MA 8020: Numerical Analysis II Numerical Ordinary Differential Equations

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 320317, Taiwan

First version: April 06, 2019/Last updated: May 22, 2024

Initial-value problem (IVP)

• **Initial-value problem:** find *x*(*t*) such that

 $\begin{cases} x'(t) = f(t,x), \\ x(t_0) = x_0, \end{cases}$

where f(t, x), $t_0, x_0 \in \mathbb{R}^1$ are given.

• Example 1:

$$\begin{cases} x'(t) = x \tan(t+3), \\ x(-3) = 1. \end{cases}$$

One can verify that the analytic solution of this IVP is $x(t) = \sec(t+3)$. Since sec *t* becomes ∞ at $t = \pm \frac{\pi}{2}$, the solution is valid only for $-\frac{\pi}{2} < t+3 < \frac{\pi}{2}$.

• Example 2:

$$\begin{cases} x'(t) = x, \\ x(0) = 1. \end{cases}$$

Try $x(t) = ce^{rt} \Rightarrow cre^{rt} = ce^{rt} \Rightarrow r = 1$, $x = ce^{t}$ (general solution) Use $x(0) = 1 \Rightarrow x = e^{t}$ (a particular solution)

Existence of solution

- Existence: do all IVPs have a solution? Answer: No! Some assumptions must be made about *f*, and even then we can expect the solution to exist only in a neighborhood of *t* = *t*₀.
- Example:

$$\begin{cases} x'(t) = 1 + x^2 \\ x(0) = 0. \end{cases}$$

Try
$$x(t) = \tan t$$
, then $x(0) = 0$.

LHS:
$$(\tan t)' = \frac{\cos^2 t + \sin^2 t}{\cos^2 t}$$
; RHS: $1 + \tan^2 t = 1 + \frac{\sin^2 t}{\cos^2 t}$.

Hence $x(t) = \tan t$ is a solution of the IVP.

• If $t \to (\pi/2)^-$ then $x(t) \to \infty$. For the solution starting at t = 0, it has to "stop the clock" before $t = \pi/2$. Here we can only say that there exists a solution for a limited time.

Existence theorem

Consider the IVP:

 $\begin{cases} x'(t) = f(t, x), \\ x(t_0) = x_0, \end{cases}$

If f is continuous in a rectangle R centered at (t_0, x_0) *, say*

$$R = \{(t,x): |t-t_0| \le \alpha, |x-x_0| \le \beta\},\$$

then the IVP has a solution x(t) for

 $|t-t_0|\leq \min\{\alpha,\beta/M\},\,$

where *M* is maximum of |f(t, x)| in the rectangular *R*.

Example

Prove that

$$\begin{cases} x'(t) = (t + \sin x)^2, \\ x(0) = 3 \end{cases}$$

has a solution in the interval $-1 \le t \le 1$.

Solution:

(1) Consider
$$f(t, x) = (t + \sin x)^2$$
, where $(t_0, x_0) = (0, 3)$.

(2) Let
$$R = \{(t, x) : |t| \le \alpha, |x - 3| \le \beta\}$$
. Then $|f(t, x)| \le (\alpha + 1)^2 := M$.

(3) We want $|t - 0| \le 1 \le \min\{\alpha, \beta/M\}$.

(4) Let $\alpha = 1$ then $M = (1+1)^2 = 4$ and force $\beta \ge 4$. By the existence theorem, the IVP has a solution in the interval $|t - t_0| \le \min\{\alpha, \beta/M\} = 1$, that is, $-1 \le t \le 1$. \Box

Uniqueness

• If *f* is continuous, we may still have more than one solution, e.g.,

$$\begin{cases} x'(t) = x^{2/3}, \\ x(0) = 0. \end{cases}$$

Note that x(t) = 0 is a solution for all *t*. Another solution is $x(t) = t^3/27$.

• To have a unique solution, we need to assume somewhat more about *f*.

Uniqueness theorem

Consider the IVP:

 $\begin{cases} x'(t) = f(t,x), \\ x(t_0) = x_0. \end{cases}$

If f and $\frac{\partial f}{\partial x}$ are continuous in the rectangle R centered at (t_0, x_0) ,

$$R = \{(t,x) : |t-t_0| \le \alpha, |x-x_0| \le \beta\},\$$

then the IVP has a unique solution x(t) for

 $|t-t_0|\leq \min\{\alpha,\beta/M\},\,$

where *M* is maximum of |f(t, x)| in the rectangular *R*.

Another uniqueness theorem

Consider the IVP:

$$\begin{cases} x'(t) = f(t,x), \\ x(t_0) = x_0, \end{cases}$$

If f is continuous in a $\leq t \leq b$ *,* $-\infty < x < \infty$ *and satisfies*

$$|f(t,x_1) - f(t,x_2)| \le L|x_1 - x_2|, \qquad (\star)$$

then the IVP has a unique solution x(t) in the interval [a, b].

Note: (\star) is called the Lipschitz condition of *f*(*t*, *x*) in the variable *x*.

Example

Prove that

$$\begin{cases} x'(t) &= 1 + t \sin(tx), \\ x(0) &= 0 \end{cases}$$

has a solution on the interval $0 \le t \le 2$.

Solution:

(1) Since $f(t,x) = 1 + t \sin(tx)$, we have $\left|\frac{\partial f}{\partial x}(t,x)\right| = |t^2 \cos(tx)| \le 4$ for $0 \le t \le 2$ and $-\infty < x < \infty$.

(2) By the mean value theorem, ∃ ξ between x₁ and x₂ such that f(t, x₂) - f(t, x₁) = ∂f(t, ξ)/∂x (x₂ - x₁).
⇒ |f(t, x₂) - f(t, x₁)| ≤ 4|x₂ - x₁|.
⇒ f satisfies (*) with L = 4 and f is continuous in 0 ≤ t ≤ 2, -∞ < x < ∞.
⇒ the IVP has a unique solution x(t) for a ≤ t ≤ b. □

Numerical methods

• Consider the IVP:

$$\begin{cases} x'(t) &= f(t,x), \\ x(t_0) &= x_0. \end{cases}$$

• **Strategy:** instead of finding *x*(*t*) for all *t* in some interval containing *t*₀, we approximate *x*(*t*) at some discrete points.

(insert a graph here!)

Taylor-series method

- For the Taylor-series method, it is necessary to assume that various partial derivatives of *f* exist.
- We use a concrete example to illustrate the method. Consider an IVP as

$$\begin{cases} x'(t) = \cos t - \sin x + t^2, \\ x(-1) = 3. \end{cases}$$

• Assume that we know *x*(*t*) and we wish to compute *x*(*t* + *h*). By the Taylor expansion of *x*, we have

$$x(t+h) = x(t) + hx'(t) + \frac{h^2}{2!}x''(t) + \frac{h^3}{3!}x'''(t) + \frac{h^4}{4!}x^{(4)}(t) + O(h^5).$$

Taylor-series method (cont'd)

• How to compute *x*′(*t*), *x*′′(*t*), *x*′′′(*t*) and *x*⁽⁴⁾(*t*)?

$$\begin{cases} x'(t) = \cos t - \sin x + t^2, \\ x''(t) = -\sin t - (\cos x)x' + 2t, \\ x'''(t) = -\cos t + \sin x(x')^2 - (\cos x)x'' + 2, \\ x^{(4)}(t) = \sin t + (\cos x)(x')^3 + 3(\sin x)x'x'' - (\cos x)x'''. \end{cases}$$

- If we truncate at h^4 then the local truncation error for obtaining x(t+h) is $O(h^5)$. We say the method is of order 4.
- **Definition:** The order of the Taylor-series method is n if terms up to and include $h^n x^{(n)}(t) / n!$ are used.
- Let $t_k := t_0 + kh$ and $x_k \approx x(t_k)$. Then the Taylor-series method for this example is defined as

$$\begin{aligned} x_{k+1} &= x_k + h \widetilde{x}'(t_k) + \frac{h^2}{2!} \widetilde{x}''(t_k) + \frac{h^3}{3!} \widetilde{x}'''(t_k) + \frac{h^4}{4!} \widetilde{x}^{(4)}(t_k), \, k \ge 0, \\ \widetilde{x}'(t_k) &:= f(t_k, x_k), \, \widetilde{x}''(t_k) := f_t(t_k, x_k) + f_x(t_k, x_k) f(t_k, x_k), \cdots. \end{aligned}$$

Algorithm

Starting t = -1 with h = 0.01, we can compute the solution in [-1, 1] with 200 steps:

input $M \leftarrow 200, h \leftarrow 0.01, t \leftarrow -1, x \leftarrow 3$ output 0, t, xfor k = 1 to M do

$$\begin{array}{rcl} x' &\leftarrow & \cos t - \sin x + t^2 \\ x'' &\leftarrow & -\sin t - (\cos x)x' + 2t \\ x''' &\leftarrow & -\cos t + \sin x(x')^2 - (\cos x)x'' + 2 \\ x^{(4)} &\leftarrow & \sin t + (\cos x)(x')^3 + 3(\sin x)x'x'' - (\cos x)x''' \\ x &\leftarrow & x + h(x' + \frac{h}{2}(x'' + \frac{h}{3!}(x''' + \frac{h}{4!}x^{(4)})))) \\ t &\leftarrow & t + h \end{array}$$

output k, t, x end do

Error estimate

• The estimate of the local truncation error is given by

$$E_n := \frac{1}{(n+1)!} h^{n+1} x^{(n+1)} (t+\theta h) \quad \text{for some } \theta \in (0,1).$$

Hence

$$E_4 = \frac{1}{5!}h^5 x^{(5)}(t+\theta h)$$
 for some $\theta \in (0,1)$.

• We can replace $x^{(5)}(t + \theta h)$ by a simple finite difference,

$$E_4 \approx \frac{1}{5!} h^5 \Big(\frac{x^{(4)}(t+h) - x^{(4)}(t)}{h} \Big) = \frac{h^4}{120} \Big(x^{(4)}(t+h) - x^{(4)}(t) \Big).$$

• Suppose that the local truncation error (LTE) is $O(h^{n+1})$. An error of this sort is present in each step of the numerical solution. The accumulation of all LTEs gives the global truncation error (GTE). Roughly speaking, we have

$$GTE \approx \frac{T - t_0}{h} O(h^{n+1}) = O(h^n),$$

and we say the numerical method is of $O(h^n)$.

Advantages and disadvantages of the Taylor-series method

• Disadvantages:

(1) The method depends on repeated differentiation of the differential equation, unless we intend to use only the method of order 1.

 \Longrightarrow f(t,x) must have partial derivatives of sufficient high order in the region where are solving the problem. Such an assumption is not necessary for the existence of a solution.

(2) The various derivatives formula need to be programmed.

Advantages:

- (1) Conceptual simplicity.
- (2) Potential for high precision: If we get, e.g. 20 derivatives of *x*(*t*), then the method is order 20 (i.e., terms up to and including the one involving *h*²⁰).

Euler's method (Taylor-series method of order 1)

• If *n* = 1, the Taylor series method reduces to Euler's method.

 $x_{k+1} = x_k + hf(t_k, x_k), \quad k \ge 0.$

Disadvantage of the method is that the necessity of taking small value for h to gain acceptable precision.

Advantage is not to require any differentiation of *f*.

• In-class exercise: Consider the following IVP:

$$\begin{cases} x'(t) = \cos t - \sin x + t^2, \\ x(0) = 3. \end{cases}$$

Derive Euler's method based on the Taylor series and compute x(0.1) when h = 0.1.

