by

xll(t) = fl(t,xl,XZ,"'
x{'l(t) - fZ(t/x1/x2/ e
x;(t) fVl (tl X1,X2," "

There are n unknown functions, x1,xp, - - -

X(t) = Blt),

, X to be determined. Here
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Example

Consider the system of first-order differential equations:

X(t) = x+4y—é,
y(t) = x+y+2.

The general solution:

x(t) 2ae3 — 2be~t — 2¢,
y(t) = ae® +be t+1/4¢,

where a,b € R. If the system of differential equations with the initial
conditions, e.g., x(0) = 4 and y(0) = 5/4, then the solution is unique,
and
x(t) = 4e¥ +2e7t -2,
{ y(t) = 23 —et+1/4¢.
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Vector notation and higher-order ODEs

@ Vector notation: let X := [x1,xp,--- ,x,] and
F:=[fi,fa,- -+ ,fu] |, where X € R" and F : R**! — R",

Then an IVP associated with the system of ODEs (x) is given by
{ X'(t) = F(tX(1)),

X(ty) = Xo€e R
@ A higher-order ODE can be converted to a first-order system.

Consider y" (t) = f(t,y,y/,- - -,y V) and introduce

xi=yx2=y, Xy = y(”fl). Then we have
X)) = x,
XIZ(t) = X3
x:,fl (t) = Xn,
x;l(t) = f(t,X],XQ,"' /xn)~
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Example

Convert the higher-order IVP
(sint)y” 4 cos(ty) + sin(y” + t?) + (') = logt

withy(2) =7,1/(2) =3,y (2) = —4 to a system of 1st-order
equations with initial values.

Solution: Let x1(t) = y(t), x2(t) = y/(t),x3(t) = y” (t). Then,

x/l (t) = Xz,
x/Z(t) = X3,
x3(t) = {logt—x3 —sin(t? + x3) — cos(tx)}/ sint,

with x1(2) = 7,x2(2) = 3,x3(2) = —4.
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In-class exercise

Convert the system

(x”)2+tey+y’ - X —x
y'y" — cos(xy) + sin(tx'y)

|
=

to a system of 1st-order equations.
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Taylor-series method for systems

For each variable, use the Taylor-series method

h? &
xXi(t+h) = x;(t) + hal(t) + =-x (8) + = x)

2171 ﬁxi (t)+

or in the vector form

X(t+h) ~ X(t) + hX'(t) + ﬁX”(f)

2! 3!
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Homework

Write the Taylor-series codes of order 3 for the following IVP using
h = —0.1 and plot the solution —2 <t < 1:

X(t) = x+yP-+t,
yv(t) = y+x>+cost

with x(1) =3and y(1) = 1.
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Autonomous systems

@ From the theoretical standpoint, there is no loss of generality in
assuming that the equations in system (%) do not contain ¢
explicitly. We can take xo(t) = t, x;(t) = 1. Then
x; = fi(xo, %1, ,%n),i=0,1,--- ,n,0or X'(t) = F(X), where

X(t) = (xo(t),x1(t), -+, xn(t))
@ Example: convert the following IVP to an autonomous system
(sint)y”" + cos(ty) + sin(y” + t*) + (') = logt,
withy(2) =7,y (2) =3,y (2) = —4.
Solution: Let xo(t) = t. Then x{,(t) = 1. Let x (t) = x and

x5 (t) = x3. Then we have
x(t) = 1
0 7
/
xl(t) = X2,
%) = x3
x(t) = {logxy— x5 —sin(x3 + x3) — cos(xpx1) }/ sinxo,

with the initial condition X(2) = (2,7,3, —4)".
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RK4 method for X'(t) = F(X)

@ For an autonomous system of equations, X'(t) = F(X), we have
4th-order Runge-Kutta method:

X(t+h) ~ X()+ 2

F hF
Fs hF

(F1 + 2F, + 2F3 + F4),

X), Fp=hE(X+1/2F),
X +1/2F;), F4=hF(X+F3).

(o))

= hK(
(

In other words, the 4th order RK is defined as

Xep1 = Xp+ %(F1 +2F, +2F3+F4), k>0,
Fi = hF(Xy), Fp:=hF(X,+1/2F;),
F3 := hF(Xg+1/2F;), Fy:=hF(Xg+F3),
Xe = [vXok %) X~ xi(to+kh) for 1 <i <.

