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Outline of “image inpainting”

In this lecture, we will introduce image inpainting

using the variational method (VM) with split Bregman and

using sparse representation and dictionary learning (SRDL).

The material of this lecture is based on

(VM) P. Getreuer, Total variation inpainting using split Bregman,
Image Processing On Line, 2 (2012), pp. 147-157.

(SRDL) Y. Sharon, J. Wright, and Y. Ma, Computation and
relaxation of conditions for equivalence between `1 and `0

minimization, UIUC Technical Report UILU-ENG-07-2008, 2007.

Image inpainting:
https://www.nvidia.com/research/inpainting/index.html

Matlab codes: http://brendt.wohlberg.net/software/SPORCO/
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Basic ideas of image inpainting

Given an image where a specified region is unknown, image
inpainting or image completion is the problem of inferring the
image content in this region (無中生有).

Image inpainting is an interpolation problem, filling the
unknown region with a condition to agree with the known
image on the boundary.

A classical solution for such an interpolation is to solve
Laplace’s equation. However, Laplace’s equation is usually
unsatisfactory for images since it is overly smooth.
It cannot recover a step edge passing through the region.
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H1 inpainting (Laplace’s equation)

Let f : Ω→ R be a given grayscale image and let D ⊂ Ω be an
open set representing the region to be inpainted. In other words,
it is supposed that f is known in Ω \D and unknown in D.

The inpainting solution by Laplace’s equation is to solve{
−∆u = 0 in D,

u = f on ∂D,

and u = f in Ω \D.

By Dirichlet’s principle, if the Laplace inpainting solution u is in
C2(D), then u is the minimizer of the Dirichlet energy:

E[v] :=
∫

D

(1
2
|∇v|2 − v× 0

)
dx,

for all v ∈ C2(D) satisfying the boundary condition u = f on ∂D.

Note that −∆u = 0 in D is the Euler-Lagrange equation of the
energy functional E[v].
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The bounded variation space BV(Ω)

Let Ω be an open subset of R2. The space of functions of bounded
variation BV(Ω) is defined as the space of real-valued function
u ∈ L1(Ω) such that the total variation is finite, i.e.,

BV(Ω) = {u ∈ L1(Ω) : ‖u‖TV(Ω) < ∞},

where the semi-norm ‖u‖TV(Ω) is defined as

‖u‖TV(Ω) := sup
{ ∫

Ω
u(∇ · ϕ) dx : ϕ ∈ C1

c (Ω, R2), ‖ϕ‖(L∞(Ω))2 ≤ 1
}

.

BV(Ω) is a Banach space with the norm,

‖u‖BV(Ω) = ‖u‖L1(Ω) + ‖u‖TV(Ω).

If u is smooth, then ‖u‖TV(Ω) =
∫

Ω |∇u| dx.
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The ROF total-variation model for image denoising

Let f : Ω ⊂ R2 → R be a given noisy image. Rudin, Osher, and
Fatemi (Physica D, 1992) proposed the model for image denoising:

min
u∈BV(Ω)∩L2(Ω)

{
‖u‖TV(Ω)︸ ︷︷ ︸
regularizer

+
λ

2

∫
Ω

(
u(x)− f (x)

)2 dx︸ ︷︷ ︸
data fidelity

}
,

where λ > 0 is a tuning parameter which controls the regularization
strength. Notice that

A smaller value of λ will lead to a more regular solution.

The space of functions with bounded variation help remove
spurious oscillations (noise) and preserve sharp signals (edges).

The TV term allows the solution to have discontinuities.
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The total variation model for image inpainting

Let f : Ω→ R be a given grayscale image and let D ⊂ Ω be an
open set representing the region to be inpainted. In other words,
it is supposed that f is known in Ω \D and unknown in D.

The TV inpainting method is to find the BV function u that
solves the minimization problem:

min
u∈BV(Ω)∩L2(Ω)

{
‖u‖TV(Ω)︸ ︷︷ ︸
regularizer

+
λ

2

∫
Ω\D

(
u(x)− f (x)

)2 dx︸ ︷︷ ︸
data fidelity

}
,

where λ > 0 is a regularization parameter.

Under suitable assumptions, minimizers u exist but are
generally not unique.
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The TV inpainting model may be viewed as denoising

Inpainting may be viewed as denoising with a spatially-varying
regularization strength λ(x) ≥ 0,

min
u∈BV(Ω)∩L2(Ω)

{
‖u‖TV(Ω) +

1
2

∫
Ω

λ(x)
(
u(x)− f (x)

)2 dx
}

,

where λ(x) = 0 for x ∈ D and λ(x) > 0 for x ∈ Ω \D.