Basic concepts of Runge-Kutta methods

We wish to approximate the following IVP:

 $\begin{cases} x'(t) = f(t,x), \\ x(t_0) = x_0. \end{cases}$

• Suppose that *f* is sufficiently smooth. From the Taylor theorem, we have

$$x(t+h) = x(t) + hx'(t) + \frac{h^2}{2!}x''(t) + O(h^3).$$

• By the chain rule, we obtain

 $x''(t) = f_t(t,x) + f_x(t,x)x'(t) = f_t(t,x) + f_x(t,x)f(t,x).$

Basic concepts of Runge-Kutta methods (cont'd)

• In the Taylor expansion, we have

$$\begin{aligned} x(t+h) &= x(t) + hf(t,x) + \frac{h^2}{2}(f_t(t,x) + f_x(t,x)f(t,x)) + O(h^3) \\ &= x(t) + \frac{h}{2}f(t,x) + \frac{h}{2}\Big[f(t,x) + hf_t(t,x) + hf_x(t,x)f(t,x))\Big] \\ &+ O(h^3) \\ &= x(t) + \frac{h}{2}f(t,x) + \frac{h}{2}f(t+h,x+hf(t,x)) + O(h^3). \end{aligned}$$

• Note that the last equality above is valid by the Taylor expansion in two variables,

 $f(t+h, x+hf(t, x)) = f(t, x) + hf_t(t, x) + hf(t, x)f_x(t, x) + O(h^2).$

A second-order Runge-Kutta method

• Then a 2nd-order Runge-Kutta (RK) method is given by $x(t+h) \approx x(t) + \frac{h}{2}f(t,x) + \frac{h}{2}f(t+h,x+hf(t,x)),$

or alternating

$$\begin{aligned} x(t+h) &\approx x(t) + \frac{1}{2}(F_1 + F_2), \\ F_1 &= hf(t, x), \\ F_2 &= hf(t+h, x+F_1). \end{aligned}$$

It is also known as Heun's method.

• In practice, let $x_n \approx x(t_n)$, then we define Heun's method as

$$\begin{aligned} x_{n+1} &= x_n + \frac{1}{2}(F_1 + F_2), & n \ge 0, \\ F_1 &:= hf(t_n, x_n), \\ F_2 &:= hf(t_{n+1}, x_n + F_1). \end{aligned}$$

The general second-order Runge-Kutta method

• In general, the 2nd order RK method needs

$$\begin{aligned} x(t+h) &= x(t) + \omega_1 h f + \omega_2 h f(t+\alpha h, x+\beta h f) + O(h^3), \\ &= x(t) + \omega_1 h f + \omega_2 h [f+\alpha h f_t + \beta h f f_x] + O(h^3). \end{aligned}$$

• Comparing with

$$x(t+h) = x(t) + hf + \frac{h^2}{2}(f_t + f_x f) + O(h^3),$$

we have

$$\omega_1 + \omega_2 = 1,$$

$$\omega_2 \alpha = 1/2,$$

$$\omega_2 \beta = 1/2.$$

Modified Euler method

• The previous method (Heun's method) is obtained by setting

$$\begin{cases} \omega_1 = \omega_2 = 1/2, \\ \alpha = \beta = 1. \end{cases}$$

Setting

$$\omega_1 = 0, \\ \omega_2 = 1, \\ \alpha = \beta = 1/2,$$

we obtain the following modified Euler method:

$$\begin{aligned} x_{n+1} &= x_n + F_2, \quad n \ge 0, \\ F_1 &:= hf(t_n, x_n), \\ F_2 &:= hf(t_n + \frac{1}{2}h, x_n + \frac{1}{2}F_1). \end{aligned}$$

Fourth-order RK methods

- The derivations of higher order RK methods are tedious. However, the formulas are rather elegant and easily programmed once they have been derived.
- The most popular 4th order RK is:

$$\begin{aligned} x(t+h) &\approx x(t) + \frac{1}{6}(F_1 + 2F_2 + 2F_3 + F_4), \\ F_1 &= hf(t,x), \quad F_2 = hf(t + \frac{h}{2}, x + \frac{1}{2}F_1), \\ F_3 &= hf(t + \frac{h}{2}, x + \frac{1}{2}F_2), \quad F_4 = hf(t+h, x+F_3). \end{aligned}$$

That is, the 4th order RK is defined as

$$\begin{array}{lll} x_{n+1} &=& x_n + \frac{1}{6}(F_1 + 2F_2 + 2F_3 + F_4), \quad n \ge 0, \\ F_1 &:=& hf(t_n, x_n), \qquad F_2 := hf(t_n + \frac{h}{2}, x_n + \frac{1}{2}F_1), \\ F_3 &:=& hf(t_n + \frac{h}{2}, x_n + \frac{1}{2}F_2), \qquad F_4 := hf(t_{n+1}, x_n + F_3). \end{array}$$

Homework

• Use the most popular 4th order RK with h = 1/128 to solve the following IVP for $t \in [1,3]$ and then plot the piecewise linear approximate solution:

$$\begin{cases} x'(t) = t^{-2}(tx - x^2), \\ x(1) = 2. \end{cases}$$

• Also plot the exact solution:

$$x(t) = (1/2 + \ln t)^{-1}t.$$

Algorithm

input
$$M \leftarrow 256, t \leftarrow 1.0, h \leftarrow 0.0078125, x \leftarrow 2.0$$

define $f(t,x) = (tx - x^2)/t^2$
define $u(t) = t/(1/2 + \ln t)$
 $e \leftarrow |u(t) - x|$
output 0, t, x, e
for $k = 1$ to M do

$$F_1 \leftarrow hf(t, x)$$

$$F_2 \leftarrow hf(t + \frac{h}{2}, x + \frac{1}{2}F_1)$$

$$F_3 \leftarrow hf(t + \frac{h}{2}, x + \frac{1}{2}F_2)$$

$$F_4 \leftarrow hf(t + h, x + F_3)$$

$$x \leftarrow x + \frac{1}{6}(F_1 + 2F_2 + 2F_3 + F_4)$$

$$t \leftarrow t + h$$

$$e \leftarrow |u(t) - x|$$

output *k*, *t*, *x*, *e* **end do**

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Numerical ODEs - 24/1

How to estimate the local truncation error of RK4?

• For RK4, the local truncation error is of $O(h^5)$. The local truncation error at the first step is

 $x^*(t_0+h) - x_1 = O(h^5),$

where $x^*(t_0 + h)$ is exact value and x_1 is computed value. That is, the truncation error behaves like Ch^5 for small h. Here C is a number independent of h but dependent on t_0 and x^* .

 Let v be the value of the approximate solution at t₀ + h obtained by taking one step of length h from t₀. Let u be the approximate solution at t₀ + h, obtained by taking two steps of size h/2 from t₀. Then we have

 $x^*(t_0+h) \approx v + Ch^5$ and $x^*(t_0+h) \approx u + 2C(h/2)^5$.

By substraction, we obtain

local truncation error
$$= Ch^5 \approx \frac{u-v}{1-2^{-4}} \approx u-v.$$

Basic concepts of multistep methods

- Taylor-series and RK methods are examples of single-step methods, i.e. use information only at *t* to get *t* + *h*.
- Consider the IVP: x'(t) = f(t, x) and $x(t_0) = x_0$. Assume that we want to approximate x(t) at $t_0, t_1, \dots, t_i, \dots$. Let x_i be the approximate solution of $x(t_i)$. Then by the *Fundamental Theorem* of *Calculus*, we have

$$\int_{t_n}^{t_{n+1}} x'(t) dt = x(t_{n+1}) - x(t_n)$$

and then

$$x(t_{n+1}) - x(t_n) = \int_{t_n}^{t_{n+1}} f(t, x(t)) dt.$$

• One of the basic idea of the multistep method is to interpolate the integrand f(t, x(t)) by using t_n, t_{n-1}, \cdots . Then we have

 $x_{n+1} = x_n + af_n + bf_{n-1} + cf_{n-2} + \cdots$, where $f_i := f(t_i, x_i)$.

An equation of this type is called an Adams-Bashforth formula.

Adams-Bashforth formula of order 5

• To derive the A.-B. formula of order 5, we consider (on equally spaced points: $t_i = t_0 + ih$)

$$\int_{t_n}^{t_{n+1}} f(t, x(t)) dt \approx h \Big(Af_n + Bf_{n-1} + Cf_{n-2} + Df_{n-3} + Ef_{n-4} \Big).$$

 We wish the numerical integration is exact for polynomials of degree ≤ 4.

Without loss of generality, we may consider $t_n = 0$ and h = 1 ($\Rightarrow t_{n+1} = 1$).

Then apply the method of undetermined coefficients.

Adams-Bashforth formula of order 5 (cont'd)

• As a basis for Π_4 , we consider

$$p_0(t) = 1,$$

$$p_1(t) = t,$$

$$p_2(t) = t(t+1),$$

$$p_3(t) = t(t+1)(t+2),$$

$$p_4(t) = t(t+1)(t+2)(t+3).$$

• For each of these polynomials the following formula should be exact

$$\int_0^1 p_k(t)dt = Ap_k(0) + Bp_k(-1) + Cp_k(-2) + Dp_k(-3) + Ep_k(-4).$$

Adams-Bashforth formula of order 5 (cont'd)

• By direct computations, we have

$$p_{0}(t) = 1 \implies A + B + C + D + E = 1,$$

$$p_{1}(t) = t \implies -B - 2C - 3D - 4E = 1/2,$$

$$p_{2}(t) = t(t+1) \implies C + 6D + 12E = 5/6,$$

$$p_{3}(t) = t(t+1)(t+2) \implies -6D - 24E = 9/4,$$

$$p_{4}(t) = t(t+1)(t+2)(t+3) \implies 24E = 251/30.$$

By backward substitution, we obtain

$$E = \frac{251}{720}, \quad D = -\frac{1274}{720}, \quad C = \frac{2616}{720}, \quad B = -\frac{2774}{720}, \quad A = \frac{1901}{720}.$$

• Therefore, we have for $n \ge 4$

 $x_{n+1} = x_n + \frac{1}{720} \Big(1901f_n - 2774f_{n-1} + 2616f_{n-2} - 1274f_{n-3} + 251f_{n-4} \Big),$ $x_n \approx x(t_n) = x(0), x_{n+1} \approx x(t_{n+1}) = x(1), \text{ and } f_i := f(t_i, x_i).$

Adams-Bashforth formula of order 5 (cont'd)

• We need to change the interval from [0, 1] to $[t_n, t_{n+1}]$ with

$$\lambda(s) = \frac{t_{n+1} - t_n}{1 - 0}s + \frac{t_n}{1 - 0} = hs + t_n.$$

Then $\lambda'(s) = h$. Hence,

$$\int_{t_n}^{t_{n+1}} f(t,x)dt = \int_0^1 f(\lambda(s), x(\lambda(s)))\lambda'(s)ds.$$

• Finally, we have the Adams-Bashforth formula of order 5: for $n \ge 4$

$$x_{n+1} = x_n + \frac{h}{720} \Big(1901f_n - 2774f_{n-1} + 2616f_{n-2} - 1274f_{n-3} + 251f_{n-4} \Big),$$

where $x_n \approx x(t_n)$, $x_{n+1} \approx x(t_{n+1})$, and $f_i := f(t_i, x_i)$.

Adams-Moulton formula of order 5

• A formula of the type

$$x_{n+1} = x_n + af_{n+1} + bf_n + cf_{n-1} + \cdots$$

is called an Adams-Moulton formula, where $f_i := f(t_i, x_i)$.

• To derive the A.-M. formula of order 5, we consider (on equally spaced points: $t_i = t_0 + ih$)

$$\int_{t_n}^{t_{n+1}} f(t, x(t)) dt \approx h \Big(Af_{n+1} + Bf_n + Cf_{n-1} + Df_{n-2} + Ef_{n-3} \Big).$$

• We wish the numerical integration is exact for polynomials of degree ≤ 4 .

Without loss of generality, we may consider $t_n = 0$ and h = 1.

Then apply the method of undetermined coefficients.

Adams-Moulton formula of order 5 (cont'd)

• As a basis for Π_4 , we consider

a.

$$p_0(t) = 1,$$

$$p_1(t) = t - 1,$$

$$p_2(t) = (t - 1)t,$$

$$p_3(t) = (t - 1)t(t + 1),$$

$$p_4(t) = (t - 1)t(t + 1)(t + 2).$$

• For each of these polynomial the following formula should be exact

$$\int_0^1 p_k(t)dt = Ap_k(1) + Bp_k(0) + Cp_k(-1) + Dp_k(-2) + Ep_k(-3).$$

Adams-Moulton formula of order 5 (cont'd)

• Thus we have

$$\begin{array}{rcl} p_0(t) &=& 1 \implies A+B+C+D+E=1,\\ p_1(t) &=& t-1 \implies -B-2C-3D-4E=-1/2,\\ p_2(t) &=& t^2-t \implies 2C+6D+12E=-1/6,\\ p_3(t) &=& t^3-t \implies -2D-24E=-1/4,\\ p_4(t) &=& t^4+2t^3-t^2-2t \implies 2E=-19/30. \end{array}$$

By backward substitution, we obtain

$$E = -\frac{19}{720}, \quad D = \frac{106}{720}, \quad C = -\frac{264}{720}, \quad B = \frac{646}{720}, \quad A = \frac{251}{720}.$$

• By changing of variable, we finally have

$$x_{n+1} = x_n + \frac{h}{720} \Big(251f_{n+1} + 646f_n - 264f_{n-1} + 106f_{n-2} - 19f_{n-3} \Big).$$

A predictor-corrector method

- In multistep methods, we need a start-up method to get started. Here, for example, we can use RK method of order 4 to get x_1, x_2, x_3, x_4 .
- Note that in the A.-M. method, x_{n+1} occurs on both sides of the equation! $\therefore f_{n+1} = f(t_{n+1}, x_{n+1})$.

