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Spatial domain and transform domain

The spatial domain approach and transform domain approach are
two main categories in image processing:

@ Spatial domain: refers to the image plane itself, and image
processing methods in this category are based on direct
manipulation of pixels in an image.

@ Transform domain: involves first transforming an image into the
transform domain, doing the processing there, and obtaining the
inverse transform to bring the results back into spatial domain.
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Outline of “intensity transformations & spatial filtering”

In this lecture, we will discuss a number of classical techniques for
two principal categories of spatial domain processing;:

@ Intensity transformations (7% % %461): operate on single pixels of
an image for tasks such as contrast manipulation and image
thresholding.

@ Spatial filtering (%3 [HIJi§#%): performs operations on the
neighborhood of every pixel in an image. Examples of spatial
filtering include image smoothing and sharpening.

The material of this lecture is based on Chapter 3 in [GW2018].
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Spatial domain process

The spatial domain process is generally posed in the form:

g y) =T(f(xy)),

where f(x,y) is an input image, g(x,y) is the output image, and T is
an operator on f defined over a neighborhood (typically a rectangle)
of point (x,y).

Origin N Yo
T Yy
ixel [its value'is f(x,,y,)]
Xo
Z3x3 neighborhood

of point (xy,,)

Image f

x

A 3 x 3 neighborhood about the point (xg, o). The neighborhood is moved
from pixel to pixel in the image to generate the output image.
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Spatial filtering and intensity transformation

@ A smoothing spatial filter T: Suppose that the neighborhood is
a square of size 3 x 3 and that operator T is defined as compute
the average intensity of the pixels in the neighborhood. Then T is a
smoothing filter (IR TBIE A7)

Consider an arbitrary location in an image f, say (100,150). Then
1 1
=3 E Y~ £(100 —i,150 — j).

i=—1j=-1

¢(100,150) = T(f(100,150))

(A neighborhood processing technigue)

@ Intensity transformation: The smallest possible neighborhood is
of size 1 x 1. T becomes an intensity transformation of the form

8l y) =15 =T(r) = T(f(x,y))-

(A point processing technique)
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Intensity transformations

@ Contrast stretching function: “left figure” produces an image of
higher contrast than the original, by darkening the intensity
levels below k and brightening the levels above k.

@ Thresholding function: In the limiting case shown in “right
figure,” T(r) produces a two level (binary) image.
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Some examples: ¢(x,y) =:s =T(r) := T(f(x,y))

@ Negative transformation: The negative of an image with
intensity levels in the range [0, L — 1] is obtained by
s=L—-1-r.

@ Log transformation: s = clog(1 + ), where ¢ > 0 is a constant.

@ Power-law (gamma) transformation: s = cr?, where c and vy are
positive constants. Note that inputs and outputs are typically
normalized in the range [0,1], i.e., r € [0,1].

@ Piecewise linear transformation

L—1 T
(r2.52)

L2 L2 ~1(r) -

Output intensities, s

(r1,s1)

0 | | |
0 L/4 L/2 3L/ L—1
Input intensities, 7

L
0 LA L2 3L/ L-1

Input intensity levels, r
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Negative images (& /)

Color image: B is the negative image of positive image A;
Grayscale image: D is the negative image of positive image C.
(cited from Wikipedia)
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Log image

Log transformation of Fourier spectrum with ¢ = 1

L1 .
Nelative
nth rot
L 3L -
H Log
= nth power
Zoipp 4
El
z
S -
Inverse fog
Ideniity (exponential)
0 L
0 L/ L2 3L/A L-1

Input intensity levels, r
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Images of gamma transformation

Many devices used for image capture, printing, and display obey a
power law, e.g., cathode ray tube (CRT, F2HRFT4RE ~ BUEE)

Original image (,ammu Correction
a gamma of 2.5

I .

Gamma-corrected image Gamma-corrected image as viewed on the
same monitor

Original image as viewed on a monitor with

Intensity ramp images with ¢ = 1, v = 2.5 and correction s = r1/(25)
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Gamma transformation: MRI of a fractured human spine
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Gamma transformation: aerial images (ZfH#15)
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Piecewise linear transformation: contrast stretching

A low-contrast electron microscope image of pollen (1647);
Result of contrast stretching; Result of thresholding

s=T(r)
L—1 1 === —
(r2,52) - I
3L/l 7 -E'“D :
T T~ !
E — 1
3 Lk T(r) 1 I :
E az |
ERy. 4 ] 1
£ (=) |
S (ri,s1) | r
0 I I !
0 L/ L/2 3L/4 L—1 Dark Light

Input intensitics, 7

(Right) thresholding function: ry =1y =k,s1 =0,5p =L —1
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Intensity-level slicing (58& #4671 )

@ Intensity-level slicing is to highlight a specific range of intensities in
an image, e.g., enhancing features in satellite imagery such as
masses of water, and enhancing flaws in X-ray images.

