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Outline of “image inpainting”

In this lecture, we will introduce image inpainting
@ using the variational method (VM) with split Bregman and

@ using sparse representation and dictionary learning (SRDL).

The material of this lecture is based on

@ (VM) P. Getreuer, Total variation inpainting using split Bregman,
Image Processing On Line, 2 (2012), pp. 147-157.

@ (SRDL) Y. Sharon, J. Wright, and Y. Ma, Computation and
relaxation of conditions for equivalence between ¢! and ¢°
minimization, UIUC Technical Report UILU-ENG-07-2008, 2007.

Image inpainting:
https://www.nvidia.com/research/inpainting/index.html

Matlab codes: http://brendt.wohlberg.net/software/SPORCO/
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Basic ideas of image inpainting

@ Given an image where a specified region is unknown, image
inpainting or image completion is the problem of inferring the
image content in this region (MHEF).

@ Image inpainting is an interpolation problem, filling the
unknown region with a condition to agree with the known
image on the boundary.

@ A classical solution for such an interpolation is to solve
Laplace’s equation. However, Laplace’s equation is usually
unsatisfactory for images since it is overly smooth.

It cannot recover a step edge passing through the region.
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H'! inpainting (Laplace’s equation)

@ Letf: QO — Rbe a given grayscale image and let D C Q) be an
open set representing the region to be inpainted. In other words,
it is supposed that f is known in Q) \ D and unknown in D.

@ The inpainting solution by Laplace’s equation is to solve

—Au = 0 inD,
u = f onaD,

andu = fin Q\ D.
@ By Dirichlet’s principle, if the Laplace inpainting solution u is in
C?(D), then u is the minimizer of the Dirichlet energy:

E[v] ::/D<%|Vv|z—v><0> dx,

for all v € C?(D) satisfying the boundary condition u = f on dD.

@ Note that —Au = 0in D is the Euler-Lagrange equation of the
energy functional E[v].
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The bounded variation space BV (Q))

Let Q) be an open subset of R?. The space of functions of bounded
variation BV (Q)) is defined as the space of real-valued function
u € L1(Q) such that the total variation is finite, i.e.,

BV(Q) = {u € LY(Q) : |ullrv(q) < o},

where the semi-norm ||u[|7y(q) is defined as
[ull7v(q) := sup { /Q“(V ~@)dx: ¢ € CLOQR?), (|9l (1o(a))2 < 1}'
@ BV(Q) is a Banach space with the norm,
lullviq) = Ul ) + lullrvia)-

® Ifuis smooth, then ||ulry(q) = [ [Vuldx.
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The ROF total-variation model for image denoising

Letf : O C R? — R be a given noisy image. Rudin, Osher, and
Fatemi (Physica D, 1992) proposed the model for image denoising:

. AL 5
UGBV%%LZ«)){L”HTV_(“ﬁE /Q (u(x) —f(x))* dx |,

reqularizer data fidelity

where A > 0 is a tuning parameter which controls the regularization
strength. Notice that

@ A smaller value of A will lead to a more regular solution.

@ The space of functions with bounded variation help remove
spurious oscillations (noise) and preserve sharp signals (edges).

@ The TV term allows the solution to have discontinuities.
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The total variation model for image inpainting

@ Letf: O — Rbe a given grayscale image and let D C Q be an
open set representing the region to be inpainted. In other words,
it is supposed that f is known in Q) \ D and unknown in D.

@ The TV inpainting method is to find the BV function u that
solves the minimization problem:

min, - {llvio +5 / ) dx},

UEBV(Q)NL2(Q

l
reqularizer data fidelity

where A > 0 is a regularization parameter.

@ Under suitable assumptions, minimizers u exist but are
generally not unique.
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The TV inpainting model may be viewed as denoising

@ Inpainting may be viewed as denoising with a spatially-varying
regularization strength A(x) > 0,

min Llullyie) + 5 [ M) () — f )},

u€BV(Q)NL2(QY)

where A(x) = 0 forx € Dand A(x) > 0 forx € Q\ D.