• First strategy:

use the A.-B. formula of order 5 as a predictor to compute x_{n+1}^* and then use the A.-M formula of order 5 as corrector with $f_{n+1} = f(t_{n+1}, x_{n+1}^*)$.

This method is known as a predictor-corrector method.

Second strategy: a fixed-point method

Define the mapping

$$\varphi(z) := \frac{251}{720} h f(t_{n+1}, z) + T,$$

where *T* is composed of all the other terms in the A.-M. formula.

• Then this reduces to a fixed-point problem:

$$z_{k+1} = \varphi(z_k) = \frac{251}{720} hf(t_{n+1}, z_k) + T \quad (k \ge 0).$$

It will converge to a fixed point of φ under appropriate hypotheses.

• Thus, if ξ is the fixed point, z_0 should be in the interval centered at ξ such that $|\phi'(z)| < 1$, where

$$\phi'(z) = \frac{251}{720}h\frac{\partial f(t_{n+1},z)}{\partial z}.$$

This can be made less than 1 by setting h is small enough.

Linear multistep methods

• Linear multistep methods (LMMs) are methods of the form

 $a_k x_n + a_{k-1} x_{n-1} + \dots + a_0 x_{n-k} = h\{b_k f_n + b_{k-1} f_{n-1} + \dots + b_0 f_{n-k}\}, \ (\star)$

where $a_k \neq 0$, $f_i := f(t_i, x_i)$ and $t_i = t_0 + ih$. This a *k*-step method if $a_0 \neq 0$ or $b_0 \neq 0$.

- (*) is used to compute x_n assuming that x_{n-k}, \dots, x_{n-1} are already known. If $b_k = 0$, the method is said to be explicit. Otherwise, the method is said to be implicit.
- To define the order of a linear multistep method, let us consider the linear functional *L* over differentiable functions *x*(*t*),

$$Lx = \sum_{i=0}^{k} \left(a_i x(ih) - h b_i x'(ih) \right). \quad \leftarrow \text{ local truncation error}$$

Here we take k = n for simplicity and assume the first value begins at $t = t_0 = 0$ rather than at $t = t_{n-k}$.
Analysis of linear multistep methods

- By using the Taylor series for *x*, one can express *L* as $Lx = d_0 x(0) + d_1 h x'(0) + d_2 h^2 x''(0) + \cdots$
- To compute the coefficients, *d_i*, we write the Taylor series for *x* and *x*':

$$x(ih) = \sum_{j=0}^{\infty} \frac{(ih)^j}{j!} x^{(j)}(0)$$
 and $x'(ih) = \sum_{j=0}^{\infty} \frac{(ih)^j}{j!} x^{(j+1)}(0).$

• By the comparison of coefficients, we obtain

$$d_{0} = \sum_{i=0}^{k} a_{i}, \qquad d_{1} = \sum_{i=0}^{k} (ia_{i} - b_{i}), \qquad d_{2} = \sum_{i=0}^{k} (\frac{1}{2}i^{2}a_{i} - ib_{i}),$$

$$\vdots$$

$$d_{j} = \sum_{i=0}^{k} \left\{ \frac{i^{j}}{j!}a_{i} - \frac{i^{j-1}}{(j-1)!}b_{i} \right\} \quad (j \ge 1).$$

Theorem on linear multistep method

The following three properties of the linear multistep method are equivalent:

$$d_0 = d_1 = \cdots = d_m = 0$$

2 Lp = 0 for $p \in \Pi_m$.

• Lx is $O(h^{m+1})$ for all $x \in C^{m+1}$.

Proof:

• (1)
$$\Rightarrow$$
 (2) : Since $d_0 = d_1 = \cdots = d_m = 0$, we have
 $Lx = d_{m+1}h^{m+1}x^{(m+1)}(0) + \cdots$
If $x \in \Pi_m$ then $x^{(m+1)} = x^{(m+2)} = \cdots = 0$, which implies $Lx = 0$.

- (2) \Rightarrow (3) : If $x \in C^{m+1}$, then Taylor theorem implies x = p + r, where $p \in \Pi_m$ and r is a function with $r^{(k)}(0) = 0$ for $0 \le k \le m$. Hence $Lx = Lr = d_{m+1}h^{m+1}r^{(m+1)}(0) + \cdots = O(h^{m+1})$.
- (3) \Rightarrow (1): $Lx = d_0 x(0) + d_1 h x'(0) + d_2 h^2 x''(0) + \cdots$ reduces $Lx = d_{m+1} h^{m+1} x^{(m+1)}(0) + \cdots$. Hence $d_0 = d_1 = \cdots = d_m = 0$.

Order of a linear multistep method

• Define the order of an LMM to be the number *m* such that

$$d_0=d_1=\cdots=d_m=0\neq d_{m+1}.$$

• **Example:** what is the order of the LMM:

$$x_n - x_{n-2} = \frac{1}{3}h(f_n + 4f_{n-1} + f_{n-2})?$$

Solution:

$$(a_0, a_1, a_2) = (-1, 0, 1)$$
 and $(b_0, b_1, b_2) = (1/3, 4/3, 1/3).$

$$d_0 = d_1 = d_2 = d_3 = d_4 = 0.$$

 $d_5 = (1/120a_1 - 1/24b_1) + (4/15a_2 - 2/3b_2) = -1/90.$

The order of the method is 4.

Vector space of infinite sequences

- A complex sequence is a complex-valued function $x : \mathbb{N} \to \mathbb{C}$. We write $x = [x_1, x_2, \cdots, x_n, \cdots]$.
- Let *V* be the set of all infinite sequences of complex numbers. Then there is a 0 element in *V*, namely, $0 = [0, 0, 0, \cdots]$. We define two operations $+: V \times V \rightarrow V$ and $: \mathbb{C} \times V \rightarrow V$., for $x = [x_1, x_2, \cdots, x_n, \cdots], y = [y_1, y_2, \cdots, y_n, \cdots] \in V$ and $\alpha \in \mathbb{C}$,

$$\begin{array}{rcl} x+y &:= & [x_1+y_1, x_2+y_2, \cdots, x_n+y_n, \cdots], \\ \alpha x &:= & [\alpha x_1, \alpha x_2, \cdots, \alpha x_n, \cdots]. \end{array}$$

or more compactly $(x + y)_n := x_n + y_n$ and $(\alpha x)_n := \alpha x_n$.

• *V* is a vector space and its dimension is infinite.

The set of vectors is linearly independent: $\{v^{(1)} = [1, 0, 0, 0, \cdots], v^{(2)} = [0, 1, 0, 0, \cdots], v^{(3)} = [0, 0, 1, 0, \cdots], \cdots\}$

Linear difference operator

• Consider the following linear operator $E: V \to V$ defined by

 $Ex = [x_2, x_3, x_4, \cdots], \text{ where } x = [x_1, x_2, x_3, x_4 \cdots].$

We call *E* the shift operator or displacement operator. Thus, $(Ex)_n = x_{n+1}$ and $(EEx)_n = x_{n+2}$. In general, $(E^kx)_n = x_{n+k}$.

• We define a linear difference operator as a linear combination of powers of *E*,

$$L=\sum_{i=0}^m c_i E^i,$$

where E^0 is the identity operator, i.e., $(E^0x)_n = (Ix)_n = x_n$. *L* is a polynomial in *E*, i.e., L = p(E), where *p* is called the characteristic polynomial of *L* and defined by $p(\lambda) = \sum_{i=0}^{m} c_i \lambda^i$.

• The set $\{x \in V : Lx = 0\}$ is a linear subspace of *V* and it is called the null space (kernel) of *L*. So we need to find a basis that spans the null space in order to solve Lx = 0.

Example: Lx = 0

• Let

$$L = \sum_{i=0}^{m} c_i E^i$$
, with $c_0 = 2, c_1 = -3, c_2 = 1, c_i = 0$ for $i \ge 3$.

We have the linear difference equation, which can be written in three forms:

$$(E^{2} - 3E^{1} + 2E^{0})x = 0,$$

$$x_{n+2} - 3x_{n+1} + 2x_{n} = 0 \quad (n \ge 1),$$

$$p(E)x = 0 \quad p(\lambda) = \lambda^{2} - 3\lambda + 2.$$

• How to solve it? Putting $x_n = \lambda^n$, we get

$$\lambda^{n+2} - 3\lambda^{n+1} + 2\lambda^n = 0$$

$$\lambda^n p(\lambda) = 0$$

$$\lambda^n (\lambda - 1)(\lambda - 2) = 0$$

Example: Lx = 0 (cont'd)

• $\lambda = 0$: trivial solution;

$$\lambda = 1: u_n := 1^n = 1;$$

$$\lambda=2: v_n:=2^n.$$

We can show that u_n and v_n form a basis for the solution space of Lx = 0, i.e., any solution is a linear combination of them

 $x_n = \alpha \cdot 1 + \beta 2^n.$

(By induction, see page 30 for the details)

Once we specify the starting values x_1 and x_2 , then x_n is determined uniquely. In general, we have following theorem:

• **Theorem:** If *p* is a polynomial and λ is a zero of *p* then one solution of the difference equation p(E)x = 0 is $[\lambda, \lambda^2, \lambda^3, \cdots]$. If all the zeros of *p* are simple and nonzero, then each solution of difference equation is a linear combination of such special solutions.

(see page 31 for the proof)

Multiple zeros

• Let $x(\lambda) = [\lambda, \lambda^2, \lambda^3, \cdots]$. If *p* is any polynomial then $p(E)x(\lambda) = p(\lambda)x(\lambda)$.

Differentiating with respect to λ , we get

 $p(E)x'(\lambda) = p'(\lambda)x(\lambda) + p(\lambda)x'(\lambda).$

If λ is a multiple zero of p, then p(λ) = p'(λ) = 0. Hence, x(λ) and x'(λ) are solutions of the difference equation p(E)x = 0. That is,

 $x(\lambda) = [\lambda, \lambda^2, \lambda^3, \cdots]$ and $x'(\lambda) = [1, 2\lambda, 3\lambda^2, \cdots]$

are solutions of p(E)x = 0.

• If $\lambda \neq 0$, then $x(\lambda)$ and $x'(\lambda)$ are linearly independent.

Multiple zeros (cont'd)

Similarly, if λ is a zero of p having multiplicity k, then the following are solutions of the difference equation p(E)x = 0.

$$\begin{aligned} x(\lambda) &= [\lambda, \lambda^2, \lambda^3, \cdots], \\ x'(\lambda) &= [1, 2\lambda, 3\lambda^2, \cdots], \\ x''(\lambda) &= [0, 2, 6\lambda, \cdots], \\ &\vdots \\ x^{(k-1)}(\lambda) &= \frac{d^{(k-1)}}{d\lambda^{k-1}} [\lambda, \lambda^2, \lambda^3, \cdots]. \end{aligned}$$

• **Theorem:** Let *p* be a polynomial satisfying $p(0) \neq 0$. Thus a basis for null space of p(E) is obtained as follows: with each zero λ of *p* having multiplicity *k*, associate the *k* solutions, $x(\lambda), x'(\lambda), \dots, x^{(k-1)}(\lambda)$, where $x(\lambda) = [\lambda, \lambda^2, \lambda^3, \dots]$.

An example

Find general solution of $4x_n + 7x_{n-1} + 2x_{n-2} - x_{n-3} = 0$.

Solution:

The characteristic polynomial is $p(\lambda) = 4\lambda^3 + 7\lambda^2 + 2\lambda - 1 = 0$. Roots are $\lambda_1 = \lambda_2 = -1$ and $\lambda_3 = 1/4$.