@ Other methods, they are all similar to the single equation case.
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Boundary-value problems

@ For an IVP, the auxiliary conditions are prescribed at the same
point, t =a,e.g.,

() = f(txx),

x(a) = ua

x'(a) = B

@ For a boundary-value problem (BVP), the auxiliary conditions
are prescribed at the different points, t =aand t = b, e.g.,

() = f(txX),
x(a) = a

x(b) = B

This particular example is a so-called two-point BVP.
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Existence of solutions

@ Assume that f is nice function. It is not enough for existence of a
solution. Consider the BVP:

() = —x,
x(0) = 3,
x(m) = 7.

@ The general solution is (recall from ODE course)

x(t) = Asint+ Bcost.

@ Using the boundary conditions, we have

x(0)=3 = B=3,
x(m)=7 = B=-7.

No solution!
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Existence of solutions (cont’d)

@ Note that we could also have infinite number of solutions.

Consider the BVP:
() = —x,
x(0) = 0,
x(m) = 0

@ The general solution is given by

x(t) = Asint + Bcost.

@ Using the boundary conditions,
x(0)=0 = B=0,
x(m)=0 = B=0.

We have
x(t) =Asint, VAeR.
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Existence and uniqueness theorem (Keller, 1968)

The BVP
X'(t) = f(tx),
x(0) = 0,
x(1) = 0

has a unique solution if % is continuous, nonnegative, and bounded in the
strip0 <t < 1land —co < x < 0.

Note: Existence and uniqueness theorems for solutions of the
two-point BVP are more complicated than the IVP.
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Example

Use the previous theorem to show the following BVP has a unique

solution
x'"(t) (5x + sin 3x)e!,
x(0) = x(1)=0.

Solution: We have

2< % = (5+3cos3x)e’ < 8e

for0 <t <1, -0 < x < 00, and it is a continuous function,
nonnegative since 3 cos 3x > —3.

— all assumptions of above theorem are satisfied.

== the BVP has a unique solution.

Suh-Yuh Yang ( % Math. Dept., NCU, Taiwan Numerical ODEs - 87/119



Theorem for more general BVPs

In order to use the above theorem for more general BVPs, we can use
change of variable, e.g., if we have to solve

{ X'(t) = f(tx),
x(a) = ua,
x(b) = B

then consider t := a + (b —a)s :=a + As, i.e., s := ;=7. Define

y(s) = x(a+As),
y(s) = AX(a+As),
v'(s) = A%'(a+ As) = A*f(a+ As,y(s)).

BCs: y(0) = x(a) = wand y(1) = x(b) = B.
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First theorem on two-point BVPs

Consider these two-point BV Ps:

() = f(tx),

x(a) = a (%)

x(b) = B

y'(s) = A*(a+As,y(s)) :=g(s,y(s)),

y(0) = « (%%)
y(1) = B

@ Ifx(t) is a solution of (x) then y(s) = x(a+ (b — a)s) is a solution of

(k).

@ Ify(s) is a solution of (%x) then x(t) = y((t —a)/(b—a))isa
solution of (*).
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Second theorem on two-point BVPs

Consider these two-point BV Ps:

y1) = B
Z'(t) = h(tz),
z(0) = 0, (5 * %)
z(1) = 0,
where h(t,z) = ¢(t,z+a+ (B — a)t).

@ Ifzsolves (x x %) then y(t) = z(t) + a + (B — a)t solves (xx).
@ Ifysolves (%) then z(t) = y(t) — {a + (B — a)t} solves (* * *).
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Example

Convert the following two-point BVP to an equivalent one with 0
boundary values on [0, 1]:

() =x2+3— 12 —x,
{ x(3) =7, x(5)=09.

Solution: By the first theorem, we have

{ y'(t) =gty
y(0)=7, y(1) =9,

g(ty) = (5-3)*(B+2ty) =4{y* +3— (3+2t)*> —y(3+2t)}. By
the second theorem, we get

{ Z'(t) = h(t,z),
z(0) =0, z(1)=0,

h(t,z) =g(t,z+7+2t)
=4{(z+7+2t)2+3—-(3+2t)2+ (z+7+2t)(3+2t)}.
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Finite-difference methods: linear case

@ Consider the linear BVP

{x”(t) = u(t) +o(t)x+w(t)x,

=
—
==
\
™ R

2
) = zl—h<x(t+h)—x(t—h))—%x”’(@),
y 1 W
) = ﬁ<x(t+h)—2x(t)+x(t—h))—Ex()((:).

® Lett; =a+ih,where0<i<n+1l,andh=(b—a)/(n+1).