@ For x € D where A(x) = 0, the value f(x) is unused and u(x) is
only influenced by the [|u(|y(q) term. Outside of D, the model
performs TV-regularized denoising and A|q) p specifies the
denoising strength.

@ This denoising behavior may be desirable when it is difficult to
specify the inpainting domain accurately. By setting A to a very
large value, the denoising effect is limited so that the image remains
nearly unchanged outside of D.
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Discretization of the ROF model (matrix indices)

Total variation is approximated by ||u/(|ry(q) ~ »yN, Z] 11V,
where the discrete gradient operator as Vu;; = (Viu;;, Vo uz,]) p

Wiiia — Ui Wit i — Ui
. 1,]+1h i] 1< ] <N-1, . 1+1,]h ij
Viujj= Vyujj =

0,j=N; 0,i=N

,1<i<N-1,

Applying the operator splitting technique, we obtain the constrained
approximate minimization of the TV model:

: 1 .
I;lll];l (Z |d,',j + 5 Z)\,‘,j(fj,j — Ll[/j)2> subject to d,‘,j = Vu,',]‘.
/ ij ij

Introducing a penalty parameter y > 0, we obtain the unconstrained
minimization problem:

mm 2|le‘ 2/\,](/[1,] ”i,j)Z ’YZ‘diJ' Vi, bi,]'|2 ’
- 2 &
ij

ij
where b is an auxiliary varmble related to the Bregman iteration.
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An alternating direction approach: Split Bregman method

Goldstein and Osher (2009) proposed to solve the above-mentioned
problem by an alternating direction approach: (see Getreuer 2012)

u-subproblem: With d fixed, we solve
. /1
uF1l = arg m1n<§ Z/\i,j(fi,j - uz-,j)2 + % ) \di‘j = Vu;; — biij|2>.
u ij ij

The optimal u satisfies a discrete screened Poisson equation,
AMu—f)+9V-(Vu—d+b) =0,
or equivalently,
A —yAu = Af —yV - (d—D),
V- and A are the discrete divergence and Laplacian, respectively.

It can be viewed as the EL equation of the minimization problem:

1 2 Tl 2
rr}lmi'/g/\(ffu) dx+§'/0\d7Vufb| dx.
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The discrete screened Poisson equation

The discrete screened Poisson equation
A —yAu = Af =4V - (d—D),

which is a symmetric and diagonally dominant linear system, may be
solved for u in the Fourier domain or by the iterative matrix
techniques such as the Gauss-Seidel iterative method:

k+1 _ k k+1 | Lk k+1 | Lk
(Aij+4y)u =cj+ 'Y(”zel,j Fu gt ”i,j+1)f

where L
cﬁﬁj = (M =V (d— b))i,j.
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d-subproblem

d-subproblem: With u fixed, we solve
k : i Uk k
g1 — arg‘;nm(lzj: \d; ;| + 5 IZJ: |d;; — l]+1 bi,j|2)’

which has a closed-form solution,

YVu k+1+bk 1
k1 _ ij k41, kL
dz/ \VukH —l—bk | max{|Vu + bijl ~ O}.

Note: The solution of d-subproblem can be found componentwisely.
For each (i, ), the minimizer is given below:

Y _1 -
argmin{ |y + TJr —y2} = {yﬂyl D, Lyl
XER? 0, ly| <

= %max{\m - %, 0}.

===
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Updating b and selecting vy

@ Updating b: The auxiliary variable b is initialized to zero and
updated as bF1 = bk + vyt — gkl

@ Selecting : A good choice of -y is one for which both d and u
subproblems converge quickly and are numerically
well-conditioned.

— In d subproblem, the shrinking effect is more dramatic
when 7 is small.

— In u subproblem, the effect of A and V- increase when v
gets larger. It is also ill-conditioned in the limit ¢ — oo.