The basic solutions are

$$\begin{aligned} x(-1) &= [-1, 1, -1, 1, \cdots], \\ x'(-1) &= [1, -2, 3, -4, \cdots], \\ x(1/4) &= [1/4, 1/16, 1/64, \cdots]. \end{aligned}$$

The general solution is

$$x_n = \alpha (-1)^n + \beta n (-1)^{n-1} + \gamma (1/4)^n.$$

Stable difference equations

- **Definition:** An element $x = [x_1, x_2, x_3, \cdots] \in V$ is bounded if $\exists c > 0$ such that $|x_n| \le c$, $\forall n \ge 1$, *i.e.*, $\sup_{n \ge 1} |x_n| < \infty$.
- **Definition:** A difference equation of the form p(E)x = 0 is said to be stable if all of its solution is bounded.

Example: $x_{n+2} - 3x_{n+1} + 2x_n = 0, n \ge 1$.

The general solution is $x_n = \alpha \cdot 1 + \beta 2^n$. Since 2^n is not bounded, so the difference equation is unstable.

- **Theorem on stable difference equations:** For any polynomial *p* satisfying *p*(0) ≠ 0, the following are equivalent:
 - (1) The difference equation p(E)x = 0 is stable.
 - (2) All zeros of p satisfy |z| ≤ 1 and all multiple zeros satisfy |z| < 1.

Linear multistep methods

• Recall the IVP:

$$x'(t) = f(t, x(t)),$$

 $x(t_0) = x_0.$

The LMM can be written as

 $a_k x_n + a_{k-1} x_{n-1} + \dots + a_0 x_{n-k} = h\{b_k f_n + b_{k-1} f_{n-1} + \dots + b_0 f_{n-k}\},\$

where $a_k \neq 0$, $f_i = f(t_i, x_i)$, and $t_i = t_0 + ih$.

- We assume x₀, x₁, · · · , x_{k−1} have been obtained by some other method (e.g., RK4).
 - (1) if $b_k \neq 0$ then the method is implicit. e.g., A-M formula of order 5 (4-step method):

 $x_n - x_{n-1} =$ $h\{\frac{251}{720}f_n + \frac{646}{720}f_{n-1} - \frac{264}{720}f_{n-2} + \frac{106}{720}f_{n-3} - \frac{19}{720}f_{n-4}\}.$

(2) if b_k = 0 then the method is explicit. e.g., A-B formula of order 5 (5-step method):

 $\begin{aligned} x_n - x_{n-1} &= \\ h\{\frac{1901}{720}f_{n-1} - \frac{2774}{720}f_{n-2} + \frac{2616}{720}f_{n-3} - \frac{1274}{720}f_{n-4} + \frac{251}{720}f_{n-5}\}. \end{aligned}$

Convergence

• Definition: The LMM is said to be convergent if

$$\lim_{h \to 0} x(h,t) = x(t), \quad (t \text{ fixed}) \quad (\star)$$

where x(h,t) is the approximate solution using the step size h and x(t) is exact solution, $\forall t \in [t_0, t_m]$, provided that starting values obey the same equation, that is,

$$\lim_{h \to 0} x(h, t_0 + nh) = x_0 \quad (0 \le n < k) \quad (\star \star)$$

and f satisfies the hypotheses of the existence-uniqueness theorem: f is continuous in the strip $t_0 \le t \le t_m$, $-\infty < x < \infty$ and satisfies a Lipschitz condition in the second variable.

Stability and consistency

• Consider the following polynomials associated with the LMM:

$$p(z) = a_k z^k + a_{k-1} z^{k-1} + \dots + a_0,$$

$$q(z) = b_k z^k + b_{k-1} z^{k-1} + \dots + b_0.$$

It can be shown that certain desirable properties of the LMM depend on the location of the roots of the polynomials *p* and *q*.

- **Definition:** The LMM is stable if all the roots of p lie in the disk $|z| \le 1$ and if each root of modulus 1 is simple.
- **Definition:** The LMM is consistent if p(1) = 0 and p'(1) = q(1).

Main theorem of the LMM

For the LMM to be convergent, it is necessary and sufficient that it be stable and consistent.

Proof: (stability is necessary)

- Suppose that the method is not stable. Then either *p* has a root λ satisfying |λ| > 1 or *p* has a root λ satisfying |λ| = 1 and p'(λ) = 0.
- In either case we consider a simple IVP whose solution is x(t) = 0:

 $\begin{cases} x'(t) = 0, \\ x(0) = 0. \end{cases}$

In this case, the LMM becomes

$$a_k x_n + a_{k-1} x_{n-1} + \cdots + a_0 x_{n-k} = 0. \quad (\star \star \star)$$

This is a linear difference equation. One solution is $x_n = h\lambda^n$.

Proof: stability is necessary (cont'd)

• Assume that $|\lambda| > 1$ implies for $0 \le n < k$

 $|x(h,nh)| = h|\lambda^n| < h|\lambda|^k \to 0 \text{ as } h \to 0.$

Thus the condition $(\star\star)$ is verified.

• However, if t = nh then $h = tn^{-1}$ and

 $|x(h,t) = |x(h,nh)| = tn^{-1}|\lambda|^n \to \infty$ as $h \to 0$,

since $n \to \infty$ as $h \to 0$ and $|\lambda| > 1$. Thus, (*) is violated.

• Now assume $|\lambda| = 1$ and $p'(\lambda) = 0$, i.e., λ is a multiple roots, then a solution of $(\star \star \star)$ is $x_n = hn\lambda^{n-1}$. Again $(\star \star)$ is satisfied, since for $0 \le n < k$ we have

 $|x(h,nh)| = hn|\lambda|^{n-1} = hn < hk \to 0 \quad \text{as } h \to 0.$

• However, the condition (*) is violated because

 $|x(h,t)| = (tn^{-1})n|\lambda|^{n-1} = t \neq 0$

and does not go to zero as $h \rightarrow 0$. *Therefore, if the LMM is convergent then it is stable.* © Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Numerical ODEs – 52/119

Proof: consistency is necessary

• Suppose that the method is convergent. Consider a simple IVP problem whose solution is x(t) = 1.

$$\begin{cases} x'(t) = 0, \\ x(0) = 1. \end{cases}$$

- For this IVP, the LMM becomes (★ ★ ★) again. One solution is obtained by setting x₀ = x₁ = ··· = x_{k-1} = 1 and then use (★ ★ ★) to generate the remaining values, x_k, x_{k+1}, ···.
- Since the method is convergent, lim x_n = 1. Substituting this into (★★★) implies

$$a_k + a_{k-1} + \dots + a_0 = 0$$
 or $p(1) = 0$.

Proof: consistency is necessary (cont'd)

• Now consider a simple IVP problem whose solution is *x*(*t*) = *t*:

 $\begin{cases} x'(t) = 1, \\ x(0) = 0. \end{cases}$

For this IVP, the LMM becomes

 $a_k x_n + a_{k-1} x_{k-1} + \dots + a_0 x_{n-k} = h\{b_k + b_{k-1} + \dots + b_0\}. \quad (\star \star \star)$

• Since the method is convergent, it is stable by the preceding proof which implies p(1) = 0 and $p'(1) \neq 0$, i.e., no multiple roots of size 1.

Proof: consistency is necessary (cont'd)

Let us verify that x_n = (n + k)hγ with γ := q(1)/p'(1) is a solution of (* * *):

$$h\gamma\{a_{k}(n+k) + a_{k-1}(n+k-1) + \dots + a_{0}n\}$$

= $nh\gamma \underbrace{(a_{k} + a_{k-1} + \dots + a_{0})}_{p(1)=0} + h\gamma \underbrace{(ka_{k} + (k-1)a_{k-1} + \dots + a_{1})}_{p'(1)\neq 0}$
= $h\gamma p'(1) = h\frac{q(1)}{p'(1)}p'(1) = h\{b_{k} + b_{k-1} + \dots + b_{0}\}.$

- Notice that the starting values in this numerical solution are consistent with the initial value x(0) = 0 = x₀ because lim_{h→0}(n+k)hγ = 0 = x₀ for n = 0, 1, · · · , k − 1. That is, (**) holds.
- The convergence condition demands that $\lim_{n \to \infty} x_n = t$ if nh = t. Hence we have $\lim_{n \to \infty} (n+k)h\gamma = t$. We can conclude $\gamma = 1$ or p'(1) = q(1) because $\lim_{n \to \infty} kh = 0$.

Example

Consider the Milne method

$$x_n - x_{n-2} = h\left(\frac{1}{3}f_n + \frac{4}{3}f_{n-1} + \frac{1}{3}f_{n-2}\right).$$

- $p(z) = z^2 1 = 0 \Rightarrow z = \pm 1$: simple root. Hence, the method is stable.
- p'(z) = 2z and $q(z) = \frac{1}{3}z^2 + \frac{4}{3}z + \frac{1}{3}$. Then p'(1) = 2 = q(1) and p(1) = 0. Hence, the method is consistent.

Therefore we can conclude that the method is convergent.

Local truncation error

• Assume that all previous steps of the LMM are computed correctly, i.e., $x_i = x(t_i)$ for $n - k \le i \le n - 1$. Here x(t) denotes the exact solution of the IVP. We now want to to compute x_n .

Definition: The local truncation error is defined as $x(t_n) - x_n$. Note that the round-off error is not included.

• **Theorem:** If the LMM is of order *m*, and if $x \in C^{m+2}$ and $\frac{\partial f}{\partial x}$ is continuous, then under the assumption above we have

$$x(t_n) - x_n = \left(\frac{d_{m+1}}{a_k}\right) h^{m+1} x^{(m+1)}(t_{n-k}) + O(h^{m+2}).$$

The coefficient d_k are defined in Section 8.4, p. 553.

Proof: see page 561.

The theorem states that if the method has order *m*, then the local truncation error will be $O(h^{m+1})$.

Global truncation error

• The question is how do local truncation errors propagate during the solution process. Consider the IVP

$$\begin{cases} x'(t) = f(t, x(t)), \\ x(0) = s. \end{cases}$$

Assume that $f_x(t, x)$ is continuous and $f_x(t, x) \le \lambda$ in $[0, T] \times \mathbb{R}$.

- To see how the solution is affected by a change in the initial value *s*, first write the solution of the IVP as x(t;s). Assume that x(t;s) is smooth. Then define $u(t) := \frac{\partial x(t;s)}{\partial s}$.
- Differentiate the IVP with respect to *s*, we obtain the variational equation:

$$u'(t) = f_x(t,x)u,$$

 $u(0) = 1.$

Solving for *u*, we see how a change in *s* can affect the solution to the IVP.

Example

Find *u* for the following IVP:

$$\begin{cases} x'(t) = x^2, \\ x(0) = s. \end{cases}$$

Solution:

Here $f(t, x) = x^2 \Rightarrow f_x = 2x$. The variational equation is:

$$u'(t) = 2xu, u(0) = 1.$$

Since the solution to the first IVP is $x(t) = s(1 - st)^{-1}$, we then have

$$u'(t) = 2s(1-st)^{-1}u(t) \Rightarrow u(t) = (1-st)^{-2}.$$

Theorem on variational equation

If $f_x \leq \lambda$, the solution to the variational equation satisfies $|u(t)| \leq e^{\lambda t}$ for $t \geq 0$.

Proof: Recall the variational equation

$$\begin{cases} u'(t) = f_x(t, x)u, \\ u(0) = 1. \end{cases}$$

From the variational equation,

$$u'/u=f_x=\lambda-\alpha(t),$$

where $\alpha(t) \ge 0$. Integrating

$$\ln(|u|) = \lambda t - \int_0^t \alpha(\tau) d\tau = \lambda t - A(t).$$

Since $t \ge 0 \Rightarrow A \ge 0 \Rightarrow \ln(|u|) \le \lambda t \Rightarrow |u| \le e^{\lambda t}$. \Box

Theorem on solution curves

Assume that $f_x \leq \lambda$. If the IVP

$$\begin{cases} x'(t) = f(t,x), \\ x(0) = s \end{cases}$$

is solved with initial values s and s + δ *, then the solution curves at t differ by at most* $|\delta|e^{\lambda t}$.

