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Initial-value problem (IVP)

Initial-value problem: find x(t) such that{
x′(t) = f (t, x),
x(t0) = x0,

where f (t, x), t0, x0 ∈ R1 are given.

Example 1: {
x′(t) = x tan(t + 3),

x(−3) = 1.

One can verify that the analytic solution of this IVP is
x(t) = sec(t + 3). Since sec t becomes ∞ at t = ±π

2 , the solution
is valid only for −π

2 < t + 3 < π
2 .

Example 2: {
x′(t) = x,
x(0) = 1.

Try x(t) = cert ⇒ crert = cert ⇒ r = 1, x = cet (general solution)
Use x(0) = 1⇒ x = et (a particular solution)
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Existence of solution

Existence: do all IVPs have a solution? Answer: No!
Some assumptions must be made about f , and even then we can
expect the solution to exist only in a neighborhood of t = t0.

Example: {
x′(t) = 1 + x2,
x(0) = 0.

Try x(t) = tan t, then x(0) = 0.

LHS: (tan t)′ =
cos2 t + sin2 t

cos2 t
; RHS: 1 + tan2 t = 1 +

sin2 t
cos2 t

.

Hence x(t) = tan t is a solution of the IVP.

If t→ (π/2)− then x(t)→ ∞. For the solution starting at t = 0,
it has to “stop the clock” before t = π/2. Here we can only say
that there exists a solution for a limited time.
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Existence theorem

Consider the IVP: {
x′(t) = f (t, x),
x(t0) = x0,

If f is continuous in a rectangle R centered at (t0, x0), say

R = {(t, x) : |t− t0| ≤ α, |x− x0| ≤ β},

then the IVP has a solution x(t) for

|t− t0| ≤ min{α, β/M},

where M is maximum of |f (t, x)| in the rectangular R.
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Example

Prove that {
x′(t) = (t + sin x)2,
x(0) = 3

has a solution in the interval −1 ≤ t ≤ 1.

Solution:

(1) Consider f (t, x) = (t + sin x)2, where (t0, x0) = (0, 3).

(2) Let R = {(t, x) : |t| ≤ α, |x− 3| ≤ β}. Then
|f (t, x)| ≤ (α + 1)2 := M.

(3) We want |t− 0| ≤ 1 ≤ min{α, β/M}.

(4) Let α = 1 then M = (1 + 1)2 = 4 and force β ≥ 4. By the
existence theorem, the IVP has a solution in the interval
|t− t0| ≤ min{α, β/M} = 1, that is, −1 ≤ t ≤ 1. □
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Uniqueness

If f is continuous, we may still have more than one solution, e.g.,{
x′(t) = x2/3,
x(0) = 0.

Note that x(t) = 0 is a solution for all t. Another solution is
x(t) = t3/27.

To have a unique solution, we need to assume somewhat more
about f .
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Uniqueness theorem

Consider the IVP: {
x′(t) = f (t, x),
x(t0) = x0.

If f and ∂f
∂x are continuous in the rectangle R centered at (t0, x0),

R = {(t, x) : |t− t0| ≤ α, |x− x0| ≤ β},

then the IVP has a unique solution x(t) for

|t− t0| ≤ min{α, β/M},

where M is maximum of |f (t, x)| in the rectangular R.
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Another uniqueness theorem

Consider the IVP: {
x′(t) = f (t, x),
x(t0) = x0,

If f is continuous in a ≤ t ≤ b, −∞ < x < ∞ and satisfies

|f (t, x1)− f (t, x2)| ≤ L|x1 − x2|, (⋆)

then the IVP has a unique solution x(t) in the interval [a, b].

Note: (⋆) is called the Lipschitz condition of f (t, x) in the variable x.
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Example

Prove that {
x′(t) = 1 + t sin(tx),
x(0) = 0

has a solution on the interval 0 ≤ t ≤ 2.

Solution:

(1) Since f (t, x) = 1 + t sin(tx), we have | ∂f
∂x (t, x)| = |t2 cos(tx)| ≤ 4

for 0 ≤ t ≤ 2 and −∞ < x < ∞.

(2) By the mean value theorem, ∃ ξ between x1 and x2 such that

f (t, x2)− f (t, x1) =
∂f (t, ξ)

∂x
(x2 − x1).

=⇒ |f (t, x2)− f (t, x1)| ≤ 4|x2 − x1|.

=⇒ f satisfies (⋆) with L = 4 and f is continuous in
0 ≤ t ≤ 2, −∞ < x < ∞.

=⇒ the IVP has a unique solution x(t) for a ≤ t ≤ b. □
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Numerical methods

Consider the IVP: {
x′(t) = f (t, x),
x(t0) = x0.

Strategy: instead of finding x(t) for all t in some interval
containing t0, we approximate x(t) at some discrete points.

(insert a graph here!)
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Taylor-series method

For the Taylor-series method, it is necessary to assume that
various partial derivatives of f exist.

We use a concrete example to illustrate the method. Consider an
IVP as {

x′(t) = cos t− sin x + t2,
x(−1) = 3.

Assume that we know x(t) and we wish to compute x(t + h). By
the Taylor expansion of x, we have

x(t + h) = x(t) + hx′(t) +
h2

2!
x′′(t) +

h3

3!
x′′′(t) +

h4

4!
x(4)(t) + O(h5).
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Taylor-series method (cont’d)

How to compute x′(t), x′′(t), x′′′(t) and x(4)(t)?
x′(t) = cos t− sin x + t2,
x′′(t) = − sin t− (cos x)x′ + 2t,
x′′′(t) = − cos t + sin x(x′)2 − (cos x)x′′ + 2,

x(4)(t) = sin t + (cos x)(x′)3 + 3(sin x)x′x′′ − (cos x)x′′′.

If we truncate at h4 then the local truncation error for obtaining
x(t + h) is O(h5). We say the method is of order 4.

Definition: The order of the Taylor-series method is n if terms up to
and include hnx(n)(t)/n! are used.

Let tk := t0 + kh and xk ≈ x(tk). Then the Taylor-series method
for this example is defined as

xk+1 = xk + hx̃′(tk) +
h2

2!
x̃′′(tk) +

h3

3!
x̃′′′(tk) +

h4

4!
x̃(4)(tk), k ≥ 0,

x̃′(tk) := f (tk, xk), x̃′′(tk) := ft(tk, xk) + fx(tk, xk)f (tk, xk), · · · .
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Algorithm

Starting t = −1 with h = 0.01, we can compute the solution in [−1, 1]
with 200 steps:

input M← 200, h← 0.01, t← −1, x← 3
output 0, t, x
for k = 1 to M do

x′ ← cos t− sin x + t2

x′′ ← − sin t− (cos x)x′ + 2t
x′′′ ← − cos t + sin x(x′)2 − (cos x)x′′ + 2

x(4) ← sin t + (cos x)(x′)3 + 3(sin x)x′x′′ − (cos x)x′′′

x ← x + h(x′ + h
2 (x
′′ + h

3! (x
′′′ + h

4! x
(4)))))

t ← t + h

output k, t, x
end do
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Error estimate

The estimate of the local truncation error is given by

En :=
1

(n + 1)!
hn+1x(n+1)(t + θh) for some θ ∈ (0, 1).

Hence
E4 =

1
5!

h5x(5)(t + θh) for some θ ∈ (0, 1).

We can replace x(5)(t + θh) by a simple finite difference,

E4 ≈
1
5!

h5
(x(4)(t + h)− x(4)(t)

h

)
=

h4

120

(
x(4)(t + h)− x(4)(t)

)
.

Suppose that the local truncation error (LTE) is O(hn+1).
An error of this sort is present in each step of the numerical
solution. The accumulation of all LTEs gives the global
truncation error (GTE). Roughly speaking, we have

GTE ≈ T− t0

h
O(hn+1) = O(hn),

and we say the numerical method is of O(hn).
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Advantages and disadvantages of the Taylor-series method

Disadvantages:

(1) The method depends on repeated differentiation of the
differential equation, unless we intend to use only the
method of order 1.
=⇒ f (t, x) must have partial derivatives of sufficient high
order in the region where are solving the problem. Such an
assumption is not necessary for the existence of a solution.

(2) The various derivatives formula need to be programmed.

Advantages:

(1) Conceptual simplicity.
(2) Potential for high precision: If we get, e.g. 20 derivatives of

x(t), then the method is order 20 (i.e., terms up to and
including the one involving h20).
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Euler’s method (Taylor-series method of order 1)

If n = 1, the Taylor series method reduces to Euler’s method.

xk+1 = xk + hf (tk, xk), k ≥ 0.

Disadvantage of the method is that the necessity of taking small
value for h to gain acceptable precision.

Advantage is not to require any differentiation of f .

In-class exercise: Consider the following IVP:{
x′(t) = cos t− sin x + t2,
x(0) = 3.

Derive Euler’s method based on the Taylor series and compute
x(0.1) when h = 0.1.
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Basic concepts of Runge-Kutta methods

We wish to approximate the following IVP:{
x′(t) = f (t, x),
x(t0) = x0.

Suppose that f is sufficiently smooth. From the Taylor theorem,
we have

x(t + h) = x(t) + hx′(t) +
h2

2!
x′′(t) + O(h3).

By the chain rule, we obtain

x′′(t) = ft(t, x) + fx(t, x)x′(t) = ft(t, x) + fx(t, x)f (t, x).
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Basic concepts of Runge-Kutta methods (cont’d)

In the Taylor expansion, we have

x(t + h) = x(t) + hf (t, x) +
h2

2
(ft(t, x) + fx(t, x)f (t, x)) + O(h3)

= x(t) +
h
2

f (t, x) +
h
2

[
f (t, x) + hft(t, x) + hfx(t, x)f (t, x))

]
+O(h3)

= x(t) +
h
2

f (t, x) +
h
2

f (t + h, x + hf (t, x)) + O(h3).

