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Outline of “image contrast enhancement”

In this lecture, we will briefly introduce some techniques for image
contrast enhancement, including

Histogram equalization (HE，直方圖等化)

Automatic color equalization (ACE，自動色彩均衡)

Simplest color balance (SCB，最簡色彩平衡)

Variational methods with split Bregman iterations
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The material of this lecture

The material of this lecture is based on the following text and papers:

Section 3.3: Histogram Processing in [GW2018], pp. 133-153.

P. Getreuer, Automatic color enhancement (ACE) and its fast
implementation, Image Processing On Line, 2 (2012), pp. 266-277.

P.-W. Hsieh, P.-C. Shao, and S.-Y. Yang, Adaptive variational
model for contrast enhancement of low-light images, SIAM
Journal on Imaging Sciences, 13 (2020), pp. 1-28.

N. Limare, J.-L. Lisani, J.-M. Morel, A. B. Petro, and C. Sbert,
Simplest color balance, Image Processing On Line, 1 (2011), pp.
297-315.
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Contrast enhancement

The main purpose of contrast enhancement is to adjust the image
intensity to enhance the quality and features of the image for a better
human visual perception or machine vision identification.

A low-light image and its enhanced result
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Histogram equalization (HE): g(x, y) =: s = T(r) := T(f (x, y))

We are given a grayscale image f : Ω→ [0, 1]. The cumulative
histogram (cumulative distribution function) T is defined by
considering f as a random variable: for η ∈ [0, 1], we define

T(η) := Prob(f ≤ η)

=
1
|Ω|

∣∣∣{(x, y) ∈ Ω : f (x, y) ≤ η}
∣∣∣.

Then T : [0, 1]→ [0, 1] is a monotonic increasing function.

The histogram equalized image g : Ω→ [0, 1] is obtained by
defining

g(x, y) := T(f (x, y)).
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Histogram equalized image g ∼ U (0, 1) if T is invertible

If T is strictly increasing, then T is invertible and the cumulative
distribution function of the histogram equalized image g is

Prob(g ≤ η) = Prob(T(f ) ≤ η) = Prob(f ≤ T−1(η))

= T(T−1(η)) = η.

Hence, the probability density function of g is

p(t) =
{

1 for 0 ≤ t ≤ 1,
0 elsewhere.

Therefore, g has a uniform distribution, i.e., g ∼ U (0, 1).

Remark: Let X be a random variable and p(t) the probability density
function (pdf) of X. The cumulative distribution function (cdf) of X is

F(η) := Prob(X ≤ η) =
∫ η

−∞
p(t) dt.
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Example of histogram equalized image
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Histogram equalization of 400× 600 image: (top) before; (bottom) after; and
the corresponding histograms

Matlab commands: imhist(A), histeq(A)
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Automatic color equalization (ACE)

We are given a grayscale image f : Ω→ [0, 1]. First, the following
operation is performed

f̃ (x) = ∑
y∈Ω\{x}

sα

(
f (x)− f (y)

)
‖x− y‖ , ∀ x ∈ Ω.

The slope function sα(t) := min{max{αt, −1}, 1} (α > 1).

Then f̃ is rescaled to [0, 1] as the ACE image

g(x) =
f̃ (x)−min f̃

max f̃ −min f̃
, ∀ x ∈ Ω.
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ACE images for various α’s and HE image
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Simplest color balance: given a grayscale image f (x)

The algorithm simply stretches, as much as it can, the values of
the three channels (R, G, B), so that they occupy the maximal
possible range [0, 255].

The simplest way to do so is to apply an affine function
z̃ = a z︸︷︷︸

f (x)
+b to each channel such that{

azmin + b = 0,
azmax + b = 255.

We solve a and b so that the maximal value in the channel
becomes 255 and the minimal value 0.

a =
255

zmax − zmin
, b = − 255zmin

zmax − zmin
.

That is, the intensity of the resulting image is given by

f̃ (x) =
255

zmax − zmin
f (x)− 255zmin

zmax − zmin
= 255

(
f (x)− zmin

zmax − zmin

)
, x ∈ Ω.
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Simplest color balance (cont’d)

However, many images contain a few aberrant pixels that
already occupy the 0 and 255 values. Thus, an often spectacular
image color improvement is obtained by “clipping” a small
percentage s% of the pixels with the highest values to 255 and a small
percentage of the pixels with the lowest values to 0, before applying the
affine transform.

Notice that this saturation can create flat white regions or flat
black regions that may look unnatural. Thus, the percentage of
saturated pixels must be as small as possible.