Proof: By the MVT, the definition of *u*, and the above Theorem, we have

$$\begin{aligned} |x(t;s) - x(t;s+\delta)| &= \left| \frac{\partial}{\partial s} x(t;s+\theta\delta) \right| |\delta| \\ &= |u(t)| |\delta| \le |\delta| e^{\lambda t}. \end{aligned}$$

Theorem on global truncation error bound

If the local truncation errors at t_1, t_2, \dots, t_n *do not exceed* δ *in magnitude, then the global truncation error at* t_n *does not exceed*

$$\frac{\delta(e^{n\lambda h}-1)}{(e^{\lambda h}-1)}$$

Proof: Let truncation errors of $\delta_1, \delta_2, \cdots$ be associated with numerical solution at t_1, t_2, \cdots . In computing x_2 there was an error of δ_1 in the initial condition, by above Theorem, the effect at t_2 is at most $|\delta_1|e^{\lambda h}$. Thus, the global truncation error at t_2 is at most

 $|\delta_1|e^{\lambda h}+|\delta_2|.$

The effect of this error at t_3 is no greater than

 $(|\delta_1|e^{\lambda h}+|\delta_2|)e^{\lambda h}.$

The global truncation error at t_3 is at most

 $(|\delta_1|e^{\lambda h}+|\delta_2|)e^{\lambda h}+|\delta_3|.$

Theorem on global truncation error bound (cont'd)

Continuing in this way, we find that the global truncation error at t_n is no greater than

$$\sum_{k=1}^{n} |\delta_k| e^{(n-k)\lambda h} \leq \delta \sum_{k=1}^{n} e^{(n-k)\lambda h}$$

$$= \delta \sum_{k=0}^{n-1} e^{(n-k-1)\lambda h}$$

$$= \delta e^{(n-1)\lambda h} \sum_{k=0}^{n-1} e^{-k\lambda h}$$

$$= \delta e^{(n-1)\lambda h} \left(\frac{1-e^{-n\lambda h}}{1-e^{-\lambda h}}\right)$$

$$= \delta \frac{e^{n\lambda h}-1}{e^{\lambda h}-1}.$$

Theorem on global truncation error approximation

If the local truncation errors in the numerical solution are $O(h^{m+1})$, then the global truncation error is $O(h^m)$.

Proof: By the above Theorem, set $\delta = O(h^{m+1})$. Then

$$\begin{aligned} \text{GTE} &\leq O(h^{m+1}) \Big(\frac{e^{nz} - 1}{e^z - 1} \Big) \quad (z := \lambda h) \\ &\approx O(h^{m+1}) \frac{nz}{z} \quad (e^z = 1 + z + \frac{1}{2!} z^2 + \cdots) \\ &= O(h^{m+1}) \frac{t}{h} \quad (nh = t) \\ &= O(h^m) t. \end{aligned}$$

Stiff equations: introduction

• Euler's method for the IVP

$$\begin{cases} x'(t) &= f(t,x), \\ x(t_0) &= x_0, \end{cases}$$

is given by

$$x_{n+1} = x_n + hf(t_n, x_n) \quad n \ge 0.$$

• Consider the results of Euler's method on the simple test problem: $x'(t) = \lambda x$ and x(0) = 1. The exact solution is $x(t) = e^{\lambda t}$.

Solution: Euler's method produces the numerical solution:

$$x_0 = 1,$$

$$x_{n+1} = x_n + h\lambda x_n$$

$$= (1 + h\lambda)x_n$$

$$= \cdots = (1 + h\lambda)^{n+1}x_0$$

$$\implies x_n = (1 + h\lambda)^n.$$

Stiff equations (cont'd)

- For λ < 0, the exact solution is exponentially decaying. The numerical solution will tend to 0 if and only if
 |1 + hλ| < 1 ⇐→ −1 < 1 + hλ < 1 ⇐→ h < −2/λ.

- For example, if $\lambda = -20$, we have to take h < 0.1. Thus, the numerical solution must proceed with small steps in a region where the nature of the exact solution indicates that large steps may be taken.

Implicit Euler's method

• Implicit Euler's method for the IVP

 $\begin{cases} x'(t) = f(t,x), \\ x(t_0) = x_0, \end{cases}$

is given by

$$x_{n+1} = x_n + hf(t_{n+1}, x_{n+1}) \quad n \ge 0.$$

• Consider the results of implicit Euler's method on the problem: $x'(t) = \lambda x$ and x(0) = 1. The exact solution is $x(t) = e^{\lambda t}$.

Solution: Implicit Euler's method produces

$$x_0 = 1,$$

 $x_{n+1} = x_n + h\lambda x_{n+1}.$
 $x_{n+1} = (1 - h\lambda)^{-1} x_n.$
 $x_n = (1 - h\lambda)^{-n}.$

For $\lambda < 0$, we have $1 - h\lambda > 1$ and then $|1 - h\lambda|^{-1} < 1 \forall h > 0$.

 Explicit Euler's method is cheap but conditionally stable. Implicit Euler's method is expensive but unconditionally stable.
 © Suh-Yuh Yang (陽離燈), Math. Dept, NCU, Taiwan Numerical ODEs - 67/119

General linear multistep methods

• The LMM has the form:

 $a_k x_n + a_{k-1} x_{n-1} + \dots + a_0 x_{n-k} = h\{b_k f_n + b_{k-1} f_{n-1} + \dots + b_0 f_{n-k}\}.$

• When this is applied to the test problem: $x'(t) = \lambda x$ and x(0) = 1, we obtain

 $a_k x_n + a_{k-1} x_{n-1} + \dots + a_0 x_{n-k} = h\lambda \{b_k x_n + b_{k-1} x_{n-1} + \dots + b_0 x_{n-k}\}.$

• Thus, our numerical solution will solve the homogeneous linear difference equation:

 $(a_k - h\lambda b_k)x_n + (a_{k-1} - h\lambda b_{k-1})x_{n-1} + \dots + (a_0 - h\lambda b_0)x_{n-k} = 0.$

General linear multistep methods (cont'd)

• The solutions of the homogeneous linear difference equation are determined by the roots of the characteristic polynomial:

 $\varphi(z) := (a_k - h\lambda b_k)z^k + (a_{k-1} - h\lambda b_{k-1})z^{k-1} + \dots + (a_0 - h\lambda b_0).$

e.g., If *r* is a zero of $\varphi(z)$, then $x_n = r^n$ is a solution of the linear difference equation.

Note that

$$\varphi(z) = p(z) - h\lambda q(z),$$

where

$$p(z) = a_k z^k + a_{k-1} z^{k-1} + \dots + a_1 z + a_0,$$

$$q(z) = b_k z^k + b_{k-1} z^{k-1} + \dots + b_1 z + b_0.$$

A-stability

• If $\lambda < 0$, then the solution $x(t) = e^{\lambda t}$ of the test problem is exponentially decaying. It is necessary that all roots of the polynomial $\varphi = p(z) - h\lambda q(z)$ lie in the disk |z| < 1. If $\lambda = \mu + iv$ is complex,

$$x(t) = e^{\lambda t} = e^{\mu t} e^{i\nu t} = e^{\mu t} (\cos\nu t + i\sin\nu t).$$

In this case, exponential decay means $\mu < 0$.

- Definition: We say the LMM is A-stable if the roots of φ to be interior to the unit disk whenever h > 0 and Re(λ) < 0.
- **Definition:** The region of absolute stability of the LMM is the set of complex numbers ω such that the roots of $p \omega q$ lie in the interior of the unit disk.
- An LMM is A-stable if and only if its region of absolute stability contains the left half-plane.

Examples

• By definition, the implicit Euler method is A-stable. Another example is the implicit trapezoid method defined by

$$x_n - x_{n-1} = \frac{1}{2}h\{f_n + f_{n-1}\},\$$

then $\phi(z) = z - 1 - \lambda h \{ \frac{1}{2}z + \frac{1}{2} \}.$

Root:
$$z(1 - \frac{\lambda h}{2}) = 1 + \frac{\lambda h}{2} \Rightarrow z = \frac{2 + \lambda h}{2 - \lambda h}.$$

When h > 0 and $Re(\lambda) < 0$, we have $|z| < 1 \Rightarrow$ A-stable.

• What about the explicit Euler method? Here

$$x_n - x_{n-1} = hf_{n-1}.$$

$$p(z) = z - 1$$
 and $q(z) = 1$.
 $\phi(z) = z - 1 - \lambda h = 0 \Rightarrow z = 1 + \lambda h \Rightarrow |1 + \omega| < 1$, a disk of radius 1 centered at -1 . It is not A-stable.

Remarks

- WARNING: If you are not using an A-stable method, you have to make sure that λh lies in the region of absolute stability for the method.
- An important theorem, due to Dahlquist [1963], states that an A-stable LMM must be an implicit method, and its order cannot exceed 2. This result places a severe restriction on A-stable methods.
- The implicit trapezoid rule is often used on stiff equations because it has the least truncation error among all A-stable linear multistep methods.
Homework

Consider the LMM

 $x_{n+1} = x_{n-1} + 2hf_n$

to approximate the IVP: x'(t) = f(t, x) and $x(t_0) = x_0$.

Is the method

- stable?
- consistent?
- onvergent?
- A-stable?

A system of first-order differential equations

The standard form for a system of first-order ODEs is given by

$$\begin{cases} x_1'(t) = f_1(t, x_1, x_2, \cdots, x_n), \\ x_2'(t) = f_2(t, x_1, x_2, \cdots, x_n), \\ \vdots \\ x_n'(t) = f_n(t, x_1, x_2, \cdots, x_n). \end{cases} (\star)$$

There are *n* unknown functions, x_1, x_2, \dots, x_n to be determined. Here $x'_i(t) := \frac{dx_i(t)}{dt}$.

Example

Consider the system of first-order differential equations:

$$\begin{cases} x'(t) = x + 4y - e^t, \\ y'(t) = x + y + 2e^t. \end{cases}$$

The general solution:

$$\begin{cases} x(t) = 2ae^{3t} - 2be^{-t} - 2e^{t}, \\ y(t) = ae^{3t} + be^{-t} + 1/4e^{t}, \end{cases}$$

where $a, b \in \mathbb{R}$. If the system of differential equations with the initial conditions, e.g., x(0) = 4 and y(0) = 5/4, then the solution is unique, and

$$\begin{cases} x(t) = 4e^{3t} + 2e^{-t} - 2e^{t}, \\ y(t) = 2e^{3t} - e^{-t} + 1/4e^{t} \end{cases}$$

Vector notation and higher-order ODEs

• Vector notation: let $X := [x_1, x_2, \cdots, x_n]^\top$ and $F := [f_1, f_2, \cdots, f_n]^\top$, where $X \in \mathbb{R}^n$ and $F : \mathbb{R}^{n+1} \to \mathbb{R}^n$.

Then an IVP associated with the system of ODEs (\star) is given by

$$\begin{pmatrix} X'(t) &= F(t, X(t)), \\ X(t_0) &= X_0 \in \mathbb{R}^n. \end{cases}$$

• A higher-order ODE can be converted to a first-order system.

Consider $y^{(n)}(t) = f(t, y, y', \dots, y^{(n-1)})$ and introduce $x_1 = y, x_2 = y', \dots, x_n = y^{(n-1)}$. Then we have

$$\begin{cases} x_1'(t) = x_2, \\ x_2'(t) = x_3, \\ \vdots \\ x_{n-1}'(t) = x_n, \\ x_n'(t) = f(t, x_1, x_2, \cdots, x_n). \end{cases}$$

Example

Convert the higher-order IVP

 $(\sin t)y''' + \cos(ty) + \sin(y'' + t^2) + (y')^3 = \log t$

with y(2) = 7, y'(2) = 3, y''(2) = -4 to a system of 1st-order equations with initial values.

Solution: Let $x_1(t) = y(t), x_2(t) = y'(t), x_3(t) = y''(t)$. Then,

$$\begin{cases} x_1'(t) = x_2, \\ x_2'(t) = x_3, \\ x_3'(t) = \{\log t - x_2^3 - \sin(t^2 + x_3) - \cos(tx_1)\} / \sin t, \end{cases}$$

with $x_1(2) = 7$, $x_2(2) = 3$, $x_3(2) = -4$.

In-class exercise

Convert the system

$$\begin{cases} (x'')^2 + te^y + y' &= x' - x, \\ y'y'' - \cos(xy) + \sin(tx'y) &= x \end{cases}$$

to a system of 1st-order equations.

