
MA2007B: LINEAR ALGEBRA I

Final Exam/January 14, 2021

Please show all your work clearly for full credit! total 110 points

(1) (10 pts) Consider the linear system Ax = b, where A =

 1 3 0 2
0 0 1 4
1 3 1 6

 and b =

 −1
−3
−4

. Find

the complete solution to the linear system.

Solution:

[A|b] =

 1 3 0 2 −1
0 0 1 4 −3
1 3 1 6 −4

→
 1 3 0 2 −1

0 0 1 4 −3
0 0 1 4 −3

→
 1 3 0 2 −1

0 0 1 4 −3
0 0 0 0 0

 := [R|d]

First and third are pivot columns, second and fourth are free columns.

Note that Ax = 0 ⇔ Rx = 0

Let x2 = s and x4 = t. Then x3 = −4x4 = −4t and x1 = −3x2 − 2x4 = −3s− 2t.

∴ The solutions to Ax = 0 are

xn =


x1
x2
x3
x4

 =


−3s

s
0
0

+


−2t

0
−4t

t

 = s


−3

1
0
0

+ t


−2

0
−4

1

, ∀ s, t ∈ R.

Let the free variables x2 = 0 = x4. A particular solution to Ax = b(⇔ Rx = d) is

xp =


x1
x2
x3
x4

 =


−1

0
−3

0

.

Therefore, the complete solution to Ax = b is

x = xp + xn =


−1

0
−3

0

+ s


−3

1
0
0

+ t


−2

0
−4

1

, ∀ s, t ∈ R.

(2) (10 pts) Let V be a subspace of Rn and V⊥ := {x ∈ Rn| x · v = 0, ∀v ∈ V} be the orthogonal
complement of V .

(a) Show that V⊥ is also a subspace of Rn.

(b) Show that V ∩ V⊥ = {0}.

Proof:

(a) Claim: V⊥ is a subspace of Rn

(i) Let x, y ∈ V⊥. Then x · v = 0 and y · v = 0, ∀ v ∈ V .
∴ (x + y) · v = x · v + y · v = 0, ∀ v ∈ V
∴ x + y ∈ V⊥

(ii) Let x ∈ V⊥ and α ∈ R. Then x · v = 0, ∀ v ∈ V .
∴ (αx) · v = α(x · v) = 0, ∀ v ∈ V
∴ αx ∈ V⊥
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(b) Claim: V ∩ V⊥ = {0}
∵ V and V⊥ are subspaces of Rn

∴ 0 ∈ V and 0 ∈ V⊥

∴ 0 ∈ V ∩ V⊥

Suppose that ∃ x 6= 0 and x ∈ V ∩ V⊥.
Then x ∈ V and x ∈ V⊥

∴ x · x = 0⇒ ‖x‖2 = 0⇒ ‖x‖ = 0⇒ x = 0, a contradiction!
∴ V ∩ V⊥ = {0}

(3) (10 pts) Let A ∈ Rm×n and B ∈ Rn×m.

(a) Show that A>A has the same nullspace as A, i.e., N(A>A) = N(A).

(b) Show that if B has full row rank, then BB> is invertible.

Proof:

(a) Note that N(A) := {x ∈ Rn : Ax = 0} and N(A>A) := {x ∈ Rn : A>Ax = 0}.
(i) If x ∈ N(A), then Ax = 0 =⇒ A>Ax = A>0 = 0 =⇒ x ∈ N(A>A)

(ii) If x ∈ N(A>A), then A>Ax = 0 =⇒ x>A>Ax = x>0 = 0
=⇒ (Ax)>Ax = 0 =⇒ ‖Ax‖2 = 0 =⇒ Ax = 0 =⇒ x ∈ N(A)

By (i) and (ii), N(A>A) = N(A).

(b) Let A := B> ∈ Rm×n. Then A has full column rank.
∴ The columns of A are linearly independent
∴ N(A) = {0}
∴ By part (a), N(A>A) = N(A) = {0}
∴ The columns of the n× n square matrix A>A are linearly independent
∴ A>A is invertible
∵ BB> = A>A
∴ BB> is invertible

(4) (10 pts) Let A ∈ Rm×n and x ∈ Rn. Show that there exist xr ∈ C(A>) (the row space of A) and
xn ∈ N(A) (the nullspace of A) such that x = xr + xn and the representation is unique.