@ Setu; = u(t;), v; =v(t;), w; = w(t;) and use y; ~ x(t;).
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Finite-difference methods: linear case (cont’d)

@ Then the differential equation is approximated by

. -2 Ay . — Y
<y1+1 hy21 Yi 1) = u; + O + w; (y1+12hy1 1) '
@ Multiply by —h? and rearrange to obtain
(=1 = 3hw))yi 1+ 2+ o)y + (1 + shw)yi1 = —hu,
i=12---n,
Yo = &
Yny1 = P
@ Let 1
a = —1—§hwi+1, 0<i<n-—1,
d = 2+4hv, 1<i<n,
¢ = —l—i—%hwi, 1<i<n,
bi = —]’121/11', 1 S i S n.

© Suh-Yuh Yang ), Math. Dept., NCU, Taiwan Numerical ODEs - 93/119



A system of linear equations

We obtain
[ di o 17 vi 1 [ bi—aoa ]
a dy 12 by
a, ds C3 y3 - b3
Ap—2 dy_1 Cp_1 Yn—1 by
Ap—1 dy Yn L by — Cnﬁ i

@ This is a tridiagonal system, and can be solved by a special
Gaussian algorithm. Also the matrix is strictly diagonally
dominant if v; > 0 and h is small enough so that | 1hw;| < 1,
which implies that Gaussian elimination algorithm does not
require pivoting.

@ Note that we have the following equality:

1 1
‘dz| — ‘Cl’| — ‘l,li,1| = 2+h20{— (1 — Ehwl) — (1+ Ehw,) = hz?)]' > 0.
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Existence-uniqueness theorem (Keller, 1968)

The BVP
X(t) = f(txx),
ciix(a) +cppx'(a) = ci3,
c1x(b) +cnx'(b) = ¢

has a unique solution on the interval [a, b] provided that

@ f and its first partial derivatives f;, f and f,» are continuous on
D=[a,b] xR x R;

@ fr >0, |fx]| <Mand |fy| < MonD;

Qo ‘C11| + |C12‘ >0, |C21| + |C22| >0, |C11‘ -+ ‘C21| > 0and
c11c12 < 0 < epq002.
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Convergence analysis

@ Let us go back to the linear BVP:

x”((t; = u(t) +o(t)x + w(t)x,
x(b) = B

Assume that u,v,w € C! [2,b] and v > 0. Then the BVP has a
unique solution.

@ We wish to estimate |x(¢;) — y;| as h — 0, where x(t;) is the exact
solution at ¢; and y; is the corresponding discrete solution, which
depends on h.
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Convergence analysis (cont’d)

@ The exact solution x(t) satisfies the following system:
x(tin) —2x(t) +x(tiv) \ 1,0 4y,
( i ) (z)

) “xllial) ey,

@ The discrete solution y; satisfies the following system:

=2 7 . — Y
<}/z 1 hyzz yz+1) = u; + oy + Wi (yl+12h}/1 1)_

@ Subtracting above system from the first and writing
e; = x(t;) — y;, we obtain

<€i—1 — 2e; +€i+1> et (€i+1 - ei—l) + I,
- 11 1 17

=u; + vix(ti) + w; <

h2 2h

where g; := 11736(4)(’@‘) - %x(s)(ﬂi)'
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Convergence analysis (cont’d)

@ After multiplying by —h? and collecting terms, we have
1 2 1 4
(—1 — Ehwi)ei,l + (2 +h U{)E,‘ + (—1 + Ehw,-)el-ﬂ = —h gi-
@ This is identical to the matrix problem we have for the discrete
problem. Using the coefficients introduced earlier, we write this
in the form

a;_1ei_1 + die; + ciej g = —h'g;. (%)

@ Let A = ||¢||« and take an index i such that |e;| = |le]|c = A,
where e = (e1,ep,- -+ ,ey) . From (%), we get

\dillei| < ht(gi| + |cilleir1] + |ai—1]]ei—1-

Note that d; = 2 + h?v; > 0.
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Convergence analysis (cont’d)

@ From the previous slide, we have
dilleil < h*|gil + leilleia| + lai-alleia]-

Hence, we obtain

diA < BY|glleo + [eilA + |ai1]A,
A|dil = leil = laic1]) < 1*gloo,

oA < H|g]leos

lello < B*(|Iglleo/ info(t)).

@ Note that [|g]lc < [|x®*||e/12 4 [|x®)]|es /6. The expression
llg|leo/ info(t) is a bound independent of /. Thus, we see that
llelloo is O(H?).
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Collocation method

Suppose that we have a linear differential operator L and we wish to
solve the equation:

Lu(t) =f(t), a<t<p,
where f is given and u is sought.