Note that the last equality above is valid by the Taylor expansion
in two variables,

f (t + h, x + hf (t, x)) = f (t, x) + hft(t, x) + hf (t, x)fx(t, x) + O(h2).
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A second-order Runge-Kutta method

Then a 2nd-order Runge-Kutta (RK) method is given by

x(t + h) ≈ x(t) +
h
2

f (t, x) +
h
2

f (t + h, x + hf (t, x)),

or alternating

x(t + h) ≈ x(t) +
1
2
(F1 + F2),

F1 = hf (t, x),
F2 = hf (t + h, x + F1).

It is also known as Heun’s method.

In practice, let xn ≈ x(tn), then we define Heun’s method as

xn+1 = xn +
1
2
(F1 + F2), n ≥ 0,

F1 := hf (tn, xn),
F2 := hf (tn+1, xn + F1).
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The general second-order Runge-Kutta method

In general, the 2nd order RK method needs

x(t + h) = x(t) + ω1hf + ω2hf (t + αh, x + βhf ) + O(h3),

= x(t) + ω1hf + ω2h [f + αhft + βhffx] + O(h3).

Comparing with

x(t + h) = x(t) + hf +
h2

2
(ft + fxf ) + O(h3),

we have

ω1 + ω2 = 1,
ω2α = 1/2,
ω2β = 1/2.
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Modified Euler method

The previous method (Heun’s method) is obtained by setting{
ω1 = ω2 = 1/2,
α = β = 1.

Setting  ω1 = 0,
ω2 = 1,
α = β = 1/2,

we obtain the following modified Euler method:

xn+1 = xn + F2, n ≥ 0,
F1 := hf (tn, xn),

F2 := hf (tn +
1
2

h, xn +
1
2

F1).
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Fourth-order RK methods

The derivations of higher order RK methods are tedious.
However, the formulas are rather elegant and easily
programmed once they have been derived.

The most popular 4th order RK is:

x(t + h) ≈ x(t) +
1
6
(F1 + 2F2 + 2F3 + F4),

F1 = hf (t, x), F2 = hf (t +
h
2

, x +
1
2

F1),

F3 = hf (t +
h
2

, x +
1
2

F2), F4 = hf (t + h, x + F3).

That is, the 4th order RK is defined as

xn+1 = xn +
1
6
(F1 + 2F2 + 2F3 + F4), n ≥ 0,

F1 := hf (tn, xn), F2 := hf (tn +
h
2

, xn +
1
2

F1),

F3 := hf (tn +
h
2

, xn +
1
2

F2), F4 := hf (tn+1, xn + F3).
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Homework

Use the most popular 4th order RK with h = 1/128 to solve the
following IVP for t ∈ [1, 3] and then plot the piecewise linear
approximate solution:{

x′(t) = t−2(tx− x2),
x(1) = 2.

Also plot the exact solution:

x(t) = (1/2 + ln t)−1t.
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Algorithm

input M← 256, t← 1.0, h← 0.0078125, x← 2.0
define f (t, x) = (tx− x2)/t2

define u(t) = t/(1/2 + ln t)
e← |u(t)− x|
output 0, t, x, e
for k = 1 to M do

F1 ← hf (t, x)

F2 ← hf (t + h
2 , x + 1

2 F1)

F3 ← hf (t + h
2 , x + 1

2 F2)

F4 ← hf (t + h, x + F3)

x ← x + 1
6 (F1 + 2F2 + 2F3 + F4)

t ← t + h

e ← |u(t)− x|
output k, t, x, e
end do
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How to estimate the local truncation error of RK4?

For RK4, the local truncation error is of O(h5). The local
truncation error at the first step is

x∗(t0 + h)− x1 = O(h5),

where x∗(t0 + h) is exact value and x1 is computed value. That
is, the truncation error behaves like Ch5 for small h. Here C is a
number independent of h but dependent on t0 and x∗.

Let v be the value of the approximate solution at t0 + h obtained
by taking one step of length h from t0. Let u be the approximate
solution at t0 + h, obtained by taking two steps of size h/2 from
t0. Then we have

x∗(t0 + h) ≈ v + Ch5 and x∗(t0 + h) ≈ u + 2C(h/2)5.

By substraction, we obtain

local truncation error = Ch5 ≈ u− v
1− 2−4 ≈ u− v.
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Basic concepts of multistep methods

Taylor-series and RK methods are examples of single-step
methods, i.e. use information only at t to get t + h.

Consider the IVP: x′(t) = f (t, x) and x(t0) = x0. Assume that we
want to approximate x(t) at t0, t1, · · · , ti, · · · . Let xi be the
approximate solution of x(ti). Then by the Fundamental Theorem
of Calculus, we have∫ tn+1

tn
x′(t)dt = x(tn+1)− x(tn)

and then

x(tn+1)− x(tn) =
∫ tn+1

tn
f (t, x(t))dt.

One of the basic idea of the multistep method is to interpolate
the integrand f (t, x(t)) by using tn, tn−1, · · · . Then we have

xn+1 = xn + afn + bfn−1 + cfn−2 + · · · , where fi := f (ti, xi).

An equation of this type is called an Adams-Bashforth formula.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Numerical ODEs – 26/119



Adams-Bashforth formula of order 5

To derive the A.-B. formula of order 5, we consider (on equally
spaced points: ti = t0 + ih)∫ tn+1

tn
f (t, x(t))dt ≈ h

(
Afn + Bfn−1 + Cfn−2 + Dfn−3 + Efn−4

)
.

We wish the numerical integration is exact for polynomials of
degree ≤ 4.

Without loss of generality, we may consider tn = 0 and h = 1
(⇒ tn+1 = 1).

Then apply the method of undetermined coefficients.
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Adams-Bashforth formula of order 5 (cont’d)

As a basis for Π4, we consider

p0(t) = 1,
p1(t) = t,
p2(t) = t(t + 1),
p3(t) = t(t + 1)(t + 2),
p4(t) = t(t + 1)(t + 2)(t + 3).

For each of these polynomials the following formula should be
exact ∫ 1

0
pk(t)dt = Apk(0) + Bpk(−1) + Cpk(−2)

+Dpk(−3) + Epk(−4).
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Adams-Bashforth formula of order 5 (cont’d)

By direct computations, we have

p0(t) = 1 =⇒ A + B + C + D + E = 1,
p1(t) = t =⇒ −B− 2C− 3D− 4E = 1/2,
p2(t) = t(t + 1) =⇒ C + 6D + 12E = 5/6,
p3(t) = t(t + 1)(t + 2) =⇒ −6D− 24E = 9/4,
p4(t) = t(t + 1)(t + 2)(t + 3) =⇒ 24E = 251/30.

By backward substitution, we obtain

E =
251
720

, D = −1274
720

, C =
2616
720

, B = −2774
720

, A =
1901
720

.

Therefore, we have for n ≥ 4

xn+1 = xn +
1

720

(
1901fn− 2774fn−1 + 2616fn−2− 1274fn−3 + 251fn−4

)
,

xn ≈ x(tn) = x(0), xn+1 ≈ x(tn+1) = x(1), and fi := f (ti, xi).
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Adams-Bashforth formula of order 5 (cont’d)

We need to change the interval from [0, 1] to [tn, tn+1] with

λ(s) =
tn+1 − tn

1− 0
s +

tn

1− 0
= hs + tn.

Then λ′(s) = h. Hence,∫ tn+1

tn
f (t, x)dt =

∫ 1

0
f (λ(s), x(λ(s)))λ′(s)ds.

Finally, we have the Adams-Bashforth formula of order 5: for
n ≥ 4

xn+1 = xn +
h

720

(
1901fn− 2774fn−1 + 2616fn−2− 1274fn−3 + 251fn−4

)
,

where xn ≈ x(tn), xn+1 ≈ x(tn+1), and fi := f (ti, xi).
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Adams-Moulton formula of order 5

A formula of the type

xn+1 = xn + afn+1 + bfn + cfn−1 + · · ·

is called an Adams-Moulton formula, where fi := f (ti, xi).

To derive the A.-M. formula of order 5, we consider (on equally
spaced points: ti = t0 + ih)∫ tn+1

tn
f (t, x(t))dt ≈ h

(
Afn+1 + Bfn + Cfn−1 + Dfn−2 + Efn−3

)
.

We wish the numerical integration is exact for polynomials of
degree ≤ 4.

Without loss of generality, we may consider tn = 0 and h = 1.

Then apply the method of undetermined coefficients.
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Adams-Moulton formula of order 5 (cont’d)

As a basis for Π4, we consider

p0(t) = 1,
p1(t) = t− 1,
p2(t) = (t− 1)t,
p3(t) = (t− 1)t(t + 1),
p4(t) = (t− 1)t(t + 1)(t + 2).

For each of these polynomial the following formula should be
exact ∫ 1

0
pk(t)dt = Apk(1) + Bpk(0) + Cpk(−1)

+Dpk(−2) + Epk(−3).
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Adams-Moulton formula of order 5 (cont’d)

Thus we have

p0(t) = 1 =⇒ A + B + C + D + E = 1,
p1(t) = t− 1 =⇒ −B− 2C− 3D− 4E = −1/2,

p2(t) = t2 − t =⇒ 2C + 6D + 12E = −1/6,

p3(t) = t3 − t =⇒ −2D− 24E = −1/4,

p4(t) = t4 + 2t3 − t2 − 2t =⇒ 2E = −19/30.

By backward substitution, we obtain

E = − 19
720

, D =
106
720

, C = −264
720

, B =
646
720

, A =
251
720

.

