

MA 2007B: Linear Algebra I – Quiz #3

Name:

Student ID number:

(1) (5 pts) Let $A, B \in \mathbb{R}^{n \times n}$. Assume that the product AB is invertible. Show that A is invertible and find the inverse of A .

Proof:

$\because AB$ is invertible

$\therefore \exists C \in \mathbb{R}^{n \times n}$ such that $(AB)C = C(AB) = I$

$\therefore (AB)C = A(BC)$

$\therefore A(BC) = I$

$\therefore A$ is invertible and the inverse of A is $A^{-1} = BC$

(2) (5 pts) Let $A \in \mathbb{R}^{n \times n}$. Assume that there exists a nonzero vector $x \in \mathbb{R}^n$ such that $Ax = 0$. Show that A is not invertible.

Proof:

Suppose that A is invertible.

Then $\exists A^{-1} \in \mathbb{R}^{n \times n}$ such that $AA^{-1} = A^{-1}A = I$.

$\therefore \exists x \neq 0$ such that $Ax = 0$

$\therefore A^{-1}Ax = A^{-1}0$

$\therefore Ix = 0$

$\therefore x = 0$. This is a contradiction!

$\therefore A$ is not invertible