@ Let {vy,vy,- - ,vn} be a set of functions that are linearly
independent. Suppose that

u(t) = cqoy(t) + cua(t) + -+ +cnon(t), ¢ € R
@ Then solve L() ;—; ¢jvj(t)) = f(). How to determine ¢;?
@ Lett;,i=1,2,---,n,ben prescribed points (collocation points)

in the domain of u and f. Then we require the following
equations to determinecj,j =1,2,--- ,n:
n

ZCJ(LD])(tz) :f(f]'), i= 1,2,-" , 1.
j=1
@ This is a system of n linear equations in n unknowns ¢;. The
functions v; and the points #; should be chosen so that the matrix
with entries (Lv;)(t;) is nonsingular.
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Collocation method for Sturm-Liouville BVPs

@ Consider a Sturm-Liouville two-point BVP:

w’'(t) +p()u(t) +q(tult) = f(t), 0<t<1,
u0) =0, (%)
u(l) = 0,
where p, q,f are given continuous functions on [0, 1]

@ Let Lu := u” + pu’ + qu. Define the vector space

V ={uecC*0,1)NC[0,1] : u(0) = u(1) = 0}.

If u is an exact solution of (x), thenu € V.

@ One set of functions is given by

v() =P(1—1)* € C?0,1], 1<j<ml1<k<n
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Variational formulation of a 1-dim model problem

Consider the following two-point boundary value problem (BVP):

—u"(x)=f(x), 0<x<1,
Lo Dy 20, ()

where f is a given function in C[0, 1].

Remark: Problem (D) has a unique classical solution
u € C%0,1)NClo,1].
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Some notation and definitions

@ Define (v, w) := fol v(x)w(x)dx for real-valued piecewise
continuous and bounded functions v and w on [0, 1].

@ Define V := {v| v € C[0,1],v(0) = v(1) = 0,7’ is piecewise
continuous and bounded on [0,1]}.

e F: VR,
F(v) := %(v’,v’) =3 fo x))%dx — fo 0(x)dx.

(represents the total potential energy)

@ Define the following minimization and variational problems:
Find u € V such that F(u) < F(v), VveV. (M)

Find u € V such that (',7") = (f,v), VoveV. (V)
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D) = (V)

The solution of problem (D) is also a solution of problem (V):
c=u(x)=f(x), 0<x<l1
fol —u" (x)v(x)dx = folf(x)v(x)dx, VoeV.
(=" v)=(f,v), VYoeV.
1
sl —u! (x)o(x) ‘0 =(f,v), VveV. (integration by parts)

S Y) = (f,v), YoeV.
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V) M)

Problems (V) and (M) have the same solutions:

@ (V) = (M): Let u be a solution of problem (V). Letv € Vandw =v—-u € V.
Thenv = u 4w and

Fo) = Futw) = (u+w), (utw)) - (u+w)
= ) )+ )~ (f) ()
= %(u’,u’)+%(w’,w’)f(f,u)
> %(u/,u’)—(f,u):F(u).

@ (M) = (V): Let u be a solution of problem (M). Then forany v € V, ¢ € R, we
have F(u) < F(u + €v), since u + ev € V. Define

g(e) = Flu+e)= %((u + o), (u+e0)') — (F, u+ 0)
(', u") + %sz(v',v’) +e(u/, 7)) — (f,u) —e(f,0).

wg'(e) = (W, V) +e(v),0') = (f,0) and ¢ (0) = 0.
20=¢8'(0) = (,7") = (f,0).

‘N\H
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Both problems (V) & (M) have at most one solution

It suffices to prove that problem (V) has at most one solution.
Suppose that 11 and u; are solutions of problem (V). Then

(uy,?) = (f,) VoeV,
(uh, o) = (f,v) VoeV.
() —uh,v)=0 VoeV.
Taking v = uy — up, we have (uj — uj,uy —uj) = 0.
fo uy (x) — ub(x))?dx = 0.
couy(x) — uz( x)=0,x€[0,1] ae.
.. U1 — Uy is a step function on [0, 1].
" U1 — Uy is continuous on [0, 1].
.. U1 — uyp is a constant function on [0, 1].
u1(0) = up(1) = 0and up(0) = up(1) = 0.
soup—up; =00n[0,1].
That is, u1(x) = up(x), V x € [0,1].
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(V) + smoothness = (D)

Let u be a solution of problem (V). Then (v/,v') = (f,v),Vov e V.
.'.folu’( dxffo v(x)dx =0, YVoveV.