Taylor-series method for systems

For each variable, use the Taylor-series method

$$x_i(t+h) \approx x_i(t) + hx'_i(t) + \frac{h^2}{2!}x''_i(t) + \frac{h^3}{3!}x'''_i(t) + \dots + \frac{h^n}{n!}x^{(n)}_i(t),$$

or in the vector form

$$X(t+h) \approx X(t) + hX'(t) + \frac{h^2}{2!}X''(t) + \frac{h^3}{3!}X'''(t) + \dots + \frac{h^n}{n!}X^{(n)}(t).$$

Homework

Write the Taylor-series codes of order 3 for the following IVP using h = -0.1 and plot the solution $-2 \le t \le 1$:

$$\begin{cases} x'(t) = x + y^2 - t^3, \\ y'(t) = y + x^3 + \cos t \end{cases}$$

with x(1) = 3 and y(1) = 1.

Autonomous systems

- From the theoretical standpoint, there is no loss of generality in assuming that the equations in system (*) do not contain *t* explicitly. We can take $x_0(t) = t$, $x'_0(t) = 1$. Then $x'_i = f_i(x_0, x_1, \dots, x_n)$, $i = 0, 1, \dots, n$, or X'(t) = F(X), where $X(t) = (x_0(t), x_1(t), \dots, x_n(t))^\top$.
- **Example:** convert the following IVP to an autonomous system

 $(\sin t)y''' + \cos(ty) + \sin(y'' + t^2) + (y')^3 = \log t,$ with y(2) = 7, y'(2) = 3, y''(2) = -4.Solution: Let $x_0(t) = t$. Then $x'_0(t) = 1$. Let $x'_1(t) = x_2$ and $x'_2(t) = x_3$. Then we have $\begin{cases} x'_0(t) = 1, \\ x'_1(t) = x_2 \end{cases}$

 $\begin{cases} x'_0(t) = 1, \\ x'_1(t) = x_2, \\ x'_2(t) = x_3, \\ x'_3(t) = \{\log x_0 - x_2^3 - \sin(x_0^2 + x_3) - \cos(x_0 x_1)\} / \sin x_0, \end{cases}$

with the initial condition $X(2) = (2, 7, 3, -4)^{\top}$.

RK4 method for X'(t) = F(X)

• For an autonomous system of equations, X'(t) = F(X), we have 4th-order Runge-Kutta method:

$$X(t+h) \approx X(t) + \frac{1}{6}(F_1 + 2F_2 + 2F_3 + F_4),$$

$$F_1 = hF(X), \quad F_2 = hF(X + 1/2F_1),$$

$$F_3 = hF(X + 1/2F_2), \quad F_4 = hF(X + F_3).$$

In other words, the 4th order RK is defined as

$$\begin{aligned} X_{k+1} &= X_k + \frac{1}{6}(F_1 + 2F_2 + 2F_3 + F_4), \quad k \ge 0, \\ F_1 &:= hF(X_k), \quad F_2 := hF(X_k + 1/2F_1), \\ F_3 &:= hF(X_k + 1/2F_2), \quad F_4 := hF(X_k + F_3), \\ X_k &:= [x_{1k}, x_{2k}, \cdots, x_{nk}]^\top, x_{ik} \approx x_i(t_0 + kh) \text{ for } 1 \le i \le n. \end{aligned}$$

• Other methods, they are all similar to the single equation case.

Boundary-value problems

• For an IVP, the auxiliary conditions are prescribed at the same point, *t* = *a*, e.g.,

$$\begin{cases} x''(t) &= f(t, x, x'), \\ x(a) &= \alpha, \\ x'(a) &= \beta. \end{cases}$$

• For a boundary-value problem (BVP), the auxiliary conditions are prescribed at the different points, *t* = *a* and *t* = *b*, e.g.,

$$\begin{cases} x''(t) &= f(t, x, x'), \\ x(a) &= \alpha, \\ x(b) &= \beta. \end{cases}$$

This particular example is a so-called two-point BVP.

Existence of solutions

• Assume that *f* is nice function. It is not enough for existence of a solution. Consider the BVP:

$$\begin{cases} x''(t) = -x \\ x(0) = 3, \\ x(\pi) = 7. \end{cases}$$

• The general solution is (recall from ODE course)

 $x(t) = A\sin t + B\cos t.$

• Using the boundary conditions, we have

 $x(0) = 3 \Rightarrow B = 3,$ $x(\pi) = 7 \Rightarrow B = -7.$

No solution!

Existence of solutions (cont'd)

• Note that we could also have infinite number of solutions. Consider the BVP:

$$\begin{cases} x''(t) = -x \\ x(0) = 0, \\ x(\pi) = 0. \end{cases}$$

• The general solution is given by

 $x(t) = A\sin t + B\cos t.$

• Using the boundary conditions,

$$x(0) = 0 \Rightarrow B = 0,$$

 $x(\pi) = 0 \Rightarrow B = 0.$

We have

$$x(t) = A \sin t, \quad \forall A \in \mathbb{R}.$$

Existence and uniqueness theorem (Keller, 1968)

The BVP

$$x''(t) = f(t,x)$$

 $x(0) = 0,$
 $x(1) = 0$

has a unique solution if $\frac{\partial f}{\partial x}$ is continuous, nonnegative, and bounded in the strip $0 \le t \le 1$ and $-\infty < x < \infty$.

Note: Existence and uniqueness theorems for solutions of the two-point BVP are more complicated than the IVP.

Example

Use the previous theorem to show the following BVP has a unique solution

$$\begin{cases} x''(t) = (5x + \sin 3x)e^{t}, \\ x(0) = x(1) = 0. \end{cases}$$

Solution: We have

$$2 \le \frac{\partial f}{\partial x} = (5 + 3\cos 3x)e^t \le 8e$$

for $0 \le t \le 1$, $-\infty < x < \infty$, and it is a continuous function, nonnegative since $3 \cos 3x \ge -3$.

- \implies all assumptions of above theorem are satisfied.
- \implies the BVP has a unique solution.

Theorem for more general BVPs

In order to use the above theorem for more general BVPs, we can use change of variable, e.g., if we have to solve

$$\begin{cases} x''(t) = f(t,x), \\ x(a) = \alpha, \\ x(b) = \beta, \end{cases}$$

then consider $t := a + (b - a)s := a + \lambda s$, i.e., $s := \frac{t-a}{b-a}$. Define

$$y(s) := x(a + \lambda s),$$

$$y'(s) = \lambda x'(a + \lambda s),$$

$$y''(s) = \lambda^2 x''(a + \lambda s) = \lambda^2 f(a + \lambda s, y(s)).$$

BCs: $y(0) = x(a) = \alpha$ and $y(1) = x(b) = \beta$.

First theorem on two-point BVPs

Consider these two-point BVPs:

$$\begin{cases} x''(t) = f(t,x), \\ x(a) = \alpha, & (\star) \\ x(b) = \beta; \end{cases}$$

$$\begin{cases} y''(s) = \lambda^2 f(a + \lambda s, y(s)) := g(s, y(s)), \\ y(0) = \alpha, & (\star \star) \\ y(1) = \beta. \end{cases}$$
(**)

- If x(t) is a solution of (★) then y(s) = x(a + (b a)s) is a solution of (★★).
- If y(s) is a solution of (★★) then x(t) = y((t − a)/(b − a)) is a solution of (★).

Second theorem on two-point BVPs

Consider these two-point BVPs:

$$\begin{cases} y''(t) = g(t,y), \\ y(0) = \alpha, & (\star\star) \\ y(1) = \beta; \end{cases}$$

$$\begin{cases} z''(t) = h(t,z), \\ z(0) = 0, & (\star\star\star) \\ z(1) = 0, \end{cases}$$

where $h(t,z) = g(t,z+\alpha+(\beta-\alpha)t)$.

- If z solves $(\star \star \star)$ then $y(t) = z(t) + \alpha + (\beta \alpha)t$ solves $(\star \star)$.
- If y solves $(\star\star)$ then $z(t) = y(t) \{\alpha + (\beta \alpha)t\}$ solves $(\star\star\star)$.

Example

Convert the following two-point BVP to an equivalent one with 0 boundary values on [0, 1]:

$$\begin{cases} x''(t) = x^2 + 3 - t^2 - xt, \\ x(3) = 7, \quad x(5) = 9. \end{cases}$$

Solution: By the first theorem, we have

$$\begin{cases} y''(t) = g(t, y), \\ y(0) = 7, \quad y(1) = 9, \end{cases}$$

 $g(t, y) = (5-3)^2 f(3+2t, y) = 4\{y^2 + 3 - (3+2t)^2 - y(3+2t)\}$. By the second theorem, we get

$$\left(\begin{array}{c} z''(t) = h(t,z), \\ z(0) = 0, \quad z(1) = 0, \end{array} \right)$$

$$\begin{aligned} h(t,z) &= g(t,z+7+2t) \\ &= 4\{(z+7+2t)^2+3-(3+2t)^2+(z+7+2t)(3+2t)\}. \end{aligned}$$

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Numerical ODEs - 91/119

Finite-difference methods: linear case

• Consider the linear BVP

$$\begin{cases} x''(t) = u(t) + v(t)x + w(t)x', \\ x(a) = \alpha, \\ x(b) = \beta. \end{cases}$$

Recall that

$$\begin{aligned} x'(t) &= \frac{1}{2h} \Big(x(t+h) - x(t-h) \Big) - \frac{h^2}{6} x'''(\xi), \\ x''(t) &= \frac{1}{h^2} \Big(x(t+h) - 2x(t) + x(t-h) \Big) - \frac{h^2}{12} x^{(4)}(\xi). \end{aligned}$$

• Let $t_i = a + ih$, where $0 \le i \le n + 1$, and h = (b - a)/(n + 1).

• Set
$$u_i = u(t_i)$$
, $v_i = v(t_i)$, $w_i = w(t_i)$ and use $y_i \approx x(t_i)$.

Finite-difference methods: linear case (cont'd)

• Then the differential equation is approximated by

$$\left(\frac{y_{i+1}-2y_i+y_{i-1}}{h^2}\right) = u_i + v_i y_i + w_i \left(\frac{y_{i+1}-y_{i-1}}{2h}\right).$$

• Multiply by $-h^2$ and rearrange to obtain

$$(-1 - \frac{1}{2}hw_i)y_{i-1} + (2 + h^2v_i)y_i + (-1 + \frac{1}{2}hw_i)y_{i+1} = -h^2u_i,$$

$$i = 1, 2, \cdots n,$$

$$y_0 = \alpha,$$

$$y_{n+1} = \beta.$$

Let

$$\begin{aligned} a_i &= -1 - \frac{1}{2}hw_{i+1}, \quad 0 \le i \le n-1, \\ d_i &= 2 + h^2 v_i, \quad 1 \le i \le n, \\ c_i &= -1 + \frac{1}{2}hw_i, \quad 1 \le i \le n, \\ b_i &= -h^2 u_i, \quad 1 \le i \le n. \end{aligned}$$

A system of linear equations

We obtain

$$\begin{bmatrix} d_1 & c_1 & & & \\ a_1 & d_2 & c_2 & & & \\ & a_2 & d_3 & c_3 & & \\ & & \ddots & \ddots & \ddots & \\ & & & a_{n-2} & d_{n-1} & c_{n-1} \\ & & & & & a_{n-1} & d_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \\ y_n \end{bmatrix} = \begin{bmatrix} b_1 - a_0 \alpha \\ b_2 \\ b_3 \\ \vdots \\ b_{n-1} \\ b_n - c_n \beta \end{bmatrix}$$

- This is a tridiagonal system, and can be solved by a special Gaussian algorithm. Also the matrix is strictly diagonally dominant if $v_i > 0$ and h is small enough so that $|\frac{1}{2}hw_i| < 1$, which implies that Gaussian elimination algorithm does not require pivoting.
- Note that we have the following equality:

$$|d_i| - |c_i| - |a_{i-1}| = 2 + h^2 v_i - (1 - \frac{1}{2}hw_i) - (1 + \frac{1}{2}hw_i) = h^2 v_i > 0.$$

Existence-uniqueness theorem (Keller, 1968)

The BVP

$$\begin{cases} x''(t) = f(t, x, x'), \\ c_{11}x(a) + c_{12}x'(a) = c_{13}, \\ c_{21}x(b) + c_{22}x'(b) = c_{23} \end{cases}$$

has a unique solution on the interval [a, b] provided that

- *f* and its first partial derivatives *f*_t, *f*_x and *f*_{x'} are continuous on *D* = [*a*, *b*] × ℝ × ℝ;
- $f_x > 0$, $|f_x| \le M$ and $|f_{x'}| \le M$ on D;
- $|c_{11}| + |c_{12}| > 0$, $|c_{21}| + |c_{22}| > 0$, $|c_{11}| + |c_{21}| > 0$ and $c_{11}c_{12} \le 0 \le c_{21}c_{22}$.