Therefore, -y should be neither extremely large nor small for good
convergerce.
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The split Bregman algorithm

The split Bregman algorithm:
initializeu =f,d =b =0
while [[tcurrent — Uprevious||2 > tolerance do
solve the u-subproblem
solve the d-subproblem
b=b+Vu—d
The default parameter values are: tolerance = ||f||2/10° and y = 5.

Color images (RGB channels): The vectorial TV (VIV) is used in
place of TV,

1/2
ulvrviey = [ (L VuP)

iechannels

The grayscale algorithm can be extended directly to VIV-regularized
image inpainting.
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Example: text removal, A = 10*

Input TV Inpainting
orem ipsum dolor

onsectetur adipis

unc eu diam eget

lacerat posuere. D

acemt posuem D
ondimentum mi quondimenium mi q
attis et dictum nefhattis et dictum ne
dipiscing. Curabit
apien justo. Nam i
ulla at ante Iuctus

@ TV inpainting (and inpainting in general) is most successful
when the inpainting domain is thin.

@ A good feature of TV inpainting is that it reconstructs edges
rather than smoothing them.

Input TV Inpainting
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Example: effect of A

@ Outside of the inpainting region D, the TV inpainting model
denoises the image. The denoising strength is controlled by the
value of A, where a smaller value implies stronger denoising.

@ In the figure below, the previous experiment is repeated with
three different values of A.

A=10 A =40 A =10
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Example: object removal

In this example, TV inpainting is used to attempt to remove a
lamppost from an image (A = 250).

The result is reasonable over the pole where D is thin, but is poor
over the signal where it is thicker.

TV Inpainting
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Basic idea of the sparse representation

@ The goal of sparse representation is to find a sparse coefficient
vector z = (21,22, - ,z”)T € IR" (only a few of components of z
is nonzero) such that a given signal vector x € R™ is a linear
combination of a few columns of a dictionary
D =[dy,dy,--- ,d,] € R™", je,

x = z1d1 + zpdy + - - - + z,d,, = Dz.

@ Typically, we use a over-completed dictionary to deal with
sparse representation problem. Therefore, there does not exist a
unique z such that x = Dz.
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The sparse representation problem

@ The sparse representation problem can be modeled as the
following optimization problem:

z' = argmin||z[lp subjectto x =Dz,
z

where ||z||g := #{i: z; # 0}. We call ||z||o the 0 “norm”” of z,
even though #° is not really a norm, since ||az||g # |«||/z|/o-

@ We can relax it into the following unconstrainted optimization
problem:

. 1
= argmin{fﬂx—DzH%—F Alzllo }
z 2 k\,_/

data fidelity reqularizer

where A > 0 is a penalty parameter which controls the balance
between the data fidelity term and the regularization term.
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The sparse representation problem with /!-norm

@ The above optimization problem is an NP-hard problem, and
thus it is inefficient to solve it when # is large.

@ In [Donoho, CPAM 2006-2], if z is sufficiently sparse, then ||z||;
is a good approximation to |/z||o.
@ From now on, we mainly consider the following

Sparse representation problem: Given a signal vector x € R"
and a dictionary matrix D € R"*", we seek a coefficient vector
z* € R" such that

1
z* :argmin{inszH%+/\Hz\|1}, A>0.
z
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Basic idea of the dictionary learning problem

@ In the sparse representation problem, the solution of interest z*
is the coefficient vector of a linear combination of over-complete
basis elements (columns) from a given dictionary D under some
sparsity constraint. Therefore, it is typically accompanied by a
dictionary learning mechanism.

@ We are going to study a more general problem. The dictionary D
is unknown and needed to be sought together with the sparse
solution z.

The goal of sparse dictionary learning is to learn a dictionary

D = [dy,dy, - ,d,] € R™" from a given dataset of signals
{xi}}, C R™, together with finding the sparse coefficient vectors
{z; fil C R”, such that x; ~ Dz;, ¥Vi=1,2,--- ,N.
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The sparse dictionary learning problem

Sparse dictionary learning (SDL) problem:

Let {x N, C ]R’" be a given dataset of signals. We seek a dictionary matrix
[dl, dy, - -, dy] € R™*" together with the sparse coefficient vectors
{z 1 C R" that solve the minimization problem:

N
min {2 ):sz Dzf3+A Y lzill |

D {z;} i=1
subject to ||di|, <1, V1 <k <m,

where A > 0 is a penalty parameter.

