
MA2007B: LINEAR ALGEBRA I

Midterm 2/December 10, 2020

Please show all your work clearly for full credit! total 110 points

(1) Let A ∈ Rn×n and A = [a1, a2, · · · , an]. Assume that a1, a2, · · · , an are a basis for Rn.

(a) (5 pts) Show that for any v ∈ Rn there is one and only one way to write v as a linear combi-
nation of a1, a2, · · · , an.

(b) (10 pts) Show that A is invertible.

Proof:

(a) Suppose that v = α1a1 + α2a2 + · · ·+ αnan and v = β1a1 + β2a2 + · · ·+ βnan.
Then we have 0 = v− v = (α1 − β1)a1 + (α2 − β2)a2 + · · ·+ (αn − βn)an.
∵ a1, a2, · · · , an are a basis for Rn

∴ a1, a2, · · · , an are linearly independent
∴ α1 − β1 = 0, α2 − β2 = 0, · · · , αn − βn = 0
∴ α1 = β1, α2 = β2, · · · , αn = βn

That is, there is one and only one way to write v as a linear combination of a1, a2, · · · , an.

(b) ∵ a1, a2, · · · , an are a basis for Rn

∴ for i = 1, 2, · · · , n, ∃ ! bi ∈ Rn such that [a1, a2, · · · , an]bi = ei (by (1a))
Define B := [b1, b2, · · · , bn]. Then
AB = [Ab1, Ab2, · · · , Abn] = [e1, e2, · · · , en] = I.
∴ B is the inverse of A

(2) Let A ∈ Rm×n and let r be the rank of A.

(a) (10 pts) Show that the columns of A are linearly independent if and only if r = n.

(b) (5 pts) Assume that m = 5 and n = 7. Do the columns of matrix A be linearly independent
or linearly dependent?

Proof:

(a) (⇒): Obviously r ≤ n. Suppose that r < n. Then there are free columns of R := rre f (A).
∴ there are free variables of Rx = 0
∴ ∃ x 6= 0 such that Rx = 0
∵ Rx = 0 ⇔ Ax = 0
∴ ∃ x 6= 0 such that Ax = 0
∴ the columns of A are linearly dependent. This is a contradiction!
∴ r = n

(⇐) Let r = n. Then we have R := rre f (A) =

[
I
0

]
.

∴ there are n pivots and no free variables.
∴ if Rx = 0 then Ix = 0⇒ x = 0
∵ Rx = 0 ⇔ Ax = 0
∴ if Ax = 0 then x = 0
∴ the columns of A are linearly independent
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(b) ∵ m = 5 and n = 7
∴ r ≤ 5
∴ r < n = 7
By (2a), the columns of A are linearly dependent.

(3) (15 pts) Consider the linear system Ax = b, where A =

 1 3 0 2
0 0 1 4
1 3 1 6

 and b =

 1
3
4

. Find the

complete solution to the linear system.

Solution:

[A|b] =

 1 3 0 2 1
0 0 1 4 3
1 3 1 6 4

→
 1 3 0 2 1

0 0 1 4 3
0 0 1 4 3

→
 1 3 0 2 1

0 0 1 4 3
0 0 0 0 0

 := [R|d]

First and third are pivot columns, second and fourth are free columns.

Note that Ax = 0 ⇔ Rx = 0

Let x2 = s and x4 = t. Then x3 = −4x4 = −4t and x1 = −3x2 − 2x4 = −3s− 2t.

∴ The solutions to Ax = 0 are

xn =


x1
x2
x3
x4

 =


−3s

s
0
0

+


−2t

0
−4t

t

 = s


−3

1
0
0

+ t


−2

0
−4

1

, ∀ s, t ∈ R.

Let the free variables x2 = 0 = x4. A particular solution to Ax = b(⇔ Rx = d) is

xp =


x1
x2
x3
x4

 =


1
0
3
0

.