By changing of variable, we finally have

xn+1 = xn +
h

720

(
251fn+1 + 646fn − 264fn−1 + 106fn−2 − 19fn−3

)
.
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A predictor-corrector method

In multistep methods, we need a start-up method to get started.
Here, for example, we can use RK method of order 4 to get
x1, x2, x3, x4.

Note that in the A.-M. method, xn+1 occurs on both sides of the
equation! ∵ fn+1 = f (tn+1, xn+1).

First strategy:
use the A.-B. formula of order 5 as a predictor to compute x∗n+1
and then use the A.-M formula of order 5 as corrector with
fn+1 = f (tn+1, x∗n+1).

This method is known as a predictor-corrector method.
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Second strategy: a fixed-point method

Define the mapping

φ(z) :=
251
720

hf (tn+1, z) + T,

where T is composed of all the other terms in the A.-M. formula.

Then this reduces to a fixed-point problem:

zk+1 = φ(zk) =
251
720

hf (tn+1, zk) + T (k ≥ 0).

It will converge to a fixed point of φ under appropriate
hypotheses.

Thus, if ξ is the fixed point, z0 should be in the interval centered
at ξ such that |ϕ′(z)| < 1, where

ϕ′(z) =
251
720

h
∂f (tn+1, z)

∂z
.

This can be made less than 1 by setting h is small enough.
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Linear multistep methods

Linear multistep methods (LMMs) are methods of the form

akxn + ak−1xn−1 + · · ·+ a0xn−k = h{bkfn + bk−1fn−1 + · · ·+ b0fn−k}, (⋆)

where ak ̸= 0, fi := f (ti, xi) and ti = t0 + ih. This a k-step method
if a0 ̸= 0 or b0 ̸= 0.

(⋆) is used to compute xn assuming that xn−k, · · · , xn−1 are
already known. If bk = 0, the method is said to be explicit.
Otherwise, the method is said to be implicit.

To define the order of a linear multistep method, let us consider
the linear functional L over differentiable functions x(t),

Lx =
k

∑
i=0

(
aix(ih)− hbix′(ih)

)
. ← local truncation error

Here we take k = n for simplicity and assume the first value
begins at t = t0 = 0 rather than at t = tn−k.
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Analysis of linear multistep methods

By using the Taylor series for x, one can express L as

Lx = d0x(0) + d1hx′(0) + d2h2x′′(0) + · · ·

To compute the coefficients, di, we write the Taylor series for x
and x′:

x(ih) =
∞

∑
j=0

(ih)j

j!
x(j)(0) and x′(ih) =

∞

∑
j=0

(ih)j

j!
x(j+1)(0).

By the comparison of coefficients, we obtain

d0 =
k

∑
i=0

ai, d1 =
k

∑
i=0

(iai − bi), d2 =
k

∑
i=0

(
1
2

i2ai − ibi),

...

dj =
k

∑
i=0

{
ij

j!
ai −

ij−1

(j− 1)!
bi

}
(j ≥ 1).
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Theorem on linear multistep method

The following three properties of the linear multistep method are equivalent:

1 d0 = d1 = · · · = dm = 0.

2 Lp = 0 for p ∈ Πm.

3 Lx is O(hm+1) for all x ∈ Cm+1.

Proof:

(1)⇒ (2) : Since d0 = d1 = · · · = dm = 0, we have
Lx = dm+1hm+1x(m+1)(0) + · · ·
If x ∈ Πm then x(m+1) = x(m+2) = · · · = 0, which implies Lx = 0.

(2)⇒ (3) : If x ∈ Cm+1, then Taylor theorem implies x = p + r,
where p ∈ Πm and r is a function with r(k)(0) = 0 for 0 ≤ k ≤ m.
Hence Lx = Lr = dm+1hm+1r(m+1)(0) + · · · = O(hm+1).

(3)⇒ (1) : Lx = d0x(0) + d1hx′(0) + d2h2x′′(0) + · · · reduces
Lx = dm+1hm+1x(m+1)(0) + · · · . Hence d0 = d1 = · · · = dm = 0.

□
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Order of a linear multistep method

Define the order of an LMM to be the number m such that

d0 = d1 = · · · = dm = 0 ̸= dm+1.

Example: what is the order of the LMM:

xn − xn−2 =
1
3

h(fn + 4fn−1 + fn−2)?

Solution:
(a0, a1, a2) = (−1, 0, 1) and (b0, b1, b2) = (1/3, 4/3, 1/3).

d0 = d1 = d2 = d3 = d4 = 0.

d5 = (1/120a1 − 1/24b1) + (4/15a2 − 2/3b2) = −1/90.

The order of the method is 4.
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Vector space of infinite sequences

A complex sequence is a complex-valued function x : N→ C.
We write x = [x1, x2, · · · , xn, · · · ].

Let V be the set of all infinite sequences of complex numbers.
Then there is a 0 element in V, namely, 0 = [0, 0, 0, · · · ]. We
define two operations + : V×V → V and · : C×V → V., for
x = [x1, x2, · · · , xn, · · · ], y = [y1, y2, · · · , yn, · · · ] ∈ V and α ∈ C,

x + y := [x1 + y1, x2 + y2, · · · , xn + yn, · · · ],
αx := [αx1, αx2, · · · , αxn, · · · ].

or more compactly (x + y)n := xn + yn and (αx)n := αxn.

V is a vector space and its dimension is infinite.

The set of vectors is linearly independent:
{

v(1) = [1, 0, 0, 0, · · · ],
v(2) = [0, 1, 0, 0, · · · ], v(3) = [0, 0, 1, 0, · · · ], · · ·

}
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Linear difference operator

Consider the following linear operator E : V → V defined by

Ex = [x2, x3, x4, · · · ], where x = [x1, x2, x3, x4 · · · ].

We call E the shift operator or displacement operator. Thus,
(Ex)n = xn+1 and (EEx)n = xn+2. In general, (Ekx)n = xn+k.

We define a linear difference operator as a linear combination of
powers of E,

L =
m

∑
i=0

ciEi,

where E0 is the identity operator, i.e., (E0x)n = (Ix)n = xn.
L is a polynomial in E, i.e., L = p(E), where p is called the
characteristic polynomial of L and defined by p(λ) = ∑m

i=0 ciλ
i.

The set {x ∈ V : Lx = 0} is a linear subspace of V and it is called
the null space (kernel) of L. So we need to find a basis that spans
the null space in order to solve Lx = 0.
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Example: Lx = 0

Let

L =
m

∑
i=0

ciEi, with c0 = 2, c1 = −3, c2 = 1, ci = 0 for i ≥ 3.

We have the linear difference equation, which can be written in
three forms:

(E2 − 3E1 + 2E0)x = 0,
xn+2 − 3xn+1 + 2xn = 0 (n ≥ 1),

p(E)x = 0 p(λ) = λ2 − 3λ + 2.

How to solve it? Putting xn = λn, we get

λn+2 − 3λn+1 + 2λn = 0
λnp(λ) = 0

λn(λ− 1)(λ− 2) = 0
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Example: Lx = 0 (cont’d)

λ = 0: trivial solution;
λ = 1: un := 1n = 1;
λ = 2: vn := 2n.
We can show that un and vn form a basis for the solution space of
Lx = 0, i.e., any solution is a linear combination of them

xn = α · 1 + β2n.

(By induction, see page 30 for the details)
Once we specify the starting values x1 and x2, then xn is
determined uniquely. In general, we have following theorem:

Theorem: If p is a polynomial and λ is a zero of p then one solution of
the difference equation p(E)x = 0 is [λ, λ2, λ3, · · · ]. If all the zeros of
p are simple and nonzero, then each solution of difference equation is a
linear combination of such special solutions.

(see page 31 for the proof)
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Multiple zeros

Let x(λ) = [λ, λ2, λ3, · · · ]. If p is any polynomial then

p(E)x(λ) = p(λ)x(λ).

Differentiating with respect to λ, we get

p(E)x′(λ) = p′(λ)x(λ) + p(λ)x′(λ).

If λ is a multiple zero of p, then p(λ) = p′(λ) = 0. Hence, x(λ)
and x′(λ) are solutions of the difference equation p(E)x = 0.
That is,

x(λ) = [λ, λ2, λ3, · · · ] and x′(λ) = [1, 2λ, 3λ2, · · · ]

are solutions of p(E)x = 0.

If λ ̸= 0, then x(λ) and x′(λ) are linearly independent.
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Multiple zeros (cont’d)

Similarly, if λ is a zero of p having multiplicity k, then the
following are solutions of the difference equation p(E)x = 0.

x(λ) = [λ, λ2, λ3, · · · ],
x′(λ) = [1, 2λ, 3λ2, · · · ],
x′′(λ) = [0, 2, 6λ, · · · ],

...

x(k−1))(λ) =
d(k−1)

dλk−1 [λ, λ2, λ3, · · · ].

Theorem: Let p be a polynomial satisfying p(0) ̸= 0. Thus a basis for
null space of p(E) is obtained as follows: with each zero λ of p having
multiplicity k, associate the k solutions, x(λ), x′(λ), · · · , x(k−1)(λ),
where x(λ) = [λ, λ2, λ3, · · · ].
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An example

Find general solution of 4xn + 7xn−1 + 2xn−2 − xn−3 = 0.

Solution:

The characteristic polynomial is p(λ) = 4λ3 + 7λ2 + 2λ− 1 = 0.

Roots are λ1 = λ2 = −1 and λ3 = 1/4.

The basic solutions are

x(−1) = [−1, 1,−1, 1, · · · ],
x′(−1) = [1,−2, 3,−4, · · · ],
x(1/4) = [1/4, 1/16, 1/64, · · · ].

