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What are PDEs?

Most physical phenomena in fluid dynamics, heat transfer,
electricity, magnetism, or mechanics can be described in general
by partial differential equations (PDEs).

A PDE is an equation that contains partial derivatives and can
be written in the form of

F(x1, x2, · · · , xn, ux1 , ux2 , · · · , uxn , ux1x1 , ux1x2 , · · · ) = 0.

u(x1, x2, · · · , xn) is a function of n variables
x = (x1, x2, · · · , xn)⊤ ∈ Rn, where u is called the dependent
variable and xi is called the independent variable.

uxi =
∂u
∂xi

is the partial derivative of u in the xi direction.

A PDE may have one solution, many solutions, or no solution.

Some constrains are often added to the PDE so that the solution
is unique. These are often called boundary or initial conditions.
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Kinds of PDEs

Linearity:

F(· · · ) = ux1x1 + x1ux2x2 is linear.
F(· · · ) = ux1x1 + x1ux2x2 + u2 is nonlinear.

Order of the PDEs: The order of the highest derivative that
occurs in F is called the order of the PDE. For example,

ut = uxx, second order.
ut = uuxxx + sin x, third order.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Numerical PDEs – 3/30



Second-order linear equations in two variables

Second-order linear equation in two variables takes a general form of

Aux1x1 + Bux1x2 + Cux2x2 + Dux1 + Eux2 + Fu = G.

Parabolic: parabolic equations describe heat flow and diffusion
processes and satisfy B2 − 4AC = 0. For example,
heat equation: ut = uxx.

Hyperbolic: hyperbolic equations describe vibrating system and
wave motion and satisfy B2 − 4AC > 0. For example,
wave equation: utt = uxx.

Elliptic: elliptic equations describe steady-state phenomena and
satisfy B2 − 4AC < 0. For example,
Poisson’s equation: −(uxx + uyy) = f (x, y).
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Application of Poisson’s equation in heat transfer

Let Ω be an open and bounded domain with boundary ∂Ω. Consider

−(ux1x1 + ux2x2) = f (x1, x2) on Ω

is used for describing steady state temperature distribution of some
material. Three types of boundary conditions:

Dirichlet condition: u = g(s) on ∂Ω, temperature specified on
the boundary.

Neumann condition:
∂u
∂n

= h(s) on ∂Ω, n is an outward unit
normal vector, heat flow across the boundary (flux) specified.

Note that
∂u
∂n

= ∇u · n.

Mixed condition:
∂u
∂n

+ λu = g(s) on ∂Ω.
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1-D Heat equation

Initial-boundary value problem (IBVP): find u(x, t) such that
ut = uxx t > 0, 0 < x < 1,

u(x, 0) = g(x) 0 ≤ x ≤ 1,
u(0, t) = a(t) t ≥ 0,
u(1, t) = b(t) t ≥ 0.

Notations: u(x, t): unknown temperature in the rod, x is spatial

coordinates and t is time, uxx =
∂2u
∂x2 and ut =

∂u
∂t

.
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Finite difference method

Let {
tj = jk j ≥ 0,
xi = ih 0 ≤ i ≤ n + 1.

Note that k ̸= h in general.

Recall some finite difference approximations:

f ′(x) ≈ 1
h

(
f (x + h)− f (x)

)
,

f ′(x) ≈ 1
2h

(
f (x + h)− f (x− h)

)
,

f ′′(x) ≈ 1
h2

(
f (x + h)− 2f (x) + f (x− h)

)
.
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Finite difference method: explicit method

Let v ≈ u. Then

1
k

(
v(x, t + k)− v(x, t)

)
=

1
h2

(
v(x + h, t)− 2v(x, t) + v(x− h, t)

)
.

By defining vij = v(xi, tj), we have

1
k

(
vi,j+1 − vi,j

)
=

1
h2

(
vi+1,j − 2vi,j + vi−1,j

)
.

Rewrite the above equation to obtain

vi,j+1 =
k
h2

(
vi+1,j − 2vi,j + vi−1,j

)
+ vi,j

or
vi,j+1 =

(
svi−1,j + (1− 2s)vi,j + svi+1,j

)
,

with s = k/h2.
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Algorithm

input n , k , M

h← 1
n+1 and s← k

h2

wi = g(ih) (0 ≤ i ≤ n + 1)

t← 0
output 0, t, (w0, w1, · · · , wn+1)

for j = 1 to M do

v0 ← a(jk) and vn+1 ← b(jk)

for i = 1 to n do

vi =
(
swi−1 + (1− 2s)wi + swi+1

)
end do

t← jk

output j , t , (v0, v1, · · · , vn+1)

(w1, w2, · · · , wn)← (v1, v2, · · · , vn)

end do
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Stability analysis

Assume that a(t) = b(t) = 0. At tj = jk, define
Vj = (v1,j, v2,j, · · · , vn,j)

⊤. Then the explicit difference equations
becomes Vj+1 = AVj, where

A =



1− 2s s
s 1− 2s s

s 1− 2s s
. . . . . . . . .

s 1− 2s s
s 1− 2s


.

