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Outline of “image contrast enhancement”

In this lecture, we will briefly introduce some techniques for image
contrast enhancement, including

® Histogram equalization (HE » E.J7 [E%F1)
® Automatic color equalization (ACE » H &)%)
@ Simplest color balance (SCB » #x i &% 1-1)

@ Variational methods with split Bregman iterations
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The material of this lecture

The material of this lecture is based on the following text and papers:
@ Section 3.3: Histogram Processing in [GW2018], pp. 133-153.

@ P. Getreuer, Automatic color enhancement (ACE) and its fast
implementation, Iimage Processing On Line, 2 (2012), pp. 266-277.

@ P.-W. Hsieh, P-C. Shao, and S.-Y. Yang, Adaptive variational
model for contrast enhancement of low-light images, SIAM
Journal on Imaging Sciences, 13 (2020), pp. 1-28.

@ N. Limare, J.-L. Lisani, J.-M. Morel, A. B. Petro, and C. Sbert,
Simplest color balance, Image Processing On Line, 1 (2011), pp.
297-315.
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Contrast enhancement

The main purpose of contrast enhancement is to adjust the image
intensity to enhance the quality and features of the image for a better
human visual perception or machine vision identification.

A low-light image and its enhanced result
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Histogram equalization (HE): g¢(x,y) =:s =T(r) :== T(f(x,y))

@ We are given a grayscale image f : QO — [0,1]. The cumulative
histogram (cumulative distribution function) T is defined by
considering f as a random variable: for 7 € [0, 1], we define

T(n) = Prob(f <p)
1 _
= Gl eq faw <)
Then T : [0,1] — [0,1] is a monotonic increasing function.
@ The histogram equalized image ¢ : Q) — [0, 1] is obtained by

defining
8(x,y) :=T(f(x,y)).
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Histogram equalized image ¢ ~ /(0,1) if T is invertible

If T is strictly increasing, then T is invertible and the cumulative
distribution function of the histogram equalized image g is

Prob(g <n) = Prob(T(f) < n) = Prob(f < T~ (1))
= T(T'(n) =1
Hence, the probability density function of g is

(1) = 1 for0<t<1,
PUYI=19 0 elsewhere.

Therefore, ¢ has a uniform distribution, i.e., g ~ ¢/ (0,1).

Remark: Let X be a random variable and p(t) the probability density
function (pdf) of X. The cumulative distribution function (cdf) of X is

F(y) := Prob(X < y) = /” p(t)dt.

—00
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Example of histogram equalized image

Histogram equalization of 400 x 600 image: (top) before; (bottom) after; and
the corresponding histograms
Matlab commands: imhist (A), histeq(A)
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Automatic color equalization (ACE)

We are given a grayscale image f : Q — [0, 1]. First, the following
operation is performed

f(x) _ Z Su (/‘(x) *f(y))

=yl VxeQ.
yeO\{x) Y

Sa(t)

The slope function s, (t) := min{max{at, —1}, 1}
Then f is rescaled to [0,1] as the ACE image
g(x) = M, VxeQ.
maxf — minf
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ACE images for various «’s and HE image

Input (352 x 480)
sa(?)
1

Q=
—
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Simplest color balance: given a grayscale image f(x)

@ The algorithm simply stretches, as much as it can, the values of
the three channels (R, G, B), so that they occupy the maximal
possible range [0, 255].

@ The simplest way to do so is to apply an affine function
z=ua_z +btoeach channel such that

f(x) AZmin+b = 0,
AZmax +b = 255.

We solve a and b so that the maximal value in the channel
becomes 255 and the minimal value 0.

255 255zmi
4= p= __“--cmin
Zmax — Zmin Zmax — Zmin

That is, the intensity of the resulting image is given by

Fx) = 255 flx) — 255zmin  _ 255 <f(x) - zmin> xen.