@ One approach is to display in one value (say, white) all the
values in the range of interest and in another (say, black) all
other intensities, i.e., produces a binary image.

@ The second approach brightens (or darkens) the desired range of
intensities, but leaves all other intensity levels in the image
unchanged.

L—lp-———————mmmmm—— oo

~—T(n
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Examples of the intensity-level slicing

(L) aortic angiogram (X-ray photograph); (M) first approach; (R) second
approach, with the selected range set near black
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Histogram (E /7 [&)

@ Letry, fork=0,1,---,L — 1, denote the intensities of an L-level
image f(x, y). The unnormalized histogram of f is defined as

h(rk):nk, kZO,l,---,Lfl,

where 7y, is the number of pixels in f with intensity ry.

@ The normalized histogram of f is defined as

_h(n) _ me
P = YN = M

where f is an M x N image. That is, p(r¢) is the probability of
L—1
intensity level 7 occurring in an image. Then )  p(r) = 1.
k=0
@ Histograms are simple to compute and are also suitable for fast
hardware implementations, thus making histogram-based
techniques a popular tool for real-time image processing.
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Four image types and their corresponding histograms

S

Histogram of J| Histogram of Histogram of | Histogram of |
dark image light image low-contrast image high-contrast image

—

T T T T T T T

The horizontal axis of the histograms are values of ry
and the vertical axis are values of p(ry)
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Intensity transformation

Let the variable r denote the intensities of an image to be processed.
Assume that r € [0,L — 1] with r = 0 representing blackand r = L — 1
representing white. We consider the intensity transformation

s=T(r), 0<r<L-1.
For a given intensity value r in the input image, T produces an output
intensity value s. We assume that
@ T(r) is a monotonic increasing function in the interval [0,L — 1].
@ T(r)€[0,L—1]forallr € [0,L—1].

@ If we need to use the inverse r = T~1(s), s € range(T), then we
assume T(r) is a strictly increasing function in [0,L — 1].
)

() T

L—1f————— . L—1fmm—— .
Single i 1
value, s, } () — i
T() —, I |
Single | Sk |
value, s, | H
i i

i
i i

i
| i

—_— — L r r
0 L1 0 [ L—1

Multiple Single
values  value
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Histogram equalization (HE): g¢(x,y) =:s =T(r) :== T(f(x,y))

@ We are given a grayscale image f : () — [0, 1]. The cumulative
histogram (cumulative distribution function) T is defined by
considering f as a random variable: for 57 € [0, 1], we define

T(p) = Prob(f <)
1 _
= @\{(x,y)eﬂ:f(x,y)én}-
Then T : [0,1] — [0, 1] is a monotonic increasing function.
@ The histogram equalized image ¢ : QO — [0,1] is obtained by

defining
g(xy) =T (xy)).
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Histogram equalized image g ~ U/(0,1) if T is invertible

If T is strictly increasing, then T is invertible and the cumulative
distribution function of the histogram equalized image g is

Prob(g <mu) = Prob(T(f) <n)=Prob(f < Tfl(iy))
T(T~'(n)) = 1.

Hence, the probability density function of g is

(1) = 1 for0<t<1,
PUYI=19 0 elsewhere.

Therefore, ¢ has a uniform distribution, i.e., g ~ ¢/ (0,1).

Remark: Let X be a random variable and p(t) the probability density
function (pdf) of X. The cumulative distribution function (cdf) of X is

F(n) := Prob(X <y) = /’7 p(t)dt.

—00
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Example of histogram equalized image

 §EEEEEEEE

Histogram equalization of 400 x 600 image:
(top) before; (bottom) after; and the corresponding histograms

Matlab commands: imhist (A), histeqg(d),
histogram (A, ’Normalization’,’probability’)
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Histogram-equalized images

4 : e Al “\H“
Histogram-equalized images and the corresponding normalized histograms
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Histogram-equalized images (cont’d)

i

Histogram-equalized images and the corresponding normalized histograms
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Spatial filter (%5 [HIJE )

@ Spatial filtering modifies an image by replacing the value of each pixel
by a function of the values of the pixel and its neighbors. (discrete!)

@ If the operation performed on the image pixels is linear, then the
filter is called a linear spatial filter. Otherwise, the filter is a
nonlinear spatial filter.

@ A linear spatial filter performs a sum-of-products operation between an
image f and a filter kernel w. The kernel is an array whose size
defines the neighborhood of operation, and whose entries
determine the nature of the filter.

@ Other terms used to refer to a spatial filter kernel are mask,
template, and window. We use the term “filter kernel” or simply
“kernel.”
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Filter kernel of a linear spatial filter

< Jmsge origla

Kerel