Convergence analysis

• Let us go back to the linear BVP:

$$\begin{cases} x''(t) = u(t) + v(t)x + w(t)x', \\ x(a) = \alpha, \\ x(b) = \beta. \end{cases}$$

Assume that $u, v, w \in C^1[a, b]$ and v > 0. Then the BVP has a unique solution.

We wish to estimate |*x*(*t_i*) − *y_i*| as *h* → 0, where *x*(*t_i*) is the exact solution at *t_i* and *y_i* is the corresponding discrete solution, which depends on *h*.

Convergence analysis (cont'd)

• The exact solution *x*(*t*) satisfies the following system:

$$\left(\frac{x(t_{i-1}) - 2x(t_i) + x(t_{i+1})}{h^2}\right) - \frac{1}{12}h^2 x^{(4)}(\tau_i)$$

= $u_i + v_i x(t_i) + w_i \left(\frac{x(t_{i+1}) - x(t_{i-1})}{2h}\right) - \frac{1}{6}h^2 x^{(3)}(\eta_i).$

• The discrete solution *y_i* satisfies the following system:

$$\left(\frac{y_{i-1} - 2y_i + y_{i+1}}{h^2}\right) = u_i + v_i y_i + w_i \left(\frac{y_{i+1} - y_{i-1}}{2h}\right).$$

• Subtracting above system from the first and writing $e_i = x(t_i) - y_i$, we obtain

$$\left(\frac{e_{i-1} - 2e_i + e_{i+1}}{h^2}\right) = v_i e_i + w_i \left(\frac{e_{i+1} - e_{i-1}}{2h}\right) + h^2 g_{i,j}$$

where $g_i := \frac{1}{12} x^{(4)}(\tau_i) - \frac{1}{6} x^{(3)}(\eta_i)$.

Convergence analysis (cont'd)

• After multiplying by $-h^2$ and collecting terms, we have

$$(-1 - \frac{1}{2}hw_i)e_{i-1} + (2 + h^2v_i)e_i + (-1 + \frac{1}{2}hw_i)e_{i+1} = -h^4g_i.$$

• This is identical to the matrix problem we have for the discrete problem. Using the coefficients introduced earlier, we write this in the form

$$a_{i-1}e_{i-1} + d_ie_i + c_ie_{i+1} = -h^4g_i.$$
 (*)

• Let $\lambda = ||e||_{\infty}$ and take an index *i* such that $|e_i| = ||e||_{\infty} = \lambda$, where $e = (e_1, e_2, \cdots, e_n)^\top$. From (*), we get

 $|d_i||e_i| \le h^4 |g_i| + |c_i||e_{i+1}| + |a_{i-1}||e_{i-1}|.$

Note that $d_i = 2 + h^2 v_i > 0$.

Convergence analysis (cont'd)

• From the previous slide, we have

 $|d_i||e_i| \le h^4 |g_i| + |c_i||e_{i+1}| + |a_{i-1}||e_{i-1}|.$

Hence, we obtain

$$\begin{aligned} |d_i|\lambda &\leq h^4 \|g\|_{\infty} + |c_i|\lambda + |a_{i-1}|\lambda,\\ \lambda \big(|d_i| - |c_i| - |a_{i-1}|\big) &\leq h^4 \|g\|_{\infty},\\ h^2 v_i \lambda &\leq h^4 \|g\|_{\infty},\\ \|e\|_{\infty} &\leq h^2 \big(\|g\|_{\infty} / \inf v(t)\big). \end{aligned}$$

• Note that $||g||_{\infty} \le ||x^{(4)}||_{\infty}/12 + ||x^{(3)}||_{\infty}/6$. The expression $||g||_{\infty}/\inf v(t)$ is a bound independent of *h*. Thus, we see that $||e||_{\infty}$ is $O(h^2)$.

Collocation method

Suppose that we have a linear differential operator *L* and we wish to solve the equation:

 $Lu(t) = f(t), \quad a < t < b,$

where f is given and u is sought.

• Let {*v*₁, *v*₂, · · · , *v*_n} be a set of functions that are linearly independent. Suppose that

 $u(t) \approx c_1 v_1(t) + c_2 v_2(t) + \dots + c_n v_n(t), \quad c_i \in \mathbb{R}.$

- Then solve $L(\sum_{j=1} c_j v_j(t)) = f(t)$. How to determine c_j ?
- Let t_i , $i = 1, 2, \dots, n$, be *n* prescribed points (collocation points) in the domain of *u* and *f*. Then we require the following equations to determine c_j , $j = 1, 2, \dots, n$:

$$\sum_{j=1}^{n} c_j(Lv_j)(t_i) = f(t_i), \quad i = 1, 2, \cdots, n.$$

This is a system of *n* linear equations in *n* unknowns *c_j*. The functions *v_j* and the points *t_i* should be chosen so that the matrix with entries (*Lv_i*)(*t_i*) is nonsingular.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Numerical ODEs - 100/119

Collocation method for Sturm-Liouville BVPs

• Consider a Sturm-Liouville two-point BVP:

$$\begin{cases} u''(t) + p(t)u'(t) + q(t)u(t) &= f(t), \quad 0 < t < 1, \\ u(0) &= 0, \\ u(1) &= 0, \end{cases}$$
(*)

where p, q, f are given continuous functions on [0, 1]

• Let Lu := u'' + pu' + qu. Define the vector space

 $V = \{ u \in C^2(0,1) \cap C[0,1] : u(0) = u(1) = 0 \}.$

If *u* is an exact solution of (\star) , then $u \in V$.

• One set of functions is given by

 $v_{jk}(t) = t^j (1-t)^k \in C^2[0,1], \quad 1 \le j \le m, 1 \le k \le n.$

Variational formulation of a 1-dim model problem

Consider the following two-point boundary value problem (BVP):

$$\begin{cases} -u''(x) = f(x), & 0 < x < 1, \\ u(0) = u(1) = 0, \end{cases}$$
(D)

where f is a given function in C[0, 1].

Remark: *Problem* (*D*) *has a unique classical solution* $u \in C^2(0, 1) \cap C[0, 1]$.

Some notation and definitions

- Define $(v, w) := \int_0^1 v(x)w(x)dx$ for real-valued piecewise continuous and bounded functions v and w on [0, 1].
- Define V := {v | v ∈ C[0,1], v(0) = v(1) = 0, v' is piecewise continuous and bounded on [0,1]}.
- $F: V \to \mathbb{R}$, $F(v) := \frac{1}{2}(v', v') - (f, v) = \frac{1}{2} \int_0^1 (v'(x))^2 dx - \int_0^1 f(x)v(x) dx.$

(represents the total potential energy)

• Define the following minimization and variational problems:

Find $u \in V$ such that $F(u) \leq F(v)$, $\forall v \in V$. (M)

Find
$$u \in V$$
 such that $(u', v') = (f, v), \quad \forall v \in V.$ (V)

(D) \Rightarrow (V)

The solution of problem (D) is also a solution of problem (V):

$$\therefore -u''(x) = f(x), \quad 0 < x < 1.$$

$$\therefore \int_0^1 -u''(x)v(x)dx = \int_0^1 f(x)v(x)dx, \quad \forall v \in V.$$

$$\therefore (-u'', v) = (f, v), \quad \forall v \in V.$$

$$\therefore (u', v') - u'(x)v(x)\Big|_0^1 = (f, v), \quad \forall v \in V.$$

$$\therefore (u', v') = (f, v), \quad \forall v \in V.$$

$$(integration by parts)$$

$$\therefore (u', v') = (f, v), \quad \forall v \in V.$$

$(\mathbf{V}) \Leftrightarrow (\mathbf{M})$

.

Problems (V) and (M) have the same solutions:

• (V) \Rightarrow (M): Let *u* be a solution of problem (V). Let $v \in V$ and $w = v - u \in V$. Then v = u + w and

$$F(v) = F(u+w) = \frac{1}{2}((u+w)', (u+w)') - (f, u+w)$$

= $\frac{1}{2}(u', u') + (u', w') + \frac{1}{2}(w', w') - (f, u) - (f, w)$
= $\frac{1}{2}(u', u') + \frac{1}{2}(w', w') - (f, u)$
 $\geq \frac{1}{2}(u', u') - (f, u) = F(u).$

• (M) \Rightarrow (V): Let *u* be a solution of problem (M). Then for any $v \in V$, $\varepsilon \in \mathbb{R}$, we have $F(u) \leq F(u + \varepsilon v)$, since $u + \varepsilon v \in V$. Define

$$g(\varepsilon) := F(u + \varepsilon v) = \frac{1}{2}((u + \varepsilon v)', (u + \varepsilon v)') - (f, u + \varepsilon v)$$
$$= \frac{1}{2}(u', u') + \frac{1}{2}\varepsilon^{2}(v', v') + \varepsilon(u', v') - (f, u) - \varepsilon(f, v).$$
$$\therefore g'(\varepsilon) = (u', v') + \varepsilon(v', v') - (f, v) \text{ and } g'(0) = 0.$$
$$\therefore 0 = g'(0) = (u', v') - (f, v).$$

Both problems (V) & (M) have at most one solution

It suffices to prove that problem (V) has at most one solution. Suppose that u_1 and u_2 are solutions of problem (V). Then

 $(u_1', v') = (f, v) \quad \forall v \in V,$ $(u'_2, v') = (f, v) \quad \forall v \in V.$ $\therefore (u_1' - u_2', v') = 0 \quad \forall v \in V.$ Taking $v = u_1 - u_2$, we have $(u'_1 - u'_2, u'_1 - u'_2) = 0$. $\therefore \int_0^1 (u_1'(x) - u_2'(x))^2 dx = 0.$ $\therefore u_1'(x) - u_2'(x) = 0, x \in [0, 1]$ a.e. \therefore $u_1 - u_2$ is a step function on [0, 1]. $\therefore u_1 - u_2$ is continuous on [0, 1]. $\therefore u_1 - u_2$ is a constant function on [0, 1]. $\therefore u_1(0) = u_1(1) = 0$ and $u_2(0) = u_2(1) = 0$. $\therefore u_1 - u_2 \equiv 0$ on [0, 1]. That is, $u_1(x) = u_2(x), \forall x \in [0, 1].$ © Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Numerical ODEs - 106/119

(V) + smoothness \Rightarrow (D)

Let *u* be a solution of problem (V). Then $(u', v') = (f, v), \forall v \in V$. $\therefore \int_0^1 u'(x)v'(x)dx - \int_0^1 f(x)v(x)dx = 0, \quad \forall v \in V$. Suppose that u'' exists and continuous on [0, 1], i.e., $u \in C^2[0, 1]$. Then $-\int_0^1 u''(x)v(x)dx - \int_0^1 f(x)v(x)dx = 0, \quad \forall v \in V$. $\therefore -\int_0^1 (u''(x) + f(x))v(x)dx = 0, \quad \forall v \in V$.

By the sign-preserving property for continuous functions, we can conclude that

$$u''(x) + f(x) = 0, \forall x \in [0, 1].$$

 \therefore *u* is a solution of problem (D).

FEM for the model problem with piecewise linear functions

Construct a finite-dimensional space V_h (finite element space): Let $0 = x_0 < x_2 < \cdots < x_M < x_{M+1} = 1$ be a partition of [0, 1]. [Insert partition figure here!]

Define

Define

 $V_h := \{v_h \in V | v_h \text{ is linear on each subinterval } I_j, v_h(0) = v_h(1) = 0\}.$ Notice that $V_h \subseteq V$.
Construct a basis of *V*_{*h*}

Here is a typical $v_h \in V_h$: [Insert v_h figure here!]

For
$$j = 1, 2, \dots, M$$
, we define $\varphi_j \in V_h$ such that
 $\varphi_j(x_i) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$
[Insert φ_j figure here!]

Then we have

- $\{\varphi_j\}_{j=1}^M$ is a basis of the finite-dimensional vector space V_h .
- For each $v_h \in V_h$, v_h can be written as a unique linear combination of φ_j 's: $v_h(x) = \sum_{j=1}^M \eta_j \varphi_j(x)$, where $\eta_j = v_h(x_j)$.