Suppose that 1" exists and continuous on [0,1], i.e., u € C2[0,1].
Then—folu”() dx—fo (x)dx=0, VoelV.

L W (x) + f()o(x)dx =0, Voe V.

By the sign-preserving property for continuous functions, we can
conclude that
u”(x)+f(x) =0,Vxe[01].

.. u is a solution of problem (D).
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FEM for the model problem with piecewise linear functions

Construct a finite-dimensional space V}, (finite element space):
Let0=xp <xp < --- < xp < Xp4+1 = 1 be a partition of [0, 1].

[Insert partition figure here!]

Define
(] I]' = [x]-,l,xj], j: 1,2,--- ,M+1.
° h]- =X X, j=.,2--- M+1

@ h:= max h. (a measure of how fine the partition is)
j=12,+ M+1

Define
V), == {v), € V| vy, is linear on each subinterval I;, v, (0) = v;,(1) = 0}.

Notice that V;, C V.
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Construct a basis of V),

Here is a typical v, € Vj;:

[Insert vy, figure here!]

Forj=1,2,---,M, we define ¢; € V), such that
1 ifi=j,
‘Pf(xi):{ 0 ifi#].

[Insert ¢; figure here!]

Then we have

o {¢; }]Ai 1 is a basis of the finite-dimensional vector space V/,.

@ For each v, € V}, v, can be written as a unique linear

M
combination of ¢;’s: v),(x) = Y ni9j(x), where 17; = vy, (x;).
=1
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Numerical methods for solution of problem (D)

We now define the following two numerical methods for
approximating the solution of problem (D):

@ Ritz method:

Find uy, € V), such that F(uy,) < F(v), Vo, € V.

@ Galerkin method (finite element method):

Find uy, € Vy such that (u;,v),) = (f,v,), Yo, € V).

One can claim that (M;,) < (V},).
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(Vi) < Find wy, € V), such that (u;, ¢}) = (f,¢;), 1 <i<M& AL =b

@ (V) < Find uy, € V), such that (u;, ¢}) = (f, ¢;),1 <i < M.
Proof.
(=): trivial!

<): Forany v, € Vj, we have v, = Y™ 17,9, forsome 7, € R, 1 < i < M.
y i=11i¢. Ui

! / M M ! /
< (g, 9h) = (e i) = Y miut 1)
i=1 i=1

E

M
=Y nilf, 9i) = (£, Y mipi) = (f,on).
i=1 i=1

@ Find wy € V), such that (u), ¢}) = (f, ¢i), 1 <i <M <= Al =b.

Proof. Let uy,(x Z gj@j(x), where &; = uy,(x;), 1 < j < M, are unknown. Then
’ . M ’ .
(u 91) = (f,9:), 1<i<M& (Y. §oh 91) = (f91), 1<i<M
=

M
&Y (oL o) = (o) 1<i<M&AZ=b
j=1
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AE=b

A = (a;;)Mxm: stiffness matrix; b = (b;)amx1: load vector; ¢ = (Gi)mx1:
unknown vector.

(91, 91) (9% 90) - (@y 9h) & (f, 1)
(P @3) (95,95 - (Pp 95) ) (f, 92)

(qvi/%) <<pa,'qo;4> (4’5\/{;(/’5\4) 3 F, om)
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Some remarks

® (¢, ¢;) =0if[i—j| >1 .. Aisatri-diagonal matrix.

o aj = (¢, ¢;) = (¢, ¢;) =aj .. Aissymmetric!
@ Claim: A is positive definite.
For any given 7 = (1,72, -+ , i) | € RM, define
M

X) = Z 7;¢;i(x). Then

M
0 < (o3, vp) 27714%/277](!’] Y nilel ¢n; =1 - Ay
ij=1

If (v}, v;,) = 0, then fo v},(x))%dx = 0. = v} (x) =0a.e.
vy € Vy, vy, is continuous on [0, 1] and v;,(0) = vy, (1) = 0.
~op=00n[0,1],ie,7=0...7-Ay >0,V € RM, 5 £0.