Note that v0,j = vn+1,j = 0. We know that exact solution
approaches 0 as t→ ∞ and therefore the temperature will
reduce to zero as t→ ∞.
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Stability analysis (cont’d)

For the numerical approximation,

Vj+1 = AVj = A(AVj−1) = · · · = Aj+1V0.

Recall the following two statements are equivalent (see Section
4.6, p. 215)

(1) limj→∞ AjV = 0 for all vectors V ∈ Rn.
(2) ρ(A) < 1, where ρ(A) is the spectral radius of matrix A.

So s = k/h2 should be chosen such that ρ(A) < 1.

The eigenvalues of A are: λj = 1− 2s(1− cos θj), where

θj =
jπ

n+1 , 1 ≤ j ≤ n.

For ρ(A) < 1 we require −1 < 1− 2s(1− cos θj) < 1.

This is true if and only if s < (1− cos θj)
−1.
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Stability analysis (cont’d)

The greatest restriction on s occurs when cos θj = −1, which
does not happen since the largest θj=n = nπ

n+1 . So we have

0 < s ≤ 1/2 (i.e., k/h2 ≤ 1/2)⇐⇒ k ≤ h2

2 .

For example, h = 0.01 =⇒ k ≤ 5× 10−5 ⇒ For 0 ≤ t ≤ 10, the
number of time step: 0.5× 106.

Open question: Find eigenvalue of A. Note A = I− sB, where

B =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2


If xi is an eigenvector of B with eigenvalue µi then

(I− sB)xi = xi − sµixi = (1− sµi)xi = Axi.

Hence λi = 1− sµi is an eigenvalue of A.
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Lemma on tridiagonal matrix eigenvalues and eigenvectors

Let x = (sin θ, sin 2θ, · · · , sin nθ)⊤. If θ = jπ
n+1 , then x is an eigenvector of

B corresponding to the eigenvalue 2− 2 cos θ.

Proof: see textbook, page 621.
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Finite difference method: implicit method

We continue to study the initial-boundary value problem: find
u(x, t) such that

ut = uxx t > 0, 0 < x < 1,
u(x, 0) = g(x) 0 ≤ x ≤ 1,
u(0, t) = 0 t ≥ 0,
u(1, t) = 0 t ≥ 0.

The finite-difference equation :

1
k

(
v(x, t)− v(x, t− k)

)
=

1
h2

(
v(x + h, t)− 2v(x, t) + v(x− h, t)

)
.

=⇒ 1
k

(
vi,j − vi,j−1

)
=

1
h2

(
vi+1,j − 2vi,j + vi−1,j

)
.

Let s = k
h2 and rearrange to obtain

−svi+1,j + (1 + 2s)vi,j − svi−1,j = vi,j−1, for 1 ≤ i ≤ n.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Numerical PDEs – 14/30



Stability analysis

Let Vj = (v1,j, v2,j, · · · , vn,j)
⊤ then the method can be written as

AVj = Vj−1, where A is given by

A =



1 + 2s −s
−s 1 + 2s −s

. . .
. . .
−s 1 + 2s

 .

Solve Vj = A−1Vj−1 = A−1A−1Vj−2 · · · = A−jV0.

V0 is known, u(ih, 0) initial condition. Here we need ρ(A−1) < 1
for stability.
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Stability analysis (cont’d)

Since A = I + sB, where

B =



2 −1
−1 2 −1

. . .
. . .
−1 2

 ,

the eigenvalues of A are given by λi = 1 + sµi
= 1 + 2s(1− cos θi) with θi =

iπ
n+1 , 1 ≤ i ≤ n.

Clearly, λi > 1, since λi = 1 + 2s(1− cos θi)

=⇒ λi > 1⇒ ρ(A−1) < 1.

=⇒ The method is stable for all h and k.

Note that we need to solve a tridiagonal system of linear
equation to advance each time step (use subroutine §4.3 to solve
tridiagonal).
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Algorithm

input n, k, M

h← 1
n+1 , s← k

h2 , vi = g(ih) (1 ≤ i ≤ n), t← 0

output 0, t, (v1, v2, · · · , vn)

for i = 1 to n− 1 do

ci = −s and ai = −s

end do

for j = 1 to M do

for i = 1 to n do

di = 1 + 2s

end do

call tri(n, a, d, c, v; v)

t← jk

output j, t, (v1, v2, · · · , vn)

end do
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Crank-Nicolson method

We can combine the previous two methods into a θ-method:

θ

h2

(
vi+1,j − 2vi,j + vi−1,j

)
+

1− θ

h2

(
vi+1,j−1 − 2vi,j−1 + vi−1,j−1

)
=

1
k

(
vi,j − vi,j−1

)
.