In our numerical experiments of the proposed adaptive method
below, we apply the simplest color balance (SCB) to the resulting
images with a 0.1% of saturation.
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SCB images

original image, SCB images with s% = 0%, 1%, 2%, and 3%
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SCB images

original image, SCB images with s% = 0%, 1%, 2%, and 3%
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The proposed adaptive method with SCB and s% = 0.1%

A landscape of Da-Xi
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A simple variational model

Let f : Ω→ R be a given grayscale image. The Morel-Petro-Sbert
model (IPOL 2014) is given by

min
u

1
2

∫
Ω
|∇u−∇f |2 dx︸ ︷︷ ︸

data fidelity

+
λ

2

∫
Ω
(u− u)2 dx︸ ︷︷ ︸
regularizer

.

The constant u := 1
|Ω|
∫

Ω u dx is the mean value of u over Ω.

The data fidelity term preserves image details presented in f and
the regularizer reduces the variance of u to eliminate the effect of
nonuniform illumination.

The parameter λ > 0 balances between detail preservation and
variance reduction.

c© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Image Contrast Enhancement – 15/41



Two modified variational models

The original model is simple but difficult to solve due to the u
term. Therefore, by assuming that u ≈ f := 1

|Ω|
∫

Ω f dx, it was
simplified to

min
u

1
2

∫
Ω
|∇u−∇f |2 dx +

λ

2

∫
Ω
(u− f )2 dx.

Petro-Sbert-Morel (MAA 2014) further improved their model by
using the L1 norm to obtain sharper edges:

min
u

∫
Ω
|∇u−∇f | dx +

λ

2

∫
Ω
(u− f )2 dx.

Note that requiring the desired image u being close to a pixel-
independent constant f highly contradicts the requirement of∇u
being close to ∇f and restrains the parameter λ to be very small.
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An adaptive variational model

Hsieh-Shao-Yang (SIIMS 2020) proposed two adaptive functions g
and h to replace f and the original input image f ,

min
u

∫
Ω
|∇u−∇h| dx +

λ

2

∫
Ω
(u− g)2 dx + χ

[0,255](u),

where g and h are devised respectively as

g(x) =

{
αf , x ∈ Ωd,

f (x), x ∈ Ωb,
h(x) =

{
βf (x), x ∈ Ωd,

f (x), x ∈ Ωb,

Ωd := {x ∈ Ω : f (x) ≤ f}, Ωb := {x ∈ Ω : f (x) > f},
with a brightness parameter α > 0 and a contrast-level parameter
β > 1, and the characteristic function is defined as

χ
[0,255](u) =

{
0, range(u) ⊆ [0, 255],

∞, otherwise.

Generally speaking, Ωd contains relatively dim elements, while Ωb
contains relatively bright elements.
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Differentiability of h

To ensure the differentiability of h, in practice we smooth the
coefficients and redefine the adaptive function h as

h(x) = G ∗
(

β1Ωd(x) + 1Ωb(x)
)
f (x), x ∈ Ω,

where the indicator function 1A(x) = 1, if x ∈ A, otherwise 1A(x) = 0,
and G∗ represents suitable Gaussian convolution such that ∇h is
well-defined.
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Color RGB images

The domain division for color RGB images denoted by (fR, fG, fB)
is conducted as follows. First, we define the maximum image as

fmax(x) := max{fR(x), fG(x), fB(x)}, ∀ x ∈ Ω.

Let f max := 1
|Ω|
∫

Ω fmax dx. Then we divide the image domain Ω
into two parts

Ωd := {x ∈ Ω : fmax(x) ≤ f max},

Ωb := {x ∈ Ω : fmax(x) > f max}.

As an example, consider an element x? ∈ Ω with color
intensities (fR(x?), fG(x?), fB(x?)) = (25, 25, 200), then
fmax(x?) = 200, a large value which should be classified into Ωb.
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Domain division for color images

(top row): low-light images (bottom row): domain-division results
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Adaptive variational model for color images

With the help of the maximum image fmax, we can now process
color images channelwise. For every f ∈ {fR, fG, fB}, we solve

min
u

∫
Ω
|∇u−∇hc| dx +

λ

2

∫
Ω
(u− gc)

2 dx + χ
[0,255](u),

where the adaptive functions gc and hc are defined as

gc(x) :=

{
αf , x ∈ Ωd,

f (x), x ∈ Ωb,

and

hc(x) :=

{
βf (x), x ∈ Ωd,

f (x), x ∈ Ωb.