@ - AisSPD .. Aisnonsingular.'. AC = b has a unique solution!
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Evaluate a;; and a; 1

[Insert a figure of ¢; 1 and ¢; here!]
Forj=1,2,--- ,M, we have
/AN _ % 2 2
(@5, 9j) = /] 1(4)] dx+/ (¢))%dx

o1 G 1 1 1
= —zdx + / 2 S—dx=—+—,

o) = @e)=—[ = i =
]1

For uniform partition: hj = h = M;H Then A = b becomes

2 -1 0 -0 1 (f, ¢1)
1 -1 2 -1 e 0 Cz B (f,(Pz)
0 - 0 -1 2] éu (t, om)

© Suh-Yuh Yang ( Wi 1E), Math. Dept., NCU, Taiwan Numerical ODEs - 114/119



Taylor’s theorem with Lagrange remainder

If f € C"[a,b] and ") exists on (a,b), then for any points ¢ and x in

[a,b] we have
f(x) = Pu(x) + Eu(x),
where the n-th Taylor polynomial P, (x) is given by

Zklf k) x—c)

and the remainder (error) term E;(x) is given by

1

7)f(n+1) (C) (x o C)n+1

Enlx) = (n+1)t

for some point ¢ between ¢ and x (means that either ¢ < ¢ < x or
x < ¢ <o)
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Numerical differentiation

Assume that u € C*[0,1] and 0 = xg < x3 < -+ < xp < Xp141 = 1 is a uniform
partition of [0,1]. Then hj=h= Al/I;JrOl forj=1,2,--- ,M+1.
Fori=1,2,--- ,M, we have

u(x; +h) = u(x;) +u' (x)h+ Ju” (x;))W? + %u(a') (x;)H3 + ﬁu(‘l) (En)H?,
u(x; —h) = u(x;) — ' (x)h + 2u” (i) h? — 2ul® () h® + Lu® (2)ht,

for some ;1 € (x;,x; +h) and &p € (xi — h, ;).
cou(xiHh) (=) = 2u(x) +u” (x0)h? 4+ g {u® (§a) +u® (G) }i*.
o (xg) = g+ ) = 20(3) + (i — )} = L (@) + 10 (o))
su € CHo, 1] and J{u™®)(Zn) +u® (§n)} between u® (&) and u®) (g;).
By IVT, 3 & between &1 and & (= & € (xi — h,x; + 1)) such that

u® (&) = 3Hu® () +u®(En)}
s () = g {u(x +h) = 2u(x) + u(x —h)} = HRu® (&),

for some ¢; € (x; —h,x; +h).
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Finite difference method for problem (D)

Consider the BVP:
—u(x) =f(x), 0<x<1,
{ u(0) = u(1f) =0, (D)

Fori=1,2,--- ,M, we have
— o {u(xi + ) = 2u(x;) + u(x; — h)} + 5724 (&) = f(xi).

= — i {u(xipa) — 2u(x) + u(xi1)} + 15H2u® (&) = f(x).
We wish to find U; ~ u(x;) fori=1,2,--- ,Mand Uy = Up41:=0
such that

_%{uo_zulwm = fln).  (i=1)

—hlz{m—zuptus)} = flx). (i=2)

*hl*z{uM—lfzuMJruM-H)} = f(xM). (i=M)
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Finite difference method for problem (D) (cont’d)

Finally, we reach at the following linear system:

2 -1 0 0 U1 f(xl)
1l -1 2 -1 - 0 Uy f(x2)
W : : Do : - :

0 0 -1 2 Upm f(xM)

A comparison: what is the difference between FEM with piecewise
linear basis functions and FDM for problem (D)? Answer: They are
essentially the same!

Consider the first component in the right hand side:
@ Finite difference method: h2f(x1).

@ Finite element method:

bif 1) = [ F@)gn (s = f() [ gy = Kf().
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Homework

Consider the following 1-D reaction-convection-diffusion problem:

—eu” (x) +u'(x) +u(x) =1 forxe (0,1), (%)
u(0) =0, u(1) =0.

Write the computer codes for numerical solution of problem (x) by
using the following methods on the uniform mesh of [0, 1] with mesh
size h:

@ Finite difference methods:

o Replace u”(x;) =~ % and /(x;) ~ % with
(e,1)) = (0.01,0.1) and (¢, ) = (0.01,0.01). Plot uj,.

o Replace u”(x;) = 7u,-+1—2hl,21,-+u,,1 and u'(x;) ~ uifhui’l
(upwinding) with (¢,h) = (0.01,0.1) and
(e, 1)) = (0.01,0.01). Plot uj,.

@ Finite element method: use piecewise linear finite elements
with (¢,h) = (0.01,0.1) and (¢, /) = (0.01,0.01). Plot uy,.

© Suh-Yuh Yang (7 &), Math. Dept., NCU, Taiwan Numerical ODEs - 119/119