θ = 0 =⇒ explicit method.

θ = 1 =⇒ implicit method.

θ = 1/2 =⇒ Crank-Nicolson (CN).
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Crank-Nicolson method (cont’d)

Taking s = k
h2 and rewriting the CN method, we obtain

−svi−1,j +(2+ 2s)vi,j− svi+1,j = svi−1,j−1 +(2+ 2s)vi,j−1 + svi+1,j−1.

Again, let Vj = (v1,j, v2,j, · · · , vn,j)
⊤ and

B =



2 −1
−1 2 −1

. . .
. . .
−1 2

 .

The method can be written in the matrix form

(2I + sB)Vj = (2I− sB)Vj−1.
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Stability analysis

For stability, we need ρ((2I + sB)−1(2I− sB)) < 1.

Set A = (2I + sB)−1(2I− sB) with Vj = AVj−1. If xi is an
eigenvector of B then

(2I− sB)xi = 2xi − sBxi

= 2xi − sµixi

= (2− sµi)xi.

(2I + sB)−1(2I− sB)xi = (2I + sB)−1(2− sµi)xi = · · ·

=⇒ xi is also an eigenvector of A with eigenvalues 2−sµi
2+sµi

.

To have ρ((2 + sB)−1(2− sB)) < 1, we get it if
|(2 + sµ)−1(2− sµ)| < 1.
Because µi = 2(1− cos θi), we see that 0 < µi < 4.

Thus | 2−sµi
2+sµi

| < 1, ∀s = k
h2 .

So, the CN method is an unconditionally stable method.
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Error analysis

Recall the explicit method

vi,j+1 = s(vi−1,j − 2vi,j + vi+1,j) + vi,j.

Let ui,j be the exact solution at (xi, tj). Then

ei,j = ui,j − vi,j.

We replace v by u− e to obtain

ui,j+1 − ei,j+1 = s(ui−1,j − 2ui,j + ui+1,j) + ui,j

−s(ei−i,j − 2ei,j + ei+1,j)− ei,j.
ei,j+1 = (sei−1,j + (1− 2s)ei,j + sei+1,j)

−s(ui−1,j − 2ui,j + ui+1,j) + (ui,j+1 − ui,j).
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Error analysis (cont’d)

Using these formulas,

f ′′(x) =
1
h2

(
f (x + h)− 2f (x) + f (x− h)

)
− h2

12
f (4)(ξ),

g′(t) =
1
k

(
g(t + k)− g(t)

)
− k

2
g′′(τ),

with sh2 = k and uxx = ut, we obtain

ei,j+1 = (sei−1,j + (1− 2s)ei,j + sei+1,j)− s(h2uxx(xi, tj) +
h4

12
uxxxx(ξi, tj))

+(kut(xi, tj) +
k2

2
utt(xi, τj)),

⇒ ei,j+1 = (sei−1,j + (1− 2s)ei,j + sei+1,j)

−kh2(
1
12

uxxxx(ξi, tj)−
s
2

utt(xi, τj)).
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Error analysis (cont’d)

Let us confine (x, t) to the compact set

S = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T}.

Put M =
1

12
max

S
|uxxxx(x, t)|+ 1

2
max

S
|utt(x, t)|,

Ej = (e1,j, e2,j, · · · , en,j)
⊤, ∥Ej∥∞ = max

1≤i≤n
|eij|.

We assume 1− 2s ≥ 0:

|ei,j+1| ≤ s|ei−1,j|+ (1− 2s)|eij|+ s|ei+1,j|+ kh2M

≤ s∥Ej∥∞ + (1− 2s)∥Ej∥∞ + s∥Ej∥∞ + kh2M

≤ ∥Ej∥∞ + kh2M.

Hence,

∥Ej+1∥∞ ≤ ∥Ej∥∞ + kh2M ≤ ||Ej−1||∞ + 2kh2M

≤ · · · ≤ ∥E0∥∞ + (j + 1)kh2M.