There is no evidence shown that chooses different λ, α and β for
each channel separately can have specific benefit. Therefore, for
simplicity, we fix λ, α, and β across channel.
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The bounded variation space BV(Ω)

Let Ω be an open subset of R2. The space of functions of bounded
variation BV(Ω) is defined as the space of real-valued function
u ∈ L1(Ω) such that the total variation is finite, i.e.,

BV(Ω) = {u ∈ L1(Ω) : ‖u‖TV(Ω) < ∞},
where

‖u‖TV(Ω) :=
∫

Ω
|Du|

:= sup
{ ∫

Ω
u(∇ · ϕ) dx : ϕ ∈ C1

c (Ω, R2), ‖ϕ‖(L∞(Ω))2 ≤ 1
}

,

C1
c (Ω, R2) is the space of continuously differentiable vector functions

with compact support in Ω, L1(Ω) and L∞(Ω) are the usual Lp(Ω)
space for p = 1 and p = ∞, respectively.

Then BV(Ω) is a Banach space with the norm,

‖u‖BV(Ω) := ‖u‖L1(Ω) + ‖u‖TV(Ω).
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Existence and uniqueness of minimizer

Let Ω ⊂ R2 be an open bounded domain with Lipschitz boundary and let
h ∈ BV(Ω) be the input image. Then the variational problem

min
u

∫
Ω
|∇u−∇h| dx +

λ

2

∫
Ω
(u− g)2 dx + χ

[0,255](u)

admits a unique minimizer in BV(Ω) ∩ L2(Ω).

Remarks:∫
Ω |∇u| dx should be realized as the total variation

∫
Ω |Du|.

Let w = u− h, then the energy can be rewritten as the TV
denoising one proposed by Goldstein-Osher (SIIMS 2009).

direct method (Lebesgue dominated convergence) −→ existence.

strict convexity −→ uniqueness.
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The alternating minimization algorithm

The discrete gradient of u is defined as ∇ui,j = (∇+
x ui,j,∇+

y ui,j),

∇+
x ui,j :=

{
(ui,j+1 − ui,j)/h, 1 ≤ j ≤ N− 1,
0, j = N,

∇+
y ui,j :=

{
(ui+1,j − ui,j)/h, 1 ≤ i ≤ N− 1,
0, i = N,

The continuous model can be discretized as

min
u ∑

i,j

∣∣∇ui,j −∇hi,j
∣∣+ λ

2
(
ui,j − gi,j

)2
+ χ

[0,255](u).

Applying the operator splitting, it is then equivalent to

min
u,d,v

∑
i,j

(∣∣di,j
∣∣+ λ

2
(ui,j − gi,j)

2
)
+ χ

[0,255](v),

subject to d = ∇u−∇h and v = u.
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The Bregman iterations

The splitted problem can be solved by using the Bregman
iteration. Introducing the penalty parameter γ > 0 and δ > 0,
we arrive at the following unconstrained minimization problem:

min
u,d,v

∑
i,j

(∣∣di,j
∣∣+ λ

2
(ui,j − gi,j)

2 +
γ

2

∣∣di,j −∇ui,j +∇hi,j − bi,j
∣∣2

+
δ

2
(vi,j − ui,j − ci,j)

2
)
+ χ

[0,255](v),

where b and c are the variables related to the Bregman iterations.

Then the problem is solved by alternating the search directions
of u, d, and v.
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The split Bregman iterations: 3 subproblems + 2 identities

u-subproblem:

un+1 = arg min
u ∑

i,j

(λ

2
(ui,j − gi,j)

2 +
γ

2

∣∣dn
i,j − (∇u)i,j + (∇h)i,j − bn

i,j
∣∣2

+
δ

2
(vn

i,j − ui,j − cn
i,j)

2
)

;

d-subproblem:

dn+1 = arg min
d

∑
i,j

(∣∣di,j
∣∣+ γ

2

∣∣di,j − (∇un+1)i,j + (∇h)i,j − bn
i,j
∣∣2);

v-subproblem:

vn+1 = arg min
v ∑

i,j

( δ

2
(vi,j − un+1

i,j − cn
i,j)

2
)
+ χS(v);

Bregman variables b and c:

bn+1 = bn +∇un −∇h− dn+1, cn+1 = cn + un+1 − vn+1.
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u-subproblem

u-subproblem:

un+1 = arg min
u ∑

i,j

(λ

2
(ui,j − gi,j)

2 +
γ

2

∣∣dn
i,j − (∇u)i,j + (∇h)i,j − bn

i,j
∣∣2

+
δ

2
(vn

i,j − ui,j − cn
i,j)

2
)

.