Proof:

(i) Let {v1, v2, · · · , vr} be a basis for C(A>) ⊆ Rn

and {w1, w2, · · · , wn−r} be a basis for N(A) ⊆ Rn.
Then {v1, v2, · · · , vr, w1, w2, · · · , wn−r} is a basis for Rn.
∵ x ∈ Rn

∴ ∃! α1, α2, · · · , αr, β1, β2, · · · , βn−r such that
x = α1v1 + α2v2 + · · ·+ αrvr︸ ︷︷ ︸

:=xr

+ β1w1 + β2w2 + · · ·+ βn−rwn−r︸ ︷︷ ︸
:=xn

∴ x = xr + xn, where xr ∈ C(A>) and xn ∈ N(A)

(ii) Suppose that x = xr + xn, xr ∈ C(A>) and xn ∈ N(A) and
x = x′r + x′n, where x′r ∈ C(A>) and x′n ∈ N(A)

Then 0 = x− x = (xr − x′r) + (xn − x′n).
∴ xr − x′r = −(xn − x′n)
∵ xr − x′r ∈ C(A>), −(xn − x′n) ∈ N(A), and C(A>) ∩ N(A) = {0}
∴ xr − x′r = 0 and −(xn − x′n) = 0 =⇒ xr = x′r and xn = x′n
∴ The representation x = xr + xn is unique
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(5) (10 pts) Let A = [a1, a2, · · · , an] ∈ Rm×n, where a1, a2, · · · , an ∈ Rm are linearly independent. Let
b ∈ Rm and b 6∈ C(A), where C(A) denotes the column space of A.

(a) Show that the orthogonal projection of b onto the column space C(A) is p = Ax̂, where x̂
is the solution of the normal equation A>Ax̂ = A>b, and explain why the normal equation
has a unique solution x̂.

(b) Let A =

 1 0
1 1
1 2

 and b =

 6
0
0

. Find the orthogonal projection p of b onto the column

space C(A).

Proof:

(a) Let p be the orthogonal projection of b onto the column space C(A).
Then p = Ax̂ for some x̂ ∈ Rn.
∵ b− p = b− Ax̂ is perpendicular to the column space C(A)

∴ (b− Ax̂) ⊥ ai, ∀ i = 1, 2, · · · , n
∴ ai · (b− Ax̂) = 0, ∀ i = 1, 2, · · · , n
∴ a>i (b− Ax̂) = 0, ∀ i = 1, 2, · · · , n

∴


a>1
a>2
...

a>n

 (b− Ax̂) =


0
0
...
0


∴ A>(b− Ax̂) = 0
∴ A>Ax̂ = A>b
∵ The columns of A are linearly independent
∴ The columns of A>A are linearly independent (see the proof of 3(b))
∴ A>A is invertible
∴ The normal equation A>Ax̂ = A>b has a unique solution x̂

(b) By direct calculations, we have

A>A =

[
1 1 1
0 1 2

]  1 0
1 1
1 2

 =

[
3 3
3 5

]
,

A>b =

[
1 1 1
0 1 2

]  6
0
0

 =

[
6
0

]
.

The normal equation is[
3 3
3 5

] [
x̂1
x̂2

]
=

[
6
0

]
=⇒ x̂ =

[
x̂1
x̂2

]
=

[
5
−3

]
Therefore, the orthogonal projection p of b onto the column space C(A) is

p = Ax̂ = 5

 1
1
1

+ (−3)

 0
1
2

 =

 5
2
−1

 .

(6) (15 pts) Let Q = [q1, q2, · · · , qn] ∈ Rm×n be a matrix with orthonormal columns.

(a) Show that q1, q2, · · · , qn are linearly independent.
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(b) Show that ‖Qx‖ = ‖x‖ for all x ∈ Rn.

(c) Show that Qx ·Qy = x · y for all x, y ∈ Rn.