=⇒ ∥Ej∥∞ ≤ jkh2M =⇒ ∥Ej∥∞ ≤ Th2M = O(h2).
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Numerical differentiation

Assume that u ∈ C4[a, b] and a = x0 < x1 < · · · < xM < xM+1 = b is a
uniform partition of [a, b]. Then hj = h = b−a

M+1 for j = 1, 2, · · · , M + 1.
For i = 1, 2, · · · , M, we have

u(xi + h) = u(xi) + u′(xi)h + 1
2 u′′(xi)h2 + 1

6 u(3)(xi)h3 + 1
24 u(4)(ξi1)h4,

u(xi − h) = u(xi)− u′(xi)h + 1
2 u′′(xi)h2 − 1

6 u(3)(xi)h3 + 1
24 u(4)(ξi2)h4,

for some ξi1 ∈ (xi, xi + h) and ξi2 ∈ (xi − h, xi). Therefore, we have

u(xi + h) + u(xi− h) = 2u(xi) + u′′(xi)h2 + 1
24{u(4)(ξi1) + u(4)(ξi2)}h4.

∴ u′′(xi) =
1
h2 {u(xi + h)− 2u(xi) + u(xi − h)} − 1

24 h2{u(4)(ξi1) + u(4)(ξi2)}.

∵ u ∈ C4[a, b], 1
2{u(4)(ξi1) + u(4)(ξi2)} between u(4)(ξi1) & u(4)(ξi2).

∴ By IVT, ∃ ξi between ξi1 and ξi2 (⇒ ξi ∈ (xi − h, xi + h)) such that

u(4)(ξi) =
1
2{u(4)(ξi1) + u(4)(ξi2)}.

∴ u′′(xi) =
1
h2 {u(xi + h)− 2u(xi) + u(xi − h)} − 1

12 h2u(4)(ξi),

for some ξi ∈ (xi − h, xi + h). (2nd-order approximation)
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FDM for a two-point boundary value problem

Consider the 1-D two-point BVP:{
−u′′(x) = f (x) x ∈ (0, 1),

u(0) = u(1) = 0.

The interval [0, 1] is discretized uniformly by taking the n + 2
points, xi = ih, for i = 0, 1, · · · , n + 1, where h = 1/(n + 1).

Let vi ≈ u(xi), i = 1, 2, · · · , n, and v0 := u(x0) = 0,
vn+1 := u(xn+1) = 0 are known due to the Dirichlet BC.

If the centered difference approximation is used for u′′, the
above equation can be expressed as

−
(

vi−1 − 2vi + vi+1

h2

)
= fi, i = 1, 2, · · · , n,

where fi := f (xi).
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Resulting linear system

The linear system obtained is of the form

AV = F,

where

A =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 ,

V = (v1, v2, · · · , vn)
⊤ and F = (h2f1, h2f2, · · · , h2fn)⊤.
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Eigen properties of A

The matrix A has n eigenvalues, and since A is symmetric, all
eigenvalues must be real.

Note that the eigenvalues of A are given by

λj = 2− 2 cos(jθ) > 0, j = 1, 2, · · · , n,

and the eigenvector associated with each λj is given by

Vj = (sin(jθ), sin(2jθ), · · · , sin(njθ))⊤,

where θ = π
n+1 .

λmax = 2− 2 cos( nπ
n+1 ) and λmin = 2− 2 cos( π

n+1 ).

What is the condition number of A?
(sin x = x− x3/(3!) + x5/(5!) · · · )

κ(A) =
sin2 nπ

2(n+1)

sin2 π
2(n+1)

≈ sin(π/2)
( π

2(n+1) )
2 ≈ O

(
n2
)
≈ O

(
1
h2

)
.
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FDM for a 2-D boundary value problem

Consider Poisson’s problem, −
(∂2u

∂x2
1
+

∂2u
∂x2

2

)
= f in Ω := (0, 1)× (0, 1),

u = 0 on ∂Ω.

Define the mesh size h = 1
n+1 , the collection of mesh points

(x1i, x2j) = (ih, jh), the approximate solution at the mesh points
vij ≈ u(x1j, x2j), i, j = 0, 1, · · · , n + 1.

Note: There are n2 interior points ≈ 1
h2 . (in 3D, ≈ 1

h3 number of
points).

The FD equations −
(vi−1j − 2vij + vi+1j

h2 +
vij−1 − 2vij + vij+1

h2

)
= fij,

v0j = vn+1j = vi0 = vin+1 = 0.
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For example n = 3: natural ordering

We order the unknown quantities in the natural ordering

V = (v11, v21, v31, v12, v22, vn2, v13, v23, v33)
⊤.

Then the corresponding linear system can be written as (see
Text, page 631)

AV =

 B −I
−I B −I

−I B

V = F with B =

 4 −1 0
−1 4 −1

0 −1 4

 .

block-tridiag matrix; symmetric aij = aji; sparse, number of
nonzeros per row ≈ 5 (independent of the mesh size h) number
of nonzeros ≈ 5n (linear in n).
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