It can be viewed as the discretization of the minimization problem:

min
u

λ

2

∫
Ω
(u− g)2 dx +

γ

2

∫
Ω
|d−∇u +∇h− b|2 dx

+
δ

2

∫
Ω

(
v− u− c

)2 dx.

The EL equation of the above minimization problem is given by

(λ + δ)u− γ∆u = λg− γ
(
div(d +∇h− b)

)
+ δ(v− c).

Note:
∂L
∂u
−∇ · ( ∂L

∂ux
,

∂L
∂uy

)> = 0 in Ω,
∂L
∂ux

n1 +
∂L
∂uy

n2 = 0 on ∂Ω.
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u-subproblem (cont’d)

We obtain the discrete equations:

(λ+ δ)un+1
i,j −γ(∆un+1)i,j = λgi,j−γ

(
div(dn +∇h− bn)

)
i,j + δ(vn

i,j− cn
i,j).

The discrete operators div and ∆ are defined as follows:

Given p = (p1, p2) with p1, p2 ∈ RN×N, we define

(div p)i,j := (∇−x p1)i,j + (∇−y p2)i,j := (p1
i,j− p1

i,j−1) + (p2
i,j− p2

i−1,j).

The discrete Laplacian is then defined as the composite of ∇ and
div as ∆u := div(∇u).

Since the discretized problem produces a symmetric and
diagonally dominant linear system, some iterative solvers such
as Jacobi method or Gauss-Seidel method can be employed for
efficiently solving u.
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d-subproblem

d-subproblem:

dn+1 = arg min
d

∑
i,j

(∣∣di,j
∣∣+ γ

2

∣∣di,j − (∇un+1)i,j + (∇h)i,j − bn
i,j
∣∣2).

The objective function is strictly convex and it has the following
closed-form solution:

dn+1
i,j =

(∇un+1)i,j − (∇h)i,j + bn
i,j∣∣(∇un+1)i,j − (∇h)i,j + bn
i,j

∣∣
×max

{∣∣(∇un+1)i,j − (∇h)i,j + bn
i,j
∣∣− 1

γ
, 0
}

.
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v-subproblem, Bregman variables, and initialization

v-subproblem:

vn+1 = arg min
v ∑

i,j

( δ

2
(vi,j − un+1

i,j − cn
i,j)

2
)
+ χS(v).

For the v-subproblem, it can be solved by pixel-wise orthogonal
projection of u + c onto the predefined interval S := [s1, s2]

vi,j = min
{

max
{

ui,j + ci,j, s1
}

, s2

}
.

Note that we take S = [s1, s2] := [0, 255].

Bregman variables b and c:

bn+1 = bn +∇un −∇h− dn+1, cn+1 = cn + un+1 − vn+1.

Initialization: u = h, v = h, d = 0, b = 0, c = 0.
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Numerical experiments and comparisons

(T): f , uMPS, uHE (B): uVCE, uCLAHE, uMLHE−HE
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Numerical experiments and comparisons

(T): uACE(α = 2, 4, 6) (B): uAdaptive(α = 0.8, 1.0, 1.2), β = 3α

Surprisingly, under the same parameter setting, the iteration number of our
model is far less than that of the MPS model.
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Numerical experiments and comparisons

(T): f , uMPS, uHE (B): uVCE, uCLAHE, uMLHE−HE

c© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Image Contrast Enhancement – 33/41



Numerical experiments and comparisons

(T): uACE(α = 2, 4, 6) (B): uAdaptive(α = 0.8, 1.0, 1.2), β = 3α)
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Numerical experiments and comparisons

(T): f , uMPS, uHE (B): uVCE, uCLAHE, uMLHE−HE
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Numerical experiments and comparisons

(T): uACE(α = 2, 4, 6) (B): uAdaptive(α = 0.8, 1.0, 1.2), β = 3α)
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Numerical experiments and comparisons

(T): f , uMPS, uHE (B): uVCE, uCLAHE, uMLHE−HE
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Numerical experiments and comparisons

(T): uACE(α = 2, 4, 6) (B): uAdaptive(α = 0.8, 1.0, 1.2, β = 3α)
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Numerical results of the proposed method

(T): low-light images (B): enhanced images
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Numerical results of the proposed method

(T): low-light images (B): enhanced images
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Summary

1 We have proposed a simple and efficient adaptive variational
model for image contrast enhancement.

2 This model is designed for enhancing low-light images by
dividing the image domain into bright and dim parts.

3 The existence and uniqueness of minimizer for the minimization
problem is established, and a convergent algorithm is provided.

4 The most distinguished feature of our model is that colors are
preserved as close as possible to the original ones.
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