Proof:

(a) Let c1q1 + c2q2 + · · ·+ cnqn = 0.
Then (c1q1 + c2q2 + · · ·+ cnqn) · q1 = 0 · q1 = 0.
∴ c1q1 · q1 + c2q2 · q1 + · · ·+ cnqn · q1 = 0
∵ q1, q2, · · · , qn are orthonormal columns of Q
∴ qi · qj = 0 if i 6= j
∴ c1q1 · q1 = 0
∵ q1 · q1 = ‖q1‖2 > 0 (∵ q1 6= 0)
∴ c1 = 0
Similarly, we can prove c2 = 0, · · · , cn = 0.
∴ q1, q2, · · · , qn are linearly independent

(b) ‖Qx‖2 = Qx ·Qx = (Qx)>Qx = x>Q>Qx = x> Ix = x>x = ‖x‖2

=⇒ ‖Qx‖ = ‖x‖, ∀ x ∈ Rn

(c) Qx ·Qy = (Qx)>Qy = x>Q>Qy = x> Iy = x>y = x · y, ∀ x, y ∈ Rn

(7) (15 pts) Let A = [a1, a2, a3] =

 1 2 4
0 0 5
0 3 6

.

(a) Show that the columns a1, a2, a3 are linearly independent.

(b) Find the orthonormal vectors q1, q2, q3 by the Gram-Schmidt process.

(c) Find the factorization, A = QR, by using part (b), where Q is an orthogonal matrix and R is
an upper triangular matrix.

Solution:

(a) ∵ detA = −det

 1 2 4
0 3 6
0 0 5

 = −15 6= 0

∴ A is nonsingular
∴ the columns a1, a2, a3 are linearly independent

(b) By the Gram-Schmidt process, we have

A := a =

 1
0
0

 =⇒ q1 =
A
‖A‖ =

1
1

 1
0
0

 =

 1
0
0

 .

B = b− A>b
A>A

A =

 2
0
3

− 2
1

 1
0
0

 =

 0
0
3

 =⇒ q2 =
B
‖B‖ =

1
3

 0
0
3

 =

 0
0
1

 .

C = c− A>c
A>A

A− B>c
B>B

B =

 4
5
6

− 4
1

 1
0
0

− 18
9

 0
0
3

 =

 0
5
0


=⇒ q3 =

C
‖C‖ =

1
5

 0
5
0

 =

 0
1
0

 .
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(c) From part (b), we obtain

A = QR = [q1 q2 q3]


q>1 a q>1 b q>1 c

0 q>2 b q>2 c

0 0 q>3 c

 =

 1 0 0
0 0 1
0 1 0

 1 2 4
0 3 6
0 0 5

 .

(8) (15 pts) Let A ∈ Rn×n be a nonsingular matrix. Assume that through the Gaussian elimination
process, we obtain PA = LU, where P is a permutation matrix, L is the lower triangular matrix,
and U is the upper triangular matrix. Show that det(A>) = det(A).

Proof:

∵ PA = LU

∴ (PA)> = (LU)> =⇒ A>P> = U>L>

=⇒ det(P)det(A) = det(L)det(U) and det(A>)det(P>) = det(U>)det(L>)

∵ det(U) = det(U>) (∵ have the same diagonal),

det(L) = det(L>) = 1 (∵ both have 1’s on the diagonal),

∴ det(P)det(A) = det(A>)det(P>)

∵ P>P = I =⇒ det(P>P) = det(P>)det(P) = 1

∵ P and P> are permutation matrices

∴ det(P) = 1 = det(P>) or det(P) = −1 = det(P>)

∴ det(P) = det(P>)

∴ det(A) = det(A>)

(9) (15 pts) Compute the determinants of A, B, and C,

A =

 1 2 3
3 1 2
3 2 1

 , B =

 1 2 3
4 4 4
5 6 7

 , C =

 1 1 1
1 1 0
1 0 0

 .

Are their rows linearly independent? Please give your reasons.

Solution:

det A = 1 + 12 + 18− 9− 4− 6 = 12 6= 0 =⇒ A is nonsingular

=⇒ · · · =⇒ rows of A are linearly independent

det B = 28 + 40 + 72− 60− 24− 56 = 0 =⇒ B is singular

=⇒ · · · =⇒ rows of B are linearly dependent (in fact, row3 - row1 = row2)

det C = 0 + 0 + 0− 1− 0− 0 = −1 6= 0 =⇒ C is nonsingular

=⇒ · · · =⇒ rows of C are linearly independent
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