The general solution is

xn = α(−1)n + βn(−1)n−1 + γ(1/4)n.
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Stable difference equations

Definition: An element x = [x1, x2, x3, · · · ] ∈ V is bounded if
∃ c > 0 such that |xn| ≤ c, ∀ n ≥ 1, i.e., supn≥1 |xn| < ∞.

Definition: A difference equation of the form p(E)x = 0 is said to be
stable if all of its solution is bounded.

Example: xn+2 − 3xn+1 + 2xn = 0, n ≥ 1.

The general solution is xn = α · 1 + β2n. Since 2n is not bounded,
so the difference equation is unstable.

Theorem on stable difference equations: For any polynomial p
satisfying p(0) ̸= 0, the following are equivalent:

(1) The difference equation p(E)x = 0 is stable.
(2) All zeros of p satisfy |z| ≤ 1 and all multiple zeros satisfy
|z| < 1.
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Linear multistep methods

Recall the IVP: {
x′(t) = f (t, x(t)),
x(t0) = x0.

The LMM can be written as

akxn + ak−1xn−1 + · · ·+ a0xn−k = h{bkfn + bk−1fn−1 + · · ·+ b0fn−k},

where ak ̸= 0, fi = f (ti, xi), and ti = t0 + ih.

We assume x0, x1, · · · , xk−1 have been obtained by some other
method (e.g., RK4).
(1) if bk ̸= 0 then the method is implicit. e.g., A-M formula of

order 5 (4-step method):
xn − xn−1 =
h{ 251

720 fn + 646
720 fn−1 − 264

720 fn−2 +
106
720 fn−3 − 19

720 fn−4}.
(2) if bk = 0 then the method is explicit. e.g., A-B formula of

order 5 (5-step method):
xn − xn−1 =
h{ 1901

720 fn−1 − 2774
720 fn−2 +

2616
720 fn−3 − 1274

720 fn−4 +
251
720 fn−5}.
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Convergence

Definition: The LMM is said to be convergent if

lim
h→0

x(h, t) = x(t), (t fixed) (⋆)

where x(h, t) is the approximate solution using the step size h and x(t)
is exact solution, ∀t ∈ [t0, tm], provided that starting values obey the
same equation, that is,

lim
h→0

x(h, t0 + nh) = x0 (0 ≤ n < k) (⋆⋆)

and f satisfies the hypotheses of the existence-uniqueness theorem: f is
continuous in the strip t0 ≤ t ≤ tm, −∞ < x < ∞ and satisfies a
Lipschitz condition in the second variable.
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Stability and consistency

Consider the following polynomials associated with the LMM:

p(z) = akzk + ak−1zk−1 + · · ·+ a0,

q(z) = bkzk + bk−1zk−1 + · · ·+ b0.

It can be shown that certain desirable properties of the LMM
depend on the location of the roots of the polynomials p and q.

Definition: The LMM is stable if all the roots of p lie in the disk
|z| ≤ 1 and if each root of modulus 1 is simple.

Definition: The LMM is consistent if p(1) = 0 and p′(1) = q(1).
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Main theorem of the LMM

For the LMM to be convergent, it is necessary and sufficient that it be stable
and consistent.

Proof: (stability is necessary)

Suppose that the method is not stable. Then either p has a root λ
satisfying |λ| > 1 or p has a root λ satisfying |λ| = 1 and
p′(λ) = 0.

In either case we consider a simple IVP whose solution is
x(t) = 0: {

x′(t) = 0,
x(0) = 0.

In this case, the LMM becomes

akxn + ak−1xn−1 + · · · a0xn−k = 0. (⋆ ⋆ ⋆)

This is a linear difference equation. One solution is xn = hλn.
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Proof: stability is necessary (cont’d)

Assume that |λ| > 1 implies for 0 ≤ n < k

|x(h, nh)| = h|λn| < h|λ|k → 0 as h→ 0.

Thus the condition (⋆⋆) is verified.

However, if t = nh then h = tn−1 and

|x(h, t) = |x(h, nh)| = tn−1|λ|n → ∞ as h→ 0,

since n→ ∞ as h→ 0 and |λ| > 1. Thus, (⋆) is violated.

Now assume |λ| = 1 and p′(λ) = 0, i.e., λ is a multiple roots,
then a solution of (⋆ ⋆ ⋆) is xn = hnλn−1. Again (⋆⋆) is satisfied,
since for 0 ≤ n < k we have

|x(h, nh)| = hn|λ|n−1 = hn < hk→ 0 as h→ 0.

However, the condition (⋆) is violated because

|x(h, t)| = (tn−1)n|λ|n−1 = t ̸= 0

and does not go to zero as h→ 0.
Therefore, if the LMM is convergent then it is stable.
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Proof: consistency is necessary

Suppose that the method is convergent. Consider a simple IVP
problem whose solution is x(t) = 1.{

x′(t) = 0,
x(0) = 1.

For this IVP, the LMM becomes (⋆ ⋆ ⋆) again. One solution is
obtained by setting x0 = x1 = · · · = xk−1 = 1 and then use
(⋆ ⋆ ⋆) to generate the remaining values, xk, xk+1, · · · .

Since the method is convergent, lim
n→∞

xn = 1. Substituting this

into (⋆ ⋆ ⋆) implies

ak + ak−1 + · · ·+ a0 = 0 or p(1) = 0.
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Proof: consistency is necessary (cont’d)

Now consider a simple IVP problem whose solution is x(t) = t:{
x′(t) = 1,
x(0) = 0.

For this IVP, the LMM becomes

akxn + ak−1xk−1 + · · ·+ a0xn−k = h{bk + bk−1 + · · ·+ b0}. (⋆ ⋆ ⋆)

Since the method is convergent, it is stable by the preceding
proof which implies p(1) = 0 and p′(1) ̸= 0, i.e., no multiple
roots of size 1.
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Proof: consistency is necessary (cont’d)

Let us verify that xn = (n + k)hγ with γ := q(1)/p′(1) is a
solution of (⋆ ⋆ ⋆):

hγ{ak(n + k) + ak−1(n + k− 1) + · · ·+ a0n}
= nhγ (ak + ak−1 + · · ·+ a0)︸ ︷︷ ︸

p(1)=0

+hγ (kak + (k− 1)ak−1 + · · ·+ a1)︸ ︷︷ ︸
p′(1) ̸=0

= hγp′(1) = h
q(1)
p′(1)

p′(1) = h{bk + bk−1 + · · ·+ b0}.

Notice that the starting values in this numerical solution are
consistent with the initial value x(0) = 0 = x0 because
lim
h→0

(n+ k)hγ = 0 = x0 for n = 0, 1, · · · , k− 1. That is, (⋆⋆) holds.

The convergence condition demands that lim
n→∞

xn = t if nh = t.

Hence we have lim
n→∞

(n + k)hγ = t. We can conclude γ = 1 or

p′(1) = q(1) because lim
n→∞

kh = 0.
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Example

Consider the Milne method

xn − xn−2 = h
(1

3
fn +

4
3

fn−1 +
1
3

fn−2

)
.

p(z) = z2 − 1 = 0⇒ z = ±1: simple root. Hence, the method is
stable.

p′(z) = 2z and q(z) = 1
3 z2 + 4

3 z + 1
3 . Then p′(1) = 2 = q(1) and

p(1) = 0. Hence, the method is consistent.

Therefore we can conclude that the method is convergent.
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Local truncation error

Assume that all previous steps of the LMM are computed
correctly, i.e., xi = x(ti) for n− k ≤ i ≤ n− 1. Here x(t) denotes
the exact solution of the IVP. We now want to to compute xn.

Definition: The local truncation error is defined as x(tn)− xn. Note
that the round-off error is not included.

Theorem: If the LMM is of order m, and if x ∈ Cm+2 and ∂f
∂x is

continuous, then under the assumption above we have

x(tn)− xn =
(dm+1

ak

)
hm+1x(m+1)(tn−k) + O(hm+2).

The coefficient dk are defined in Section 8.4, p. 553.

Proof: see page 561.
The theorem states that if the method has order m, then the local
truncation error will be O(hm+1).
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Global truncation error

The question is how do local truncation errors propagate during
the solution process. Consider the IVP{

x′(t) = f (t, x(t)),
x(0) = s.

Assume that fx(t, x) is continuous and fx(t, x) ≤ λ in [0, T]×R.

To see how the solution is affected by a change in the initial
value s, first write the solution of the IVP as x(t; s). Assume that
x(t; s) is smooth. Then define u(t) := ∂x(t;s)

∂s .

Differentiate the IVP with respect to s, we obtain the variational
equation: {

u′(t) = fx(t, x)u,
u(0) = 1.

Solving for u, we see how a change in s can affect the solution to
the IVP.
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Example

Find u for the following IVP:{
x′(t) = x2,
x(0) = s.

Solution:

Here f (t, x) = x2 ⇒ fx = 2x. The variational equation is:{
u′(t) = 2xu,
u(0) = 1.

Since the solution to the first IVP is x(t) = s(1− st)−1, we then have

u′(t) = 2s(1− st)−1u(t)⇒ u(t) = (1− st)−2.
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Theorem on variational equation

If fx ≤ λ, the solution to the variational equation satisfies |u(t)| ≤ eλt for
t ≥ 0.

Proof: Recall the variational equation{
u′(t) = fx(t, x)u,
u(0) = 1.

From the variational equation,

u′/u = fx = λ− α(t),

where α(t) ≥ 0. Integrating

ln(|u|) = λt−
∫ t

0
α(τ)dτ = λt−A(t).

Since t ≥ 0⇒ A ≥ 0⇒ ln(|u|) ≤ λt⇒ |u| ≤ eλt. □
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Theorem on solution curves

Assume that fx ≤ λ. If the IVP{
x′(t) = f (t, x),
x(0) = s

is solved with initial values s and s + δ, then the solution curves at t differ
by at most |δ|eλt.