Therefore, the complete solution to Ax = b is

x = xp + xn =


1
0
3
0

+ s


−3

1
0
0

+ t


−2

0
−4

1

, ∀ s, t ∈ R.

(4) (15 pts) Consider the 2× 3 real matrix,

A =

[
1 2 4
2 4 8

]
.

Find the bases and dimensions for the four subspaces: C(A), C(A>), N(A), N(A>).

Solution:

• C(A):
[

1
2

]
is a basis, since

[
2
4

]
= 2

[
1
2

]
and

[
4
8

]
= 4

[
1
2

]
∴ dim C(A) = 1

• C(A>):

 1
2
4

 is a basis, since

 2
4
8

 = 2

 1
2
4

 ∴ dim C(A>) = 1

• N(A): Ax = 0 ⇔ x1 + 2x2 + 4x3 = 0

One can check that

 −2
1
0

 and

 −4
0
1

 are a basis for N(A).

∴ dim N(A) = 2
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• N(A>): Note that A> =

 1 2
2 4
4 8

.

A>y = 0 ⇔ y1 + 2y2 = 0

One can check that
[
−2

1

]
is a basis for N(A>).

∴ dim N(A>) = 1

(5) (10 pts) Let A ∈ Rm×n and let r be the rank of A. State the Fundamental Theorem of Linear
Algebra, Part I and Part II.

Solution:

• Part I:
dim C(A>) = r and dim N(A) = n− r.

dim C(A) = r and dim N(A>) = m− r.

• Part II:
C(A>)⊥ = N(A) and C(A)⊥ = N(A>).

(6) (10 pts) Let V be a subspace of Rn and V⊥ := {x ∈ Rn| x · v = 0, ∀v ∈ V} be the orthogonal
complement of V . Show that V⊥ is a subspace of Rn and V ∩ V⊥ = {0}.
Proof:

• Claim: V⊥ is a subspace of Rn

(i) Let x, y ∈ V⊥. Then x · v = 0 and y · v = 0, ∀ v ∈ V .
∴ (x + y) · v = x · v + y · v = 0, ∀ v ∈ V
∴ x + y ∈ V⊥

(ii) Let x ∈ V⊥ and α ∈ R. Then x · v = 0, ∀ v ∈ V .
∴ (αx) · v = α(x · v) = 0, ∀ v ∈ V
∴ αx ∈ V⊥

• Claim: V ∩ V⊥ = {0}
∵ V and V⊥ are subspaces of Rn

∴ 0 ∈ V and 0 ∈ V⊥

∴ 0 ∈ V ∩ V⊥

Suppose that ∃ x 6= 0 and x ∈ V ∩ V⊥.
Then x ∈ V and x ∈ V⊥

∴ x · x = 0⇒ ‖x‖2 = 0⇒ ‖x‖ = 0⇒ x = 0, a contradiction!
∴ V ∩ V⊥ = {0}

(7) (10 pts) Let A ∈ Rm×n. Show that the nullspace N(A) is the orthogonal complement of the row
space C(A>) in Rn, i.e., C(A>)⊥ = N(A).

Proof:

(⊆): Let x ∈ C(A>)⊥.

Then x is orthogonal to every vectors in in C(A>).

∴ x is orthogonal to every rows of A

∴ Ax = 0 ⇒ x ∈ N(A)

(⊇): Let x ∈ N(A). then Ax = 0.

∴ x is orthogonal to every rows of A

∴ x is orthogonal to every columns of A>

∴ x ∈ C(A>)⊥
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(8) Assume that S and T are two subspaces of the finite-dimensional vector space (V , R).

(a) (10 pts) Show that S ∩ T and S + T := {s + t| s ∈ S, t ∈ T} are both subspaces of V .
(b) (10 pts) Assume that {u1, u2, · · · , ur} is a basis for S∩ T , {u1, · · · , ur, v1, · · · , vs} is a basis for

S, and {u1, · · · , ur, w1, · · · , wt} is a basis for T . Show that {u1, · · · , ur, v1, · · · , vs, w1, · · · , wt}
is a basis for S + T . Hence, dim(S + T) = dimS + dimT − dim(S ∩ T).