Zmax — Zmin Zmax — Zmin

Zmax — Zmin
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Simplest color balance (cont’d)

@ However, many images contain a few aberrant pixels that
already occupy the 0 and 255 values. Thus, an often spectacular
image color improvement is obtained by “clipping” a small
percentage s% of the pixels with the highest values to 255 and a small
percentage of the pixels with the lowest values to 0, before applying the
affine transform.

@ Notice that this saturation can create flat white regions or flat
black regions that may look unnatural. Thus, the percentage of
saturated pixels must be as small as possible.

@ In our numerical experiments of the proposed adaptive method
below, we apply the simplest color balance (SCB) to the resulting
images with a 0.1% of saturation.
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SCB images

original image, SCB images with s% = 0%, 1%, 2%, and 3%
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SCB images

original image, SCB images with s% = 0%, 1%, 2%, and 3%
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The proposed adaptive method with SCB and 5% = 0.1%

A landscape of Da-Xi
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A simple variational model

Letf : O — R be a given grayscale image. The Morel-Petro-Sbert
model (IPOL 2014) is given by

1 2 A -2
mlni/Q\Vu—Vf\ dx+§/0(u—u) dx.

u

data fidelity regularizer

@ The constant u := Hﬁl f ol dx is the mean value of u over Q).

@ The data fidelity term preserves image details presented in f and
the regularizer reduces the variance of u to eliminate the effect of
nonuniform illumination.

@ The parameter A > 0 balances between detail preservation and
variance reduction.
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Two modified variational models

@ The original model is simple but difficult to solve due to the u
term. Therefore, by assuming that  ~ f := ‘1@ Jof dx, it was
simplified to

1 S Ay
mumi./0|Vu—Vf| dx+§'/0(u—f) dx.

@ Petro-Sbert-Morel (MAA 2014) further improved their model by
using the L! norm to obtain sharper edges:

A _
in [ |Vu—Vf|d f/ —FYdx.
min | |\Vu—Vfldx+5 [ (u—p?ax

Note that requiring the desired image u being close to a pixel-
independent constant f highly contradicts the requirement of Vu
being close to Vf and restrains the parameter A to be very small.
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An adaptive variational model

Hsieh-Shao-Yang (SIIMS 2020) proposed two adaptive functions g
and & to replace f and the original input image f,
. A
min /Q Vi~ Vhldx+ 5 /Q(u — g)2dx + Xjg 055 (),
where g and & are devised respectively as
D‘j;/ S Qdi ﬁf(x)/ x e Qd/
glx) = hix) =
flx), xeQy, fx), xeQy,
Qpi={xcQ:f(x) <f}, Q:={xcQ:f(x)>f},

with a brightness parameter « > 0 and a contrast-level parameter
B > 1, and the characteristic function is defined as

N () = { 0, range(u) C [0,255],
[0,255] (1) =

oo, otherwise.
Generally speaking, (); contains relatively dim elements, while (),
contains relatively bright elements.
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Differentiability of

To ensure the differentiability of 4, in practice we smooth the
coefficients and redefine the adaptive function / as

h(x) = Gx (Bla,(x) + 10,(x))f(x), x€0,

where the indicator function 14(x) = 1, if x € A, otherwise 14(x) =0,
and G represents suitable Gaussian convolution such that V# is
well-defined.
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Color RGB images

@ The domain division for color RGB images denoted by (fr,fc, f5)
is conducted as follows. First, we define the maximum image as

frnax (%) 1= max{f (), fo (), fa(x)}, Vxe Q.

@ Letf . = \1@ Jofmax dx. Then we divide the image domain ()
into two parts
O, = {x e meax(x) S]?max}’
Qb = {x =Xe) Ifmax(x) >fmax}'

@ As an example, consider an element x* € Q) with color
intensities (fg (x*), fo(x*),f(x*)) = (25,25,200), then
fmax (x*) = 200, a large value which should be classified into ().