For x ∈ D where λ(x) = 0, the value f (x) is unused and u(x) is
only influenced by the ‖u‖TV(Ω) term. Outside of D, the model
performs TV-regularized denoising and λ|Ω\D specifies the
denoising strength.

This denoising behavior may be desirable when it is difficult to
specify the inpainting domain accurately. By setting λ to a very
large value, the denoising effect is limited so that the image remains
nearly unchanged outside of D.
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Discretization of the ROF model (matrix indices)

Total variation is approximated by ‖u‖TV(Ω) ≈ h2 ∑N
i=1 ∑N

j=1 |∇ui,j|,
where the discrete gradient operator as ∇ui,j = (∇+

x ui,j,∇+
y ui,j)

>,

∇+
x ui,j =


ui,j+1 − ui,j

h
, 1 ≤ j ≤ N− 1,

0, j = N;
∇+

y ui,j =


ui+1,j − ui,j

h
, 1 ≤ i ≤ N− 1,

0, i = N.

Applying the operator splitting technique, we obtain the constrained
approximate minimization of the TV model:

min
d, u

(
∑
i,j
|di,j|+

1
2 ∑

i,j
λi,j(fi,j − ui,j)

2
)

subject to di,j = ∇ui,j.

Introducing a penalty parameter γ > 0, we obtain the unconstrained
minimization problem:

min
d, u

(
∑
i,j
|di,j|+

1
2 ∑

i,j
λi,j(fi,j − ui,j)

2 +
γ

2 ∑
i,j
|di,j −∇ui,j − bi,j|2

)
,

where b is an auxiliary variable related to the Bregman iteration.
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An alternating direction approach: Split Bregman method

Goldstein and Osher (2009) proposed to solve the above-mentioned
problem by an alternating direction approach: (see Getreuer 2012)

u-subproblem: With d fixed, we solve

uk+1 = arg min
u

(1
2 ∑

i,j
λi,j(fi,j − ui,j)

2 +
γ

2 ∑
i,j
|dk

i,j −∇ui,j − bk
i,j|2
)

.

The optimal u satisfies a discrete screened Poisson equation,

λ(u− f ) + γ∇ · (∇u− d + b) = 0,

or equivalently,

λu− γ∆u = λf − γ∇ · (d− b),

∇· and ∆ are the discrete divergence and Laplacian, respectively.

It can be viewed as the EL equation of the minimization problem:

min
u

1
2

∫
Ω

λ(f − u)2 dx +
γ

2

∫
Ω
|d−∇u− b|2 dx.
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The discrete screened Poisson equation

The discrete screened Poisson equation

λu− γ∆u = λf − γ∇ · (d− b),

which is a symmetric and diagonally dominant linear system, may be
solved for u in the Fourier domain or by the iterative matrix
techniques such as the Gauss-Seidel iterative method:

(λi,j + 4γ)uk+1
i,j = ck

i,j + γ
(

uk+1
i−1,j + uk

i+1,j + uk+1
i,j−1 + uk

i,j+1

)
,

where
ck

i,j :=
(
λf − γ∇ · (d− b)

)k
i,j.
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d-subproblem

d-subproblem: With u fixed, we solve

dk+1 = arg min
d

(
∑
i,j
|di,j|+

γ

2 ∑
i,j
|di,j −∇uk+1

i,j − bk
i,j|2
)

,

which has a closed-form solution,

dk+1
i,j =

∇uk+1
i,j + bk

i,j

|∇uk+1
i,j + bk

i,j|
max

{
|∇uk+1

i,j + bk
i,j| −

1
γ

, 0
}

.

Note: The solution of d-subproblem can be found componentwisely.
For each (i, j), the minimizer is given below:

arg min
x∈R2

{
|x|+ γ

2
|x− y|2

}
=

{ y
|y|
(
|y| − 1

γ

)
, |y| > 1

γ

0, |y| ≤ 1
γ

=
y
|y| max

{
|y| − 1

γ
, 0
}

.

c© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Image Inpainting – 12/30



Updating b and selecting γ

Updating b: The auxiliary variable b is initialized to zero and
updated as bk+1 = bk +∇uk+1 − dk+1.

Selecting γ: A good choice of γ is one for which both d and u
subproblems converge quickly and are numerically
well-conditioned.

− In d subproblem, the shrinking effect is more dramatic
when γ is small.