Proof: By the MVT, the definition of u, and the above Theorem, we
have

|x(t; s)− x(t; s + δ)| =

∣∣∣∣ ∂

∂s
x(t; s + θδ)

∣∣∣∣ |δ|
= |u(t)||δ| ≤ |δ|eλt.

□
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Theorem on global truncation error bound

If the local truncation errors at t1, t2, · · · , tn do not exceed δ in magnitude,
then the global truncation error at tn does not exceed

δ(enλh − 1)
(eλh − 1)

.

Proof: Let truncation errors of δ1, δ2, · · · be associated with numerical
solution at t1, t2, · · · . In computing x2 there was an error of δ1 in the
initial condition, by above Theorem, the effect at t2 is at most |δ1|eλh.
Thus, the global truncation error at t2 is at most

|δ1|eλh + |δ2|.
The effect of this error at t3 is no greater than

(|δ1|eλh + |δ2|)eλh.

The global truncation error at t3 is at most

(|δ1|eλh + |δ2|)eλh + |δ3|.
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Theorem on global truncation error bound (cont’d)

Continuing in this way, we find that the global truncation error at tn
is no greater than

n

∑
k=1
|δk|e(n−k)λh ≤ δ

n

∑
k=1

e(n−k)λh

= δ
n−1

∑
k=0

e(n−k−1)λh

= δe(n−1)λh
n−1

∑
k=0

e−kλh

= δe(n−1)λh
(1− e−nλh

1− e−λh

)
= δ

enλh − 1
eλh − 1

.

□
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Theorem on global truncation error approximation

If the local truncation errors in the numerical solution are O(hm+1), then
the global truncation error is O(hm).

Proof: By the above Theorem, set δ = O(hm+1). Then

GTE ≤ O(hm+1)
( enz − 1

ez − 1

)
(z := λh)

≈ O(hm+1)
nz
z

(ez = 1 + z +
1
2!

z2 + · · · )

= O(hm+1)
t
h

(nh = t)

= O(hm)t.
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Stiff equations: introduction

Euler’s method for the IVP{
x′(t) = f (t, x),
x(t0) = x0,

is given by
xn+1 = xn + hf (tn, xn) n ≥ 0.

Consider the results of Euler’s method on the simple test
problem: x′(t) = λx and x(0) = 1. The exact solution is
x(t) = eλt.

Solution: Euler’s method produces the numerical solution:

x0 = 1,
xn+1 = xn + hλxn

= (1 + hλ)xn

= · · · = (1 + hλ)n+1x0

=⇒ xn = (1 + hλ)n.
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Stiff equations (cont’d)

For λ < 0, the exact solution is exponentially decaying. The
numerical solution will tend to 0 if and only if
|1 + hλ| < 1⇐⇒ −1 < 1 + hλ < 1⇐⇒ h < −2/λ.

For example, if λ = −20, we have to take h < 0.1. Thus, the
numerical solution must proceed with small steps in a region
where the nature of the exact solution indicates that large steps
may be taken.

0 1 2 3 4 5
−1

−0.5

0

0.5

1

t

x(
t)

x(t) = e−20t
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Implicit Euler’s method

Implicit Euler’s method for the IVP{
x′(t) = f (t, x),
x(t0) = x0,

is given by
xn+1 = xn + hf (tn+1, xn+1) n ≥ 0.

Consider the results of implicit Euler’s method on the problem:
x′(t) = λx and x(0) = 1. The exact solution is x(t) = eλt.

Solution: Implicit Euler’s method produces

x0 = 1,
xn+1 = xn + hλxn+1.
xn+1 = (1− hλ)−1xn.

xn = (1− hλ)−n.

For λ < 0, we have 1− hλ > 1 and then |1− hλ|−1 < 1 ∀ h > 0.

Explicit Euler’s method is cheap but conditionally stable.
Implicit Euler’s method is expensive but unconditionally stable.
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General linear multistep methods

The LMM has the form:

akxn + ak−1xn−1 + · · ·+ a0xn−k = h{bkfn + bk−1fn−1 + · · ·+ b0fn−k}.

When this is applied to the test problem: x′(t) = λx and
x(0) = 1, we obtain

akxn + ak−1xn−1 + · · ·+ a0xn−k = hλ{bkxn + bk−1xn−1 + · · ·+ b0xn−k}.

Thus, our numerical solution will solve the homogeneous linear
difference equation:

(ak− hλbk)xn + (ak−1− hλbk−1)xn−1 + · · ·+ (a0− hλb0)xn−k = 0.
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General linear multistep methods (cont’d)

The solutions of the homogeneous linear difference equation are
determined by the roots of the characteristic polynomial:

φ(z) := (ak − hλbk)z
k + (ak−1 − hλbk−1)z

k−1 + · · ·+ (a0 − hλb0).

e.g., If r is a zero of φ(z), then xn = rn is a solution of the linear
difference equation.

Note that
φ(z) = p(z)− hλq(z),

where

p(z) = akzk + ak−1zk−1 + · · ·+ a1z + a0,

q(z) = bkzk + bk−1zk−1 + · · ·+ b1z + b0.
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A-stability

If λ < 0, then the solution x(t) = eλt of the test problem is
exponentially decaying. It is necessary that all roots of the
polynomial φ = p(z)− hλq(z) lie in the disk |z| < 1. If
λ = µ + iν is complex,

x(t) = eλt = eµteiνt = eµt(cos νt + i sin νt).

In this case, exponential decay means µ < 0.

Definition: We say the LMM is A-stable if the roots of ϕ to be interior
to the unit disk whenever h > 0 and Re(λ) < 0.

Definition: The region of absolute stability of the LMM is the set of
complex numbers ω such that the roots of p−ωq lie in the interior of
the unit disk.

An LMM is A-stable if and only if its region of absolute stability
contains the left half-plane.
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Examples

By definition, the implicit Euler method is A-stable. Another
example is the implicit trapezoid method defined by

xn − xn−1 =
1
2

h{fn + fn−1},

then ϕ(z) = z− 1− λh{ 1
2 z + 1

2}.

Root: z(1− λh
2
) = 1 +

λh
2
⇒ z =

2 + λh
2− λh

.

When h > 0 and Re(λ) < 0, we have |z| < 1⇒ A-stable.

What about the explicit Euler method? Here

xn − xn−1 = hfn−1.

p(z) = z− 1 and q(z) = 1.
ϕ(z) = z− 1− λh = 0⇒ z = 1 + λh⇒ |1 + ω| < 1, a disk of
radius 1 centered at −1. It is not A-stable.
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Remarks

WARNING: If you are not using an A-stable method, you have
to make sure that λh lies in the region of absolute stability for
the method.

An important theorem, due to Dahlquist [1963], states that an
A-stable LMM must be an implicit method, and its order cannot
exceed 2. This result places a severe restriction on A-stable
methods.

The implicit trapezoid rule is often used on stiff equations
because it has the least truncation error among all A-stable
linear multistep methods.
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Homework

Consider the LMM
xn+1 = xn−1 + 2hfn

to approximate the IVP: x′(t) = f (t, x) and x(t0) = x0.

Is the method

stable?

consistent?

convergent?

A-stable?
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A system of first-order differential equations

The standard form for a system of first-order ODEs is given by
x′1(t) = f1(t, x1, x2, · · · , xn),
x′2(t) = f2(t, x1, x2, · · · , xn),

...
x′n(t) = fn(t, x1, x2, · · · , xn).

(⋆)

There are n unknown functions, x1, x2, · · · , xn to be determined. Here
x′i(t) := dxi(t)

dt .
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Example

Consider the system of first-order differential equations:{
x′(t) = x + 4y− et,
y′(t) = x + y + 2et.

The general solution:{
x(t) = 2ae3t − 2be−t − 2et,
y(t) = ae3t + be−t + 1/4et,

where a, b ∈ R. If the system of differential equations with the initial
conditions, e.g., x(0) = 4 and y(0) = 5/4, then the solution is unique,
and {

x(t) = 4e3t + 2e−t − 2et,
y(t) = 2e3t − e−t + 1/4et.
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Vector notation and higher-order ODEs

Vector notation: let X := [x1, x2, · · · , xn]⊤ and
F := [f1, f2, · · · , fn]⊤, where X ∈ Rn and F : Rn+1 → Rn.

Then an IVP associated with the system of ODEs (⋆) is given by{
X′(t) = F(t, X(t)),
X(t0) = X0 ∈ Rn.

A higher-order ODE can be converted to a first-order system.

Consider y(n)(t) = f (t, y, y′, · · · , y(n−1)) and introduce
x1 = y, x2 = y′, · · · , xn = y(n−1). Then we have

x′1(t) = x2,
x′2(t) = x3,

...
x′n−1(t) = xn,

x′n(t) = f (t, x1, x2, · · · , xn).
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Example

Convert the higher-order IVP

(sin t)y′′′ + cos(ty) + sin(y′′ + t2) + (y′)3 = log t

with y(2) = 7, y′(2) = 3, y′′(2) = −4 to a system of 1st-order
equations with initial values.