Proof:

(a) • Claim: S ∩ T is a subspace of (V , R)
(i) Let x, y ∈ S ∩ T . Then x, y ∈ S and x, y ∈ T .
∵ S and T are two subspaces of V
∴ x + y ∈ S and x + y ∈ T
∴ x + y ∈ S ∩ T
(ii) Let x ∈ S ∩ T and α ∈ R. Then x ∈ S and x ∈ T .
∵ S and T are two subspaces of V
∴ αx ∈ S and αx ∈ T
∴ αx ∈ S ∩ T
• Claim: S + T is a subspace of (V , R)

(i) Let x1 + y1, x2 + y2 ∈ S + T , where x1, x2 ∈ S and y1, y2 ∈ T .
∵ S and T are two subspaces of V
∴ x1 + x2 ∈ S and y1 + y2 ∈ T
∴ (x1 + y1) + (x2 + y2) = (x1 + x2) + (y1 + y2) ∈ S + T
(ii) Let x + y ∈ S + T and α ∈ R. Then x ∈ S and y ∈ T .
∵ S and T are two subspaces of V
∴ αx ∈ S and αy ∈ T
∴ α(x + y) = αx + αy ∈ S + T

(b) • span{u1, · · · , ur, v1, · · · , vs, w1, · · · , wt} = S + T
(⊆): trivial!
(⊇): Let x + y ∈ S + T . Then x ∈ S and y ∈ T .
∵ {u1, · · · , ur, v1, · · · , vs} is a basis for S
∴ ∃ α1, · · · , αr, β1, · · · , βs ∈ R s.t. x = α1u1 + · · ·+ αrur + β1v1 + · · ·+ βsvs
∵ {u1, · · · , ur, w1, · · · , wt} is a basis for T
∴ ∃ γ1, · · · , γr, δ1, · · · , δt ∈ R s.t. y = γ1u1 + · · ·+ γrur + δ1w1 + · · ·+ δtwt
∴ x + y = α1u1 + · · ·+ αrur + β1v1 + · · ·+ βsvs + γ1u1 + · · ·+ γrur + δ1w1 + · · ·+ δtwt
= (α1 + γ1)u1 + · · ·+ (αr + γr)ur + β1v1 + · · ·+ βsvs + δ1w1 + · · ·+ δtwt
∈ span{u1, · · · , ur, v1, · · · , vs, w1, · · · , wt}

• u1, · · · , ur, v1, · · · , vs, w1, · · · , wt are linearly independent
Let α1u1 + · · ·+ αrur + β1v1 + · · ·+ βsvs + δ1w1 + · · ·+ δtwt = 0.
Then α1u1 + · · ·+ αrur + β1v1 + · · ·+ βsvs︸ ︷︷ ︸

:=x

= −δ1w1 − · · · − δtwt︸ ︷︷ ︸
:=−y

.

∴ y = δ1w1 + · · ·+ δtwt = −x ∈ S and y ∈ T
∴ y ∈ S ∩ T
∴ ∃ γ1, · · · , γr ∈ R s.t. y = γ1u1 + · · ·+ γrur
∴ (α1 − γ1)u1 + · · ·+ (αr − γr)ur + β1v1 + · · ·+ βsvs = 0
∵ u1, · · · , ur, v1, · · · , vs are linearly independent
∴ β1 = 0, · · · , βs = 0
Similarly, we can prove that δ1 = 0, · · · , δt = 0.
∴ α1u1 + · · ·+ αrur = 0
∵ {u1, u2, · · · , ur} is a basis for S ∩ T
∴ u1, u2, · · · , ur are linearly independent
∴ α1 = 0, · · · , αr = 0
∴ u1, · · · , ur, v1, · · · , vs, w1, · · · , wt are linearly independent
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