− In u subproblem, the effect of ∆ and ∇· increase when γ
gets larger. It is also ill-conditioned in the limit γ→ ∞.

Therefore, γ should be neither extremely large nor small for good
convergence.
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The split Bregman algorithm

The split Bregman algorithm:
initialize u = f , d = b = 0
while ‖ucurrent − uprevious‖2 > tolerance do

solve the u-subproblem
solve the d-subproblem
b = b +∇u− d

The default parameter values are: tolerance = ‖f‖2/105 and γ = 5.

Color images (RGB channels): The vectorial TV (VTV) is used in
place of TV,

‖u‖VTV(Ω) :=
∫

Ω

(
∑

i∈channels
|∇ui(x)|2

)1/2
dx.

The grayscale algorithm can be extended directly to VTV-regularized
image inpainting.
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Example: text removal, λ = 104

TV inpainting (and inpainting in general) is most successful
when the inpainting domain is thin.

A good feature of TV inpainting is that it reconstructs edges
rather than smoothing them.
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Example: effect of λ

Outside of the inpainting region D, the TV inpainting model
denoises the image. The denoising strength is controlled by the
value of λ, where a smaller value implies stronger denoising.

In the figure below, the previous experiment is repeated with
three different values of λ.
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Example: object removal

In this example, TV inpainting is used to attempt to remove a
lamppost from an image (λ = 250).

The result is reasonable over the pole where D is thin, but is poor
over the signal where it is thicker.
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Basic idea of the sparse representation

The goal of sparse representation is to find a sparse coefficient
vector z = (z1, z2, · · · , zn)> ∈ Rn (only a few of components of z
is nonzero) such that a given signal vector x ∈ Rm is a linear
combination of a few columns of a dictionary
D = [d1, d2, · · · , dn] ∈ Rm×n, i.e.,

x = z1d1 + z2d2 + · · ·+ zndn = Dz.

Typically, we use a over-completed dictionary to deal with
sparse representation problem. Therefore, there does not exist a
unique z such that x = Dz.
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The sparse representation problem

The sparse representation problem can be modeled as the
following optimization problem:

z∗ = arg min
z

‖z‖0 subject to x = Dz,

where ‖z‖0 := #{i : zi 6= 0}. We call ‖z‖0 the `0 “norm”’ of z,
even though `0 is not really a norm, since ‖αz‖0 6= |α|‖z‖0.

We can relax it into the following unconstrainted optimization
problem:

z∗ = arg min
z

{1
2
‖x−Dz‖2

2︸ ︷︷ ︸
data fidelity

+ λ‖z‖0︸ ︷︷ ︸
regularizer

}
,

where λ > 0 is a penalty parameter which controls the balance
between the data fidelity term and the regularization term.
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The sparse representation problem with `1-norm

The above optimization problem is an NP-hard problem, and
thus it is inefficient to solve it when n is large.

In [Donoho, CPAM 2006-2], if z is sufficiently sparse, then ‖z‖1
is a good approximation to ‖z‖0.

From now on, we mainly consider the following
Sparse representation problem: Given a signal vector x ∈ Rm

and a dictionary matrix D ∈ Rm×n, we seek a coefficient vector
z∗ ∈ Rn such that

z∗ = arg min
z

{1
2
‖x−Dz‖2

2 + λ‖z‖1

}
, λ > 0.
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Basic idea of the dictionary learning problem

In the sparse representation problem, the solution of interest z∗

is the coefficient vector of a linear combination of over-complete
basis elements (columns) from a given dictionary D under some
sparsity constraint. Therefore, it is typically accompanied by a
dictionary learning mechanism.

We are going to study a more general problem. The dictionary D
is unknown and needed to be sought together with the sparse
solution z.

The goal of sparse dictionary learning is to learn a dictionary
D = [d1, d2, · · · , dn] ∈ Rm×n from a given dataset of signals
{xi}N

i=1 ⊂ Rm, together with finding the sparse coefficient vectors
{zi}N

i=1 ⊂ Rn, such that xi ≈ Dzi, ∀i = 1, 2, · · · , N.
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The sparse dictionary learning problem

Sparse dictionary learning (SDL) problem:

Let {xi}N
i=1 ⊂ Rm be a given dataset of signals. We seek a dictionary matrix

D = [d1, d2, · · · , dn] ∈ Rm×n together with the sparse coefficient vectors
{zi}N

i=1 ⊂ Rn that solve the minimization problem:

min
D,{zi}

{1
2

N

∑
i=1
‖xi −Dzi‖2

2 + λ
N

∑
i=1
‖zi‖1

}
subject to ‖dk‖2 ≤ 1, ∀ 1 ≤ k ≤ n,

where λ > 0 is a penalty parameter.