(© Suh-Yuh Yang (#57#8), Math. Dept., NCU, Taiwan Image Contrast Enhancement — 19/41



Domain division for color images
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Adaptive variational model for color images

@ With the help of the maximum image fmax, We can now process
color images channelwise. For every f € {fr,fc,fg}, we solve

) A
mum/Q |Vu — Vh|dx + 5 /O(u —gc)zdx+x[o,255](“)/

where the adaptive functions g. and /. are defined as

(x) = { ocf, x e Qy,
gelt) = fx), xe€Qy,

and ®
Bf(x), xe€Qy,
he(x) :=
f (x)/ x € (Y.
@ There is no evidence shown that chooses different A, « and S for

each channel separately can have specific benefit. Therefore, for
simplicity, we fix A, «, and B across channel.
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The bounded variation space BV (Q))

Let Q) be an open subset of R?. The space of functions of bounded
variation BV (Q)) is defined as the space of real-valued function
u € L1(Q) such that the total variation is finite, i.e.,

BV(Q) = {u € L'(Q) : ||ullry(q) < o},
where
Iullrviey = /. 1Dui
i= sup u(V-g)dx: ¢ € CLO,R?), ||l (a2 < 17,
)

Cl(Q,R?) is the space of continuously differentiable vector functions
with compact support in Q, L' (Q) and L*(Q) are the usual LF(Q)
space for p = 1 and p = oo, respectively.

Then BV (Q)) is a Banach space with the norm,

[ullsviq) = l[ullLq) + [1llrvia)-
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Existence and uniqueness of minimizer

Let Q) C R? be an open bounded domain with Lipschitz boundary and let
h € BV(Q) be the input image. Then the variational problem

: A 2
mum/Q |Vu — Vh|dx + 5 /Q(u — 8)"dx + X 255) (1)
admits a unique minimizer in BV(Q) N L2(Q)).

Remarks:
® [, |Vu|dx should be realized as the total variation [ |Du|.

@ Letw = u — h, then the energy can be rewritten as the TV
denoising one proposed by Goldstein-Osher (SIIMS 2009).

@ direct method (Lebesgue dominated convergence) — existence.

@ strict convexity — uniqueness.

(© Suh-Yuh Yang ( % Math. Dept., NCU, Taiwan Image Contrast Enhancement — 23 /41



The alternating minimization algorithm

@ The discrete gradient of u is defined as Vu;; = (Viu;: s V uij),

upiyr —uij)/h,  1<j<N-—1,
Viujj = { (() i1~ i) j:I]\l
i1 — Ui < i< —
Viu,;: = { é“zﬂ,] Mz,])/h, 3:_;]_N 1,

@ The continuous model can be discretized as

. A
H},lnz }VM,'J' — Vhi,j| + 5 (Lli,]' — gi,j)z + X[0/255] (u).
L]

@ Applying the operator splitting, it is then equivalent to

mmZ <|d1J| 5 (1ij — gi,j)z) + Xjo.255] (0),

u,d,v

subjectto d = Vu — Vh and v = u.
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The Bregman iterations

@ The splitted problem can be solved by using the Bregman
iteration. Introducing the penalty parameter v > 0 and § > 0,
we arrive at the following unconstrained minimization problem:

A v ,
flndl?z Od”’ + 5 (i i)+ > dij = Viuij + Vhij = bij]

o 2
+5 (03 —wij —cij) ) + X[0,255] (0),
where b and c are the variables related to the Bregman iterations.

@ Then the problem is solved by alternating the search directions
of u,d, and v.
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The split Bregman iterations: 3 subproblems + 2 identities

@ u-subproblem:

B argmmZ( (15— 86))* + 2| = (Vae)yj + (Vh)ij = b

)
+§(UZ] — Lll"j - CZ]-)Z)}
@ d-subproblem:

gntl — argn}iinz (|di,j‘ + %‘di,j - (V n+1) (Vh) ij 2)}
ij

@ v-subproblem:
"t = argmmz ( (vij — i,;rl — ng)z) + X5(v);

@ Bregman variables b and c:

bn+1 ="+ Vu"' —Vh— dn-i—l, Cn+1 ="+ un—l—l _ vn-&-l‘
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u-subproblem

u-subproblem:

2
B - argmmZ( (uij— gl,] 7|d (Vu)ij+(V )-—bffj

)
+§(UZ] — Lti’]' — CZ])Z) .