Solution: Let x1(t) = y(t), x2(t) = y′(t), x3(t) = y′′(t). Then,
x′1(t) = x2,
x′2(t) = x3,
x′3(t) = {log t− x3

2 − sin(t2 + x3)− cos(tx1)}/ sin t,

with x1(2) = 7, x2(2) = 3, x3(2) = −4.
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In-class exercise

Convert the system{
(x′′)2 + tey + y′ = x′ − x,

y′y′′ − cos(xy) + sin(tx′y) = x

to a system of 1st-order equations.
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Taylor-series method for systems

For each variable, use the Taylor-series method

xi(t + h) ≈ xi(t) + hx′i(t) +
h2

2!
x′′i (t) +

h3

3!
x′′′i (t) + · · ·+ hn

n!
x(n)i (t),

or in the vector form

X(t + h) ≈ X(t) + hX′(t) +
h2

2!
X′′(t) +

h3

3!
X′′′(t) + · · ·+ hn

n!
X(n)(t).
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Homework

Write the Taylor-series codes of order 3 for the following IVP using
h = −0.1 and plot the solution −2 ≤ t ≤ 1:{

x′(t) = x + y2 − t3,
y′(t) = y + x3 + cos t

with x(1) = 3 and y(1) = 1.
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Autonomous systems

From the theoretical standpoint, there is no loss of generality in
assuming that the equations in system (⋆) do not contain t
explicitly. We can take x0(t) = t, x′0(t) = 1. Then
x′i = fi(x0, x1, · · · , xn), i = 0, 1, · · · , n, or X′(t) = F(X), where
X(t) = (x0(t), x1(t), · · · , xn(t))⊤.

Example: convert the following IVP to an autonomous system

(sin t)y′′′ + cos(ty) + sin(y′′ + t2) + (y′)3 = log t,

with y(2) = 7, y′(2) = 3, y′′(2) = −4.

Solution: Let x0(t) = t. Then x′0(t) = 1. Let x′1(t) = x2 and
x′2(t) = x3. Then we have

x′0(t) = 1,
x′1(t) = x2,
x′2(t) = x3,
x′3(t) = {log x0 − x3

2 − sin(x2
0 + x3)− cos(x0x1)}/ sin x0,

with the initial condition X(2) = (2, 7, 3,−4)⊤.
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RK4 method for X′(t) = F(X)

For an autonomous system of equations, X′(t) = F(X), we have
4th-order Runge-Kutta method:

X(t + h) ≈ X(t) +
1
6
(F1 + 2F2 + 2F3 + F4),

F1 = hF(X), F2 = hF(X + 1/2F1),
F3 = hF(X + 1/2F2), F4 = hF(X + F3).

In other words, the 4th order RK is defined as

Xk+1 = Xk +
1
6
(F1 + 2F2 + 2F3 + F4), k ≥ 0,

F1 := hF(Xk), F2 := hF(Xk + 1/2F1),
F3 := hF(Xk + 1/2F2), F4 := hF(Xk + F3),

Xk := [x1k, x2k, · · · , xnk]
⊤, xik ≈ xi(t0 + kh) for 1 ≤ i ≤ n.

Other methods, they are all similar to the single equation case.
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Boundary-value problems

For an IVP, the auxiliary conditions are prescribed at the same
point, t = a, e.g.,  x′′(t) = f (t, x, x′),

x(a) = α,
x′(a) = β.

For a boundary-value problem (BVP), the auxiliary conditions
are prescribed at the different points, t = a and t = b, e.g., x′′(t) = f (t, x, x′),

x(a) = α,
x(b) = β.

This particular example is a so-called two-point BVP.
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Existence of solutions

Assume that f is nice function. It is not enough for existence of a
solution. Consider the BVP: x′′(t) = −x,

x(0) = 3,
x(π) = 7.

The general solution is (recall from ODE course)

x(t) = A sin t + B cos t.

Using the boundary conditions, we have

x(0) = 3 ⇒ B = 3,
x(π) = 7 ⇒ B = −7.

No solution!
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Existence of solutions (cont’d)

Note that we could also have infinite number of solutions.
Consider the BVP:  x′′(t) = −x,

x(0) = 0,
x(π) = 0.

The general solution is given by

x(t) = A sin t + B cos t.

Using the boundary conditions,

x(0) = 0 ⇒ B = 0,
x(π) = 0 ⇒ B = 0.

We have
x(t) = A sin t, ∀ A ∈ R.
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Existence and uniqueness theorem (Keller, 1968)

The BVP  x′′(t) = f (t, x),
x(0) = 0,
x(1) = 0

has a unique solution if ∂f
∂x is continuous, nonnegative, and bounded in the

strip 0 ≤ t ≤ 1 and −∞ < x < ∞.

Note: Existence and uniqueness theorems for solutions of the
two-point BVP are more complicated than the IVP.
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Example

Use the previous theorem to show the following BVP has a unique
solution {

x′′(t) = (5x + sin 3x)et,
x(0) = x(1) = 0.

Solution: We have

2 ≤ ∂f
∂x

= (5 + 3 cos 3x)et ≤ 8e

for 0 ≤ t ≤ 1, −∞ < x < ∞, and it is a continuous function,
nonnegative since 3 cos 3x ≥ −3.

=⇒ all assumptions of above theorem are satisfied.

=⇒ the BVP has a unique solution.
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Theorem for more general BVPs

In order to use the above theorem for more general BVPs, we can use
change of variable, e.g., if we have to solve x′′(t) = f (t, x),

x(a) = α,
x(b) = β,

then consider t := a + (b− a)s := a + λs, i.e., s := t−a
b−a . Define

y(s) := x(a + λs),
y′(s) = λx′(a + λs),

y′′(s) = λ2x′′(a + λs) = λ2f (a + λs, y(s)).

BCs: y(0) = x(a) = α and y(1) = x(b) = β.
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First theorem on two-point BVPs

Consider these two-point BVPs: x′′(t) = f (t, x),
x(a) = α,
x(b) = β;

(⋆)

 y′′(s) = λ2f (a + λs, y(s)) := g(s, y(s)),
y(0) = α,
y(1) = β.

(⋆⋆)

If x(t) is a solution of (⋆) then y(s) = x(a + (b− a)s) is a solution of
(⋆⋆).

If y(s) is a solution of (⋆⋆) then x(t) = y((t− a)/(b− a)) is a
solution of (⋆).
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Second theorem on two-point BVPs

Consider these two-point BVPs: y′′(t) = g(t, y),
y(0) = α,
y(1) = β;

(⋆⋆)

 z′′(t) = h(t, z),
z(0) = 0,
z(1) = 0,

(⋆ ⋆ ⋆)

where h(t, z) = g(t, z + α + (β− α)t).

If z solves (⋆ ⋆ ⋆) then y(t) = z(t) + α + (β− α)t solves (⋆⋆).

If y solves (⋆⋆) then z(t) = y(t)− {α + (β− α)t} solves (⋆ ⋆ ⋆).
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Example

Convert the following two-point BVP to an equivalent one with 0
boundary values on [0, 1]:{

x′′(t) = x2 + 3− t2 − xt,
x(3) = 7, x(5) = 9.

Solution: By the first theorem, we have{
y′′(t) = g(t, y),
y(0) = 7, y(1) = 9,

g(t, y) = (5− 3)2f (3 + 2t, y) = 4{y2 + 3− (3 + 2t)2 − y(3 + 2t)}. By
the second theorem, we get{

z′′(t) = h(t, z),
z(0) = 0, z(1) = 0,

h(t, z) = g(t, z + 7 + 2t)
= 4{(z + 7 + 2t)2 + 3− (3 + 2t)2 + (z + 7 + 2t)(3 + 2t)}.
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Finite-difference methods: linear case

Consider the linear BVP x′′(t) = u(t) + v(t)x + w(t)x′,
x(a) = α,
x(b) = β.

Recall that

x′(t) =
1

2h

(
x(t + h)− x(t− h)

)
− h2

6
x′′′(ξ),

x′′(t) =
1
h2

(
x(t + h)− 2x(t) + x(t− h)

)
− h2

12
x(4)(ξ).

Let ti = a + ih, where 0 ≤ i ≤ n + 1, and h = (b− a)/(n + 1).

Set ui = u(ti), vi = v(ti), wi = w(ti) and use yi ≈ x(ti).
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Finite-difference methods: linear case (cont’d)

Then the differential equation is approximated by(
yi+1 − 2yi + yi−1

h2

)
= ui + viyi + wi

(
yi+1 − yi−1

2h

)
.

Multiply by −h2 and rearrange to obtain
(−1− 1

2 hwi)yi−1 + (2 + h2vi)yi + (−1 + 1
2 hwi)yi+1 = −h2ui,

i = 1, 2, · · · n,
y0 = α,

yn+1 = β.

Let
ai = −1− 1

2
hwi+1, 0 ≤ i ≤ n− 1,

di = 2 + h2vi, 1 ≤ i ≤ n,

ci = −1 +
1
2

hwi, 1 ≤ i ≤ n,

bi = −h2ui, 1 ≤ i ≤ n.
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A system of linear equations

We obtain

d1 c1
a1 d2 c2

a2 d3 c3
. . . . . . . . .

an−2 dn−1 cn−1
an−1 dn





y1
y2
y3
...

yn−1
yn


=



b1 − a0α
b2
b3
...

bn−1
bn − cnβ


.

This is a tridiagonal system, and can be solved by a special
Gaussian algorithm. Also the matrix is strictly diagonally
dominant if vi > 0 and h is small enough so that | 12 hwi| < 1,
which implies that Gaussian elimination algorithm does not
require pivoting.

Note that we have the following equality:

|di|− |ci|− |ai−1| = 2+ h2vi− (1− 1
2

hwi)− (1+
1
2

hwi) = h2vi > 0.
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Existence-uniqueness theorem (Keller, 1968)

The BVP  x′′(t) = f (t, x, x′),
c11x(a) + c12x′(a) = c13,
c21x(b) + c22x′(b) = c23

has a unique solution on the interval [a, b] provided that

f and its first partial derivatives ft, fx and fx′ are continuous on
D = [a, b]×R×R;

fx > 0, |fx| ≤ M and |fx′ | ≤ M on D;

|c11|+ |c12| > 0, |c21|+ |c22| > 0, |c11|+ |c21| > 0 and
c11c12 ≤ 0 ≤ c21c22.
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Convergence analysis

Let us go back to the linear BVP: x′′(t) = u(t) + v(t)x + w(t)x′,
x(a) = α,
x(b) = β.