Note: To prevent the columns of D being arbitrarily large, we impose
the constraints on them, since z; could be arbitrarily small.
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Problem formulation in a more compact form

To simplify the formulation of the SDL problem, we define
X = [xlleI e rxN] S RmXNr Z= [zerZI' o rZN] S RHXN-

Then the SDL problem can be posed as follows: Given a training data
matrix X, find a dictionary matrix D and a coefficient matrix Z such that

1 2
min( =||X — DZ||¢ + A||Z )
min (31X = DZI} + 11211
subject to [|di|, <1, V1 <k <n.

In the compact form, || - || denotes the Frobenius norm defined as
follows: for a matrix A = [a,ap,--- ,ay] € R™N,

N
1AlE =} llaill3
i=1
and [|Z||1,1 is the L1 ;-norm which is defined as

N
1Zl[11 := ) Izl
i=1
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Image inpainting by SR & DL: step 1

Image inpainting aims to fill in the missing pixels. Below we first
consider the grayscale image I.

Step 1: Given a corrupted image I, we divide the image domain into
two disjoint regions, the target region (); and the source region (),
QO := {(i,])| the pixel (i,j) need to be inpainted }, () is the set of the
remaining pixels (/). Then Q) = Qs U ;. We assume () is thin.

@ Define the mask image M whose size is the same as image I,

(0, (i) ey
M(l'/){ 1, (i,j) € Q.

@ Givenk € N, k > 1, we extract N patches (submatrices) {x;}I¥ |
all with size k x k from the image (matrix) I and then define the
corresponding submatrices {m;})Y | from the mask matrix M.

@ According to each m;, we divide the collection of patches {x;}I¥ |
into two parts, {xs,,-}fill and {xtli}f\izl. If all entries in m; are 1,

then the corresponding x; € {xs,i}giﬂ ; otherwise, x; € {xtli}ﬁﬁ.
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Image inpainting by SR & DL: step 2

Training a dictionary with the patches (submatrices) {xs,i}?illz

@ Letm = k?. From now on, we rearrange each submatrix as a
long column vector with m components in the natural way.

@ Fixed n € IN, we train a dictionary D = [dq,dp, - - - ,dy] € R™*"
with X = [x51, %52, -+, XsN,] € R"*N1, That is, we solve the
following constrained minimization problem:

1,1}

subject to ||di|2 <1, V1 <k <n.

1
argmin{EHX —DZ|3+A||Z
Dz
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Image inpainting by SR & DL: step 3

First, note that some pixel values in x; ; are missing and needed to be
inpainted! Next, we are going to find the sparse representations of

the vectors in {xtli}izl.
@ Let M : R™ — R"™*™ be the function defined by

a1 a1 0 0

ap 0 ap --- 0
M| | =

am 0O 0 - ay

@ Fori=1,2,---,Ny, we seek the sparse representation of
x:; € R™ by solving

1

* .1
=t = argmin{ 5 | M (my;) (31 — Dz) 3 + A M () zil1 |,
Z;

where m, ; is the corresponding mask vector of x; ;.
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Image inpainting by SR & DL: step 4

The final step is using the sparse representation vectors to inpaint the
missing-pixel vectors x; ;:

® We replace x;; by x;; through the use of Dz;. More specifically,
we define

xf; = M(my;)x;; + (T — M(my;))Dz;,

where 7 is the m x m identity matrix.

@ The image can be reconstructed by {xsfl-}fill and {xfi}f«izl.

Remark: For a color image, we can decompose it to RGB channels,
each is a grayscale image. We use these three images to construct a
common dictionary D and then use D to inpaint each channel.
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Example 1: image inpainting using SR

corrupted image inpainted image

A =0.2for DL and A = 0.1 for SR.
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Example 2: image inpainting using SR

corrupted image
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