It can be viewed as the discretization of the minimization problem:

mmf/ i—g) dx+7/\d Vi + Vh— b2 dx

+3 ./Q(v—u - c) dx.
The EL equation of the above minimization problem is given by

(A+6)u—yAu = Ag— y(div(d + Vh —b)) + (v —c).

dL oL dL . oL oL
Note: E—V (aux auy) =0inQ, a—uxnl—l-a—uynz—OOHE)Q.
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u-subproblem (cont’d)

We obtain the discrete equations:

(/\—i—(S)quJrl —y(Au"h); ;= Agij— vy (div(d" + Vh— b”))i,j +6(0f; —cfy)-

The discrete operators div and A are defined as follows:

@ Givenp = (p!,p?) with p!, p> € RN*N, we define
(div p)ij = (Vip')ij+ (V;PZ)z’,j = (P},j - le,jfl) + (Piz,j - P1‘271,j)-

@ The discrete Laplacian is then defined as the composite of V and
div as Au := div(Vu).

@ Since the discretized problem produces a symmetric and
diagonally dominant linear system, some iterative solvers such
as Jacobi method or Gauss-Seidel method can be employed for
efficiently solving u.
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d-subproblem

d-subproblem:

d"! = arg minz (’di,j
d 7

+ %|di,j — (V™) + (Vh)ij — b 2)-

The objective function is strictly convex and it has the following
closed-form solution:

1
d’flfi’l _ (Vu”+ )i,j — (Vh)z,] + b?,j
K |(Vunth);; — (Vh);; + b

X max{|(Vu”+l)i,j — (Vh);; + bm - %, 0}.
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v-subproblem, Bregman variables, and initialization

v-subproblem:
n+1 _ . 4 n+1 n\2
"t = argmvmz (E(vi’j —up =) ) +Xs(0).
if

For the v-subproblem, it can be solved by pixel-wise orthogonal
projection of u + ¢ onto the predefined interval S := [sq, 5]

v;j = min { max {u;; + ¢;j, 51 },52}.
Note that we take S = [s1, s3] := [0,255].
Bregman variables b and c:
bn+l —p" 4 vun —Vh— dn+l Cn+l — " + un+1 _ ,UnJrl.

Initialization: u = h,v=h,d=0,b=0,c = 0.
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Numerical experiments and comparisons

(T): f, upps, ugg ~ (B): wycE, UCLAHE, UMLHE—HE
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Numerical experiments and comparisons

Surprisingly, under the same parameter setting, the iteration number of our
model is far less than that of the MPS model.
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Numerical experiments and comparisons
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Numerical experiments and comparisons
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Numerical experiments and comparisons

(T):f, upps, ugg ~ (B): wycE, UCLAHE, UMLHE—HE
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Numerical experiments and comparisons

(T): uace(e =2,4,6)  (B): tpgaptive(x = 0.8, 1.0, 1.2),B = 3«)

uh-Yuh Yang ( Wi 1), Math. Dept., NC i Image Contrast Enhancement — 36/41



Numerical experiments and comparisons

(T): f, upmps, UHE ILHE —HE

=

Image Ci Enhancement
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Numerical experiments and comparisons

(T): uace (e =2,4,6)  (B): taggprive(a = 0.8,1.0,1.2, p = 3a)
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Numerical results of the proposed method
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Numerical results of the proposed method

(B): enhanced images

Image Contrast Enhancement — 40/41



Summary

© 06 o ©

We have proposed a simple and efficient adaptive variational
model for image contrast enhancement.

This model is designed for enhancing low-light images by
dividing the image domain into bright and dim parts.

The existence and uniqueness of minimizer for the minimization
problem is established, and a convergent algorithm is provided.

The most distinguished feature of our model is that colors are
preserved as close as possible to the original ones.
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