Assume that u, v, w ∈ C1[a, b] and v > 0. Then the BVP has a
unique solution.

We wish to estimate |x(ti)− yi| as h→ 0, where x(ti) is the exact
solution at ti and yi is the corresponding discrete solution, which
depends on h.
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Convergence analysis (cont’d)

The exact solution x(t) satisfies the following system:(
x(ti−1)− 2x(ti) + x(ti+1)

h2

)
− 1

12
h2x(4)(τi)

= ui + vix(ti) + wi

(
x(ti+1)− x(ti−1)

2h

)
− 1

6
h2x(3)(ηi).

The discrete solution yi satisfies the following system:(
yi−1 − 2yi + yi+1

h2

)
= ui + viyi + wi

(
yi+1 − yi−1

2h

)
.

Subtracting above system from the first and writing
ei = x(ti)− yi, we obtain(

ei−1 − 2ei + ei+1

h2

)
= viei + wi

(
ei+1 − ei−1

2h

)
+ h2gi,

where gi := 1
12 x(4)(τi)− 1

6 x(3)(ηi).
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Convergence analysis (cont’d)

After multiplying by −h2 and collecting terms, we have

(−1− 1
2

hwi)ei−1 + (2 + h2vi)ei + (−1 +
1
2

hwi)ei+1 = −h4gi.

This is identical to the matrix problem we have for the discrete
problem. Using the coefficients introduced earlier, we write this
in the form

ai−1ei−1 + diei + ciei+1 = −h4gi. (⋆)

Let λ = ∥e∥∞ and take an index i such that |ei| = ∥e∥∞ = λ,
where e = (e1, e2, · · · , en)⊤. From (⋆), we get

|di||ei| ≤ h4|gi|+ |ci||ei+1|+ |ai−1||ei−1|.

Note that di = 2 + h2vi > 0.
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Convergence analysis (cont’d)

From the previous slide, we have

|di||ei| ≤ h4|gi|+ |ci||ei+1|+ |ai−1||ei−1|.

Hence, we obtain

|di|λ ≤ h4∥g∥∞ + |ci|λ + |ai−1|λ,

λ
(
|di| − |ci| − |ai−1|

)
≤ h4∥g|∞,

h2viλ ≤ h4∥g∥∞,

∥e∥∞ ≤ h2(∥g∥∞/ inf v(t)
)
.

Note that ∥g∥∞ ≤ ∥x(4)∥∞/12 + ∥x(3)∥∞/6. The expression
∥g∥∞/ inf v(t) is a bound independent of h. Thus, we see that
∥e∥∞ is O(h2).
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Collocation method

Suppose that we have a linear differential operator L and we wish to
solve the equation:

Lu(t) = f (t), a < t < b,
where f is given and u is sought.

Let {v1, v2, · · · , vn} be a set of functions that are linearly
independent. Suppose that

u(t) ≈ c1v1(t) + c2v2(t) + · · ·+ cnvn(t), ci ∈ R.

Then solve L(∑j=1 cjvj(t)) = f (t). How to determine cj?

Let ti, i = 1, 2, · · · , n, be n prescribed points (collocation points)
in the domain of u and f . Then we require the following
equations to determine cj, j = 1, 2, · · · , n:

n

∑
j=1

cj(Lvj)(ti) = f (ti), i = 1, 2, · · · , n.

This is a system of n linear equations in n unknowns cj. The
functions vj and the points ti should be chosen so that the matrix
with entries (Lvj)(ti) is nonsingular.
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Collocation method for Sturm-Liouville BVPs

Consider a Sturm-Liouville two-point BVP: u′′(t) + p(t)u′(t) + q(t)u(t) = f (t), 0 < t < 1,
u(0) = 0,
u(1) = 0,

(⋆)

where p, q, f are given continuous functions on [0, 1]

Let Lu := u′′ + pu′ + qu. Define the vector space

V = {u ∈ C2(0, 1) ∩ C[0, 1] : u(0) = u(1) = 0}.

If u is an exact solution of (⋆), then u ∈ V.

One set of functions is given by

vjk(t) = tj(1− t)k ∈ C2[0, 1], 1 ≤ j ≤ m, 1 ≤ k ≤ n.
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Variational formulation of a 1-dim model problem

Consider the following two-point boundary value problem (BVP):{
−u′′(x) = f (x), 0 < x < 1,
u(0) = u(1) = 0, (D)

where f is a given function in C[0, 1].

Remark: Problem (D) has a unique classical solution
u ∈ C2(0, 1) ∩ C[0, 1].
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Some notation and definitions

Define (v, w) :=
∫ 1

0 v(x)w(x)dx for real-valued piecewise
continuous and bounded functions v and w on [0, 1].

Define V := {v| v ∈ C[0, 1], v(0) = v(1) = 0, v′ is piecewise
continuous and bounded on [0, 1]}.

F : V → R,
F(v) := 1

2 (v
′, v′)− (f , v) = 1

2

∫ 1
0 (v
′(x))2dx−

∫ 1
0 f (x)v(x)dx.

(represents the total potential energy)

Define the following minimization and variational problems:

Find u ∈ V such that F(u) ≤ F(v), ∀ v ∈ V. (M)

Find u ∈ V such that (u′, v′) = (f , v), ∀ v ∈ V. (V)
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(D)⇒ (V)

The solution of problem (D) is also a solution of problem (V):

∵ −u′′(x) = f (x), 0 < x < 1.

∴
∫ 1

0 −u′′(x)v(x)dx =
∫ 1

0 f (x)v(x)dx, ∀ v ∈ V.

∴ (−u′′, v) = (f , v), ∀ v ∈ V.

∴ (u′, v′)− u′(x)v(x)
∣∣∣1
0
= (f , v), ∀ v ∈ V. (integration by parts)

∴ (u′, v′) = (f , v), ∀ v ∈ V.
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(V)⇔ (M)

Problems (V) and (M) have the same solutions:

(V)⇒ (M): Let u be a solution of problem (V). Let v ∈ V and w = v− u ∈ V.
Then v = u + w and

F(v) = F(u + w) =
1
2
((u + w)′, (u + w)′)− (f , u + w)

=
1
2
(u′, u′) + (u′, w′) +

1
2
(w′, w′)− (f , u)− (f , w)

=
1
2
(u′, u′) +

1
2
(w′, w′)− (f , u)

≥ 1
2
(u′, u′)− (f , u) = F(u).

(M)⇒ (V): Let u be a solution of problem (M). Then for any v ∈ V, ε ∈ R, we
have F(u) ≤ F(u + εv), since u + εv ∈ V. Define

g(ε) := F(u + εv) =
1
2
((u + εv)′, (u + εv)′)− (f , u + εv)

=
1
2
(u′, u′) +

1
2

ε2(v′, v′) + ε(u′, v′)− (f , u)− ε(f , v).

∵ g′(ε) = (u′, v′) + ε(v′, v′)− (f , v) and g′(0) = 0.
∴ 0 = g′(0) = (u′, v′)− (f , v).
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Both problems (V) & (M) have at most one solution

It suffices to prove that problem (V) has at most one solution.
Suppose that u1 and u2 are solutions of problem (V). Then

(u′1, v′) = (f , v) ∀ v ∈ V,
(u′2, v′) = (f , v) ∀ v ∈ V.

∴ (u′1 − u′2, v′) = 0 ∀ v ∈ V.

Taking v = u1 − u2, we have (u′1 − u′2, u′1 − u′2) = 0.

∴
∫ 1

0 (u
′
1(x)− u′2(x))

2dx = 0.

∴ u′1(x)− u′2(x) = 0, x ∈ [0, 1] a.e.

∴ u1 − u2 is a step function on [0, 1].

∵ u1 − u2 is continuous on [0, 1].

∴ u1 − u2 is a constant function on [0, 1].

∵ u1(0) = u1(1) = 0 and u2(0) = u2(1) = 0.

∴ u1 − u2 ≡ 0 on [0, 1].

That is, u1(x) = u2(x), ∀ x ∈ [0, 1].
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(V) + smoothness⇒ (D)

Let u be a solution of problem (V). Then (u′, v′) = (f , v), ∀ v ∈ V.

∴
∫ 1

0 u′(x)v′(x)dx−
∫ 1

0 f (x)v(x)dx = 0, ∀ v ∈ V.

Suppose that u′′ exists and continuous on [0, 1], i.e., u ∈ C2[0, 1].

Then −
∫ 1

0 u′′(x)v(x)dx−
∫ 1

0 f (x)v(x)dx = 0, ∀ v ∈ V.

∴ −
∫ 1

0 (u
′′(x) + f (x))v(x)dx = 0, ∀ v ∈ V.

By the sign-preserving property for continuous functions, we can
conclude that
u′′(x) + f (x) = 0, ∀ x ∈ [0, 1].

∴ u is a solution of problem (D).
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FEM for the model problem with piecewise linear functions

Construct a finite-dimensional space Vh (finite element space):

Let 0 = x0 < x2 < · · · < xM < xM+1 = 1 be a partition of [0, 1].

[Insert partition figure here!]

Define

Ij := [xj−1, xj], j = 1, 2, · · · , M + 1.

hj := xj − xj−1, j = 1, 2, · · · , M + 1.

h := max
j=1,2,··· ,M+1

hj. (a measure of how fine the partition is)

Define

Vh := {vh ∈ V| vh is linear on each subinterval Ij, vh(0) = vh(1) = 0}.

Notice that Vh ⊆ V.
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Construct a basis of Vh

Here is a typical vh ∈ Vh:

[Insert vh figure here!]

For j = 1, 2, · · · , M, we define φj ∈ Vh such that

φj(xi) =

{
1 if i = j,
0 if i ̸= j.