Numerical methods for solution of problem (D)

We now define the following two numerical methods for approximating the solution of problem (D):

• Ritz method:

Find $u_h \in V_h$ such that $F(u_h) \le F(v_h)$, $\forall v_h \in V_h$. (M_h)

• Galerkin method (finite element method):

Find $u_h \in V_h$ such that $(u'_h, v'_h) = (f, v_h), \quad \forall v_h \in V_h.$ (V_h)

One can claim that $(M_h) \Leftrightarrow (V_h)$ **.**

$(V_h) \Leftrightarrow Find \ u_h \in V_h \ such \ that \ (u'_h, \varphi'_i) = (f, \varphi_i), \ 1 \le i \le M \Leftrightarrow A\xi = b$

• $(V_h) \iff$ Find $u_h \in V_h$ such that $(u'_h, \varphi'_i) = (f, \varphi_i), 1 \le i \le M$. Proof. (\Rightarrow) : trivial! (⇐): For any $v_h \in V_h$, we have $v_h = \sum_{i=1}^M \eta_i \varphi_i$, for some $\eta_i \in \mathbb{R}$, $1 \le i \le M$. $\therefore (u'_h, v'_h) = (u'_h, \sum_{i=1}^M \eta_i \varphi'_i) = \sum_{i=1}^M \eta_i (u'_h, \varphi'_i)$ $=\sum_{i=1}^{M}\eta_i(f,\varphi_i)=(f,\sum_{i=1}^{M}\eta_i\varphi_i)=(f,v_h).$ • Find $u_h \in V_h$ such that $(u'_h, \varphi'_i) = (f, \varphi_i), 1 \le i \le M \iff A\xi = b$. **Proof.** Let $u_h(x) = \sum_{i=1}^M \xi_j \varphi_j(x)$, where $\xi_j = u_h(x_j)$, $1 \le j \le M$, are unknown. Then $(u'_h,\varphi'_i) = (f,\varphi_i), \ 1 \le i \le M \Leftrightarrow (\sum_{i=1}^M \tilde{\xi}_j \varphi'_j,\varphi'_i) = (f,\varphi_i), \ 1 \le i \le M$ $\Leftrightarrow \sum_{i=1}^{M} \xi_j(\varphi'_j,\varphi'_i) = (f,\varphi_i), \ 1 \le i \le M \Leftrightarrow A\xi = b.$

$$A\xi = b$$

 $A = (a_{ij})_{M \times M}$: stiffness matrix; $b = (b_i)_{M \times 1}$: load vector; $\xi = (\xi_i)_{M \times 1}$: unknown vector.

$$\begin{bmatrix} (\varphi_1',\varphi_1') & (\varphi_2',\varphi_1') & \cdots & (\varphi_M',\varphi_1') \\ (\varphi_1',\varphi_2') & (\varphi_2',\varphi_2') & \cdots & (\varphi_M',\varphi_2') \\ \vdots & \vdots & \vdots & \vdots \\ (\varphi_1',\varphi_M') & (\varphi_2',\varphi_M') & \cdots & (\varphi_M',\varphi_M') \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_M \end{bmatrix} = \begin{bmatrix} (f,\varphi_1) \\ (f,\varphi_2) \\ \vdots \\ (f,\varphi_M) \end{bmatrix}$$

٠

Some remarks

• $\therefore (\varphi'_j, \varphi'_i) = 0$ if |i - j| > 1 $\therefore A$ is a tri-diagonal matrix.

•
$$\therefore a_{ij} = (\varphi'_j, \varphi'_i) = (\varphi'_i, \varphi'_j) = a_{ji} \quad \therefore A \text{ is symmetric!}$$

- Claim: *A* is positive definite. For any given $\eta = (\eta_1, \eta_2, \cdots, \eta_M)^\top \in \mathbb{R}^M$, define $v_h(x) := \sum_{i=1}^M \eta_i \varphi_i(x)$. Then $0 \le (v'_h, v'_h) = (\sum_{i=1}^M \eta_i \varphi'_i, \sum_{j=1}^M \eta_j \varphi'_j) = \sum_{i,j=1}^M \eta_i (\varphi'_i, \varphi'_j) \eta_j = \eta \cdot A\eta$. If $(v'_h, v'_h) = 0$, then $\int_0^1 (v'_h(x))^2 dx = 0$. $\Longrightarrow v'_h(x) = 0$ a.e.
 - $\therefore v_h \in V_h, v_h$ is continuous on [0, 1] and $v_h(0) = v_h(1) = 0$.
 - $\therefore v_h \equiv 0 \text{ on } [0,1], \text{ i.e., } \eta = \mathbf{0}. \therefore \eta \cdot A\eta > 0, \forall \eta \in \mathbb{R}^M, \eta \neq \mathbf{0}.$
- $\therefore A$ is SPD $\therefore A$ is nonsingular $\therefore A\xi = b$ has a unique solution!

Evaluate a_{jj} and $a_{j-1,j}$

[Insert a figure of φ_{j-1} and φ_j here!]

For $j = 1, 2, \cdots, M$, we have

$$\begin{split} (\varphi'_{j},\varphi'_{j}) &= \int_{x_{j-1}}^{x_{j}} (\varphi'_{j})^{2} dx + \int_{x_{j}}^{x_{j+1}} (\varphi'_{j})^{2} dx \\ &= \int_{x_{j-1}}^{x_{j}} \frac{1}{h_{j}^{2}} dx + \int_{x_{j}}^{x_{j+1}} \frac{1}{h_{j+1}^{2}} dx = \frac{1}{h_{j}} + \frac{1}{h_{j+1}}, \\ (\varphi'_{j},\varphi'_{j-1}) &= (\varphi'_{j-1},\varphi'_{j}) = -\int_{x_{j-1}}^{x_{j}} \frac{1}{h_{j}^{2}} dx = -\frac{1}{h_{j}}. \end{split}$$

For uniform partition: $h_j = h = \frac{1-0}{M+1}$. Then $A\xi = b$ becomes

$$\frac{1}{h} \begin{bmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_M \end{bmatrix} = \begin{bmatrix} (f, \varphi_1) \\ (f, \varphi_2) \\ \vdots \\ (f, \varphi_M) \end{bmatrix}$$

٠

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Numerical ODEs - 114/119

Taylor's theorem with Lagrange remainder

If $f \in C^{n}[a, b]$ and $f^{(n+1)}$ exists on (a, b), then for any points *c* and *x* in [a, b] we have

$$f(x) = P_n(x) + E_n(x),$$

where the *n*-th Taylor polynomial $P_n(x)$ is given by

$$P_n(x) = \sum_{k=0}^n \frac{1}{k!} f^{(k)}(c) (x-c)^k$$

and the remainder (error) term $E_n(x)$ is given by

$$E_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x-c)^{n+1}$$

for some point ξ between *c* and *x* (means that either $c < \xi < x$ or $x < \xi < c$).

Numerical differentiation

Assume that
$$u \in C^{4}[0, 1]$$
 and $0 = x_{0} < x_{2} < \cdots < x_{M} < x_{M+1} = 1$ is a uniform
partition of $[0, 1]$. Then $h_{j} = h = \frac{1-0}{M+1}$ for $j = 1, 2, \cdots, M+1$.
For $i = 1, 2, \cdots, M$, we have
 $u(x_{i} + h) = u(x_{i}) + u'(x_{i})h + \frac{1}{2}u''(x_{i})h^{2} + \frac{1}{6}u^{(3)}(x_{i})h^{3} + \frac{1}{24}u^{(4)}(\xi_{i1})h^{4}$,
 $u(x_{i} - h) = u(x_{i}) - u'(x_{i})h + \frac{1}{2}u''(x_{i})h^{2} - \frac{1}{6}u^{(3)}(x_{i})h^{3} + \frac{1}{24}u^{(4)}(\xi_{i2})h^{4}$,
for some $\xi_{i1} \in (x_{i}, x_{i} + h)$ and $\xi_{i2} \in (x_{i} - h, x_{i})$.
 $\therefore u(x_{i} + h) + u(x_{i} - h) = 2u(x_{i}) + u''(x_{i})h^{2} + \frac{1}{24}\{u^{(4)}(\xi_{i1}) + u^{(4)}(\xi_{i2})\}h^{4}$.
 $\therefore u''(x_{i}) = \frac{1}{h^{2}}\{u(x_{i} + h) - 2u(x_{i}) + u(x_{i} - h)\} - \frac{1}{24}h^{2}\{u^{(4)}(\xi_{i1}) + u^{(4)}(\xi_{i2})\}$.
 $\therefore By IVT, \exists \xi_{i}$ between ξ_{i1} and $\xi_{i2} (\Rightarrow \xi_{i} \in (x_{i} - h, x_{i} + h))$ such that
 $u^{(4)}(\xi_{i}) = \frac{1}{2}\{u^{(4)}(\xi_{i1}) + u^{(4)}(\xi_{i2})\}$.
 $\therefore u''(x_{i}) = \frac{1}{h^{2}}\{u(x_{i} + h) - 2u(x_{i}) + u(x_{i} - h)\} - \frac{1}{12}h^{2}u^{(4)}(\xi_{i})$,
for some $\xi_{i} \in (x_{i} - h, x_{i} + h)$.

Finite difference method for problem (D)

Consider the BVP:

$$\begin{cases} -u''(x) = f(x), & 0 < x < 1, \\ u(0) = u(1) = 0. \end{cases}$$
(D)

For $i = 1, 2, \cdots, M$, we have

$$-\frac{1}{h^2}\{u(x_i+h)-2u(x_i)+u(x_i-h)\}+\frac{1}{12}h^2u^{(4)}(\xi_i)=f(x_i).$$

$$\Rightarrow -\frac{1}{h^2} \{ u(x_{i+1}) - 2u(x_i) + u(x_{i-1}) \} + \frac{1}{12} h^2 u^{(4)}(\xi_i) = f(x_i).$$

We wish to find $U_i \simeq u(x_i)$ for $i = 1, 2, \dots, M$ and $U_0 = U_{M+1} := 0$ such that

$$-\frac{1}{h^2} \{ U_0 - 2U_1 + U_2 \} = f(x_1). \quad (i = 1)$$

$$-\frac{1}{h^2} \{ U_1 - 2U_2 + U_3 \} = f(x_2). \quad (i = 2)$$

÷

$$-\frac{1}{h^2}\{U_{M-1} - 2U_M + U_{M+1})\} = f(x_M). \quad (i = M)$$

Finite difference method for problem (D) (cont'd)

Finally, we reach at the following linear system:

$$\frac{1}{h^2} \begin{bmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_M \end{bmatrix} = \begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_M) \end{bmatrix}$$

A comparison: what is the difference between FEM with piecewise linear basis functions and FDM for problem (D)? **Answer:** They are essentially the same!

Consider the first component in the right hand side:

- Finite difference method: $h^2 f(x_1)$.
- Finite element method:

$$h(f,\varphi_1) = h \int_{x_0}^{x_2} f(x)\varphi_1(x)dx \simeq hf(x_1) \int_{x_0}^{x_2} \varphi_1(x)dx = h^2 f(x_1).$$

Homework

Consider the following 1-D reaction-convection-diffusion problem:

```
\begin{cases} -\varepsilon u''(x) + u'(x) + u(x) = 1 & \text{for } x \in (0,1), \\ u(0) = 0, \ u(1) = 0. \end{cases} (*)
```

Write the computer codes for numerical solution of problem (\star) by using the following methods on the uniform mesh of [0, 1] with mesh size *h*:

- Finite difference methods:
 - Replace $u''(x_i) \approx \frac{U_{i+1}-2U_i+U_{i-1}}{h^2}$ and $u'(x_i) \approx \frac{U_{i+1}-U_{i-1}}{2h}$ with $(\varepsilon, h) = (0.01, 0.1)$ and $(\varepsilon, h) = (0.01, 0.01)$. Plot u_h . • Replace $u''(x_i) \approx \frac{U_{i+1}-2U_i+U_{i-1}}{h^2}$ and $u'(x_i) \approx \frac{U_i-U_{i-1}}{h}$ (upwinding) with $(\varepsilon, h) = (0.01, 0.1)$ and $(\varepsilon, h) = (0.01, 0.01)$. Plot u_h .
- **Finite element method:** use piecewise linear finite elements with $(\varepsilon, h) = (0.01, 0.1)$ and $(\varepsilon, h) = (0.01, 0.01)$. Plot u_h .