Note: To prevent the columns of D being arbitrarily large, we impose
the constraints on them, since zi could be arbitrarily small.
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Problem formulation in a more compact form

To simplify the formulation of the SDL problem, we define

X = [x1, x2, · · · , xN] ∈ Rm×N, Z = [z1, z2, · · · , zN] ∈ Rn×N.

Then the SDL problem can be posed as follows: Given a training data
matrix X, find a dictionary matrix D and a coefficient matrix Z such that

min
D,Z

(1
2
‖X −DZ‖2

F + λ‖Z‖1,1

)
subject to ‖dk‖2 ≤ 1, ∀ 1 ≤ k ≤ n.

In the compact form, ‖ · ‖F denotes the Frobenius norm defined as
follows: for a matrix A = [a1, a2, · · · , aN] ∈ Rm×N,

‖A‖2
F :=

N

∑
i=1
‖ai‖2

2

and ‖Z‖1,1 is the L1,1-norm which is defined as

‖Z‖1,1 :=
N

∑
i=1
‖zi‖1.
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Image inpainting by SR & DL: step 1

Image inpainting aims to fill in the missing pixels. Below we first
consider the grayscale image I.

Step 1: Given a corrupted image I, we divide the image domain into
two disjoint regions, the target region Ωt and the source region Ωs,
Ωt := {(i, j)| the pixel (i, j) need to be inpainted}, Ωs is the set of the
remaining pixels (i, j). Then Ω = Ωs ∪Ωt. We assume Ωt is thin.

Define the mask image M whose size is the same as image I,

M(i, j) =
{

0, (i, j) ∈ Ωt,
1, (i, j) ∈ Ωs.

Given k ∈N, k� 1, we extract N patches (submatrices) {xi}N
i=1

all with size k× k from the image (matrix) I and then define the
corresponding submatrices {mi}N

i=1 from the mask matrix M.

According to each mi, we divide the collection of patches {xi}N
i=1

into two parts, {xs,i}N1
i=1 and {xt,i}N2

i=1. If all entries in mi are 1,
then the corresponding xi ∈ {xs,i}N1

i=1; otherwise, xi ∈ {xt,i}N2
i=1.
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Image inpainting by SR & DL: step 2

Training a dictionary with the patches (submatrices) {xs,i}N1
i=1:

Let m = k2. From now on, we rearrange each submatrix as a
long column vector with m components in the natural way.

Fixed n ∈N, we train a dictionary D = [d1, d2, · · · , dn] ∈ Rm×n

with X = [xs,1, xs,2, · · · , xs,N1 ] ∈ Rm×N1 . That is, we solve the
following constrained minimization problem:

arg min
D,Z

{1
2
‖X −DZ‖2

F + λ‖Z‖1,1

}
subject to ‖dk‖2 ≤ 1, ∀ 1 ≤ k ≤ n.
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Image inpainting by SR & DL: step 3

First, note that some pixel values in xt,i are missing and needed to be
inpainted! Next, we are going to find the sparse representations of
the vectors in {xt,i}N2

i=1.

LetM : Rm → Rm×m be the function defined by

M


a1
a2
...

am

 =


a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · am

 .

For i = 1, 2, · · · , N2, we seek the sparse representation of
xt,i ∈ Rm by solving

z∗i = arg min
zi

{1
2
‖M(mt,i)(xt,i −Dzi)‖2

2 + λ‖M(mt,i)zi‖1

}
,

where mt,i is the corresponding mask vector of xt,i.

c© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Image Inpainting – 26/30



Image inpainting by SR & DL: step 4

The final step is using the sparse representation vectors to inpaint the
missing-pixel vectors xt,i:

We replace xt,i by x∗t,i through the use of Dz∗i . More specifically,
we define

x∗t,i =M(mt,i)xt,i + (I −M(mt,i))Dz∗i ,

where I is the m×m identity matrix.

The image can be reconstructed by {xs,i}N1
i=1 and {x∗t,i}

N2
i=1.

Remark: For a color image, we can decompose it to RGB channels,
each is a grayscale image. We use these three images to construct a
common dictionary D and then use D to inpaint each channel.
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Example 1: image inpainting using SR

corrupted image inpainted image

λ = 0.2 for DL and λ = 0.1 for SR.
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Example 2: image inpainting using SR

corrupted image inpainted image

corrupted image inpainted image
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