[Insert φj figure here!]

Then we have

{φj}M
j=1 is a basis of the finite-dimensional vector space Vh.

For each vh ∈ Vh, vh can be written as a unique linear

combination of φj’s: vh(x) =
M

∑
j=1

ηj φj(x), where ηj = vh(xj).
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Numerical methods for solution of problem (D)

We now define the following two numerical methods for
approximating the solution of problem (D):

Ritz method:

Find uh ∈ Vh such that F(uh) ≤ F(vh), ∀ vh ∈ Vh. (Mh)

Galerkin method (finite element method):

Find uh ∈ Vh such that (u′h, v′h) = (f , vh), ∀ vh ∈ Vh. (Vh)

One can claim that (Mh)⇔ (Vh).
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(Vh)⇔ Find uh ∈ Vh such that (u′h, φ′i) = (f , φi), 1 ≤ i ≤ M⇔ Aξ = b

(Vh)⇐⇒ Find uh ∈ Vh such that (u′h, φ′i) = (f , φi), 1 ≤ i ≤ M.

Proof.

(⇒): trivial!

(⇐): For any vh ∈ Vh, we have vh = ∑M
i=1 ηi φi, for some ηi ∈ R, 1 ≤ i ≤ M.

∴ (u′h, v′h) = (u′h,
M

∑
i=1

ηi φ
′
i) =

M

∑
i=1

ηi(u′h, φ′i)

=
M

∑
i=1

ηi(f , φi) = (f ,
M

∑
i=1

ηi φi) = (f , vh).

Find uh ∈ Vh such that (u′h, φ′i) = (f , φi), 1 ≤ i ≤ M⇐⇒ Aξ = b.

Proof. Let uh(x) =
M

∑
j=1

ξj φj(x), where ξj = uh(xj), 1 ≤ j ≤ M, are unknown. Then

(u′h, φ′i) = (f , φi), 1 ≤ i ≤ M⇔ (
M

∑
j=1

ξj φ
′
j , φ′i) = (f , φi), 1 ≤ i ≤ M

⇔
M

∑
j=1

ξj(φ′j , φ′i) = (f , φi), 1 ≤ i ≤ M⇔ Aξ = b.
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Aξ = b

A = (aij)M×M: stiffness matrix; b = (bi)M×1: load vector; ξ = (ξi)M×1:
unknown vector.

(φ′1, φ′1) (φ′2, φ′1) · · · (φ′M, φ′1)
(φ′1, φ′2) (φ′2, φ′2) · · · (φ′M, φ′2)

...
...

...
...

(φ′1, φ′M) (φ′2, φ′M) · · · (φ′M, φ′M)




ξ1
ξ2
...

ξM

 =


(f , φ1)
(f , φ2)

...
(f , φM)

 .
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Some remarks

∵ (φ′j , φ′i) = 0 if |i− j| > 1 ∴ A is a tri-diagonal matrix.

∵ aij = (φ′j , φ′i) = (φ′i , φ′j) = aji ∴ A is symmetric!

Claim: A is positive definite.
For any given η = (η1, η2, · · · , ηM)⊤ ∈ RM, define

vh(x) :=
M

∑
i=1

ηi φi(x). Then

0 ≤ (v′h, v′h) = (
M

∑
i=1

ηi φ
′
i ,

M

∑
j=1

ηj φ
′
j) =

M

∑
i,j=1

ηi(φ′i , φ′j)ηj = η ·Aη.

If (v′h, v′h) = 0, then
∫ 1

0 (v
′
h(x))

2dx = 0. =⇒ v′h(x) = 0 a.e.

∵ vh ∈ Vh, vh is continuous on [0, 1] and vh(0) = vh(1) = 0.

∴ vh ≡ 0 on [0, 1], i.e., η = 0. ∴ η ·Aη > 0, ∀ η ∈ RM, η ̸= 0.

∵ A is SPD ∴ A is nonsingular ∴ Aξ = b has a unique solution!
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Evaluate ajj and aj−1,j

[Insert a figure of φj−1 and φj here!]

For j = 1, 2, · · · , M, we have

(φ′j , φ′j) =
∫ xj

xj−1

(φ′j)
2dx +

∫ xj+1

xj

(φ′j)
2dx

=
∫ xj

xj−1

1
h2

j
dx +

∫ xj+1

xj

1
h2

j+1
dx =

1
hj

+
1

hj+1
,

(φ′j , φ′j−1) = (φ′j−1, φ′j) = −
∫ xj

xj−1

1
h2

j
dx = − 1

hj
.

For uniform partition: hj = h = 1−0
M+1 . Then Aξ = b becomes

1
h


2 −1 0 · · · 0
−1 2 −1 · · · 0

...
...

...
...

...
0 · · · 0 −1 2




ξ1
ξ2
...

ξM

 =


(f , φ1)
(f , φ2)

...
(f , φM)

 .
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Taylor’s theorem with Lagrange remainder

If f ∈ Cn[a, b] and f (n+1) exists on (a, b), then for any points c and x in
[a, b] we have

f (x) = Pn(x) + En(x),

where the n-th Taylor polynomial Pn(x) is given by

Pn(x) =
n

∑
k=0

1
k!

f (k)(c)(x− c)k

and the remainder (error) term En(x) is given by

En(x) =
1

(n + 1)!
f (n+1)(ξ)(x− c)n+1

for some point ξ between c and x (means that either c < ξ < x or
x < ξ < c).
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Numerical differentiation

Assume that u ∈ C4[0, 1] and 0 = x0 < x2 < · · · < xM < xM+1 = 1 is a uniform
partition of [0, 1]. Then hj = h = 1−0

M+1 for j = 1, 2, · · · , M + 1.
For i = 1, 2, · · · , M, we have

u(xi + h) = u(xi) + u′(xi)h + 1
2 u′′(xi)h2 + 1

6 u(3)(xi)h3 + 1
24 u(4)(ξi1)h4,

u(xi − h) = u(xi)− u′(xi)h + 1
2 u′′(xi)h2 − 1

6 u(3)(xi)h3 + 1
24 u(4)(ξi2)h4,

for some ξi1 ∈ (xi, xi + h) and ξi2 ∈ (xi − h, xi).

∴ u(xi + h) + u(xi − h) = 2u(xi) + u′′(xi)h2 + 1
24 {u(4)(ξi1) + u(4)(ξi2)}h4.

∴ u′′(xi) =
1
h2 {u(xi + h)− 2u(xi) + u(xi − h)} − 1

24 h2{u(4)(ξi1) + u(4)(ξi2)}.

∵ u ∈ C4[0, 1] and 1
2 {u(4)(ξi1) + u(4)(ξi2)} between u(4)(ξi1) and u(4)(ξi2).

∴ By IVT, ∃ ξi between ξi1 and ξi2 (⇒ ξi ∈ (xi − h, xi + h)) such that

u(4)(ξi) =
1
2 {u(4)(ξi1) + u(4)(ξi2)}.

∴ u′′(xi) =
1
h2 {u(xi + h)− 2u(xi) + u(xi − h)} − 1

12 h2u(4)(ξi),

for some ξi ∈ (xi − h, xi + h).
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Finite difference method for problem (D)

Consider the BVP:{
−u′′(x) = f (x), 0 < x < 1,
u(0) = u(1) = 0. (D)

For i = 1, 2, · · · , M, we have

− 1
h2 {u(xi + h)− 2u(xi) + u(xi − h)}+ 1

12 h2u(4)(ξi) = f (xi).

⇒− 1
h2 {u(xi+1)− 2u(xi) + u(xi−1)}+ 1

12 h2u(4)(ξi) = f (xi).

We wish to find Ui ≃ u(xi) for i = 1, 2, · · · , M and U0 = UM+1 := 0
such that

− 1
h2 {U0 − 2U1 + U2)} = f (x1). (i = 1)

− 1
h2 {U1 − 2U2 + U3)} = f (x2). (i = 2)

...

− 1
h2 {UM−1 − 2UM + UM+1)} = f (xM). (i = M)
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Finite difference method for problem (D) (cont’d)

Finally, we reach at the following linear system:

1
h2


2 −1 0 · · · 0
−1 2 −1 · · · 0

...
...

...
...

...
0 · · · 0 −1 2




U1
U2
...

UM

 =


f (x1)
f (x2)

...
f (xM)

 .

A comparison: what is the difference between FEM with piecewise
linear basis functions and FDM for problem (D)? Answer: They are
essentially the same!

Consider the first component in the right hand side:

Finite difference method: h2f (x1).

Finite element method:

h(f , φ1) = h
∫ x2

x0

f (x)φ1(x)dx ≃ hf (x1)
∫ x2

x0

φ1(x)dx = h2f (x1).
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Homework

Consider the following 1-D reaction-convection-diffusion problem:{
−εu′′(x) + u′(x) + u(x) = 1 for x ∈ (0, 1),
u(0) = 0, u(1) = 0. (⋆)

Write the computer codes for numerical solution of problem (⋆) by
using the following methods on the uniform mesh of [0, 1] with mesh
size h:

Finite difference methods:

Replace u′′(xi) ≈
Ui+1−2Ui+Ui−1

h2 and u′(xi) ≈
Ui+1−Ui−1

2h with
(ε, h) = (0.01, 0.1) and (ε, h) = (0.01, 0.01). Plot uh.
Replace u′′(xi) ≈

Ui+1−2Ui+Ui−1
h2 and u′(xi) ≈

Ui−Ui−1
h

(upwinding) with (ε, h) = (0.01, 0.1) and
(ε, h) = (0.01, 0.01). Plot uh.

Finite element method: use piecewise linear finite elements
with (ε, h) = (0.01, 0.1) and (ε, h) = (0.01, 0.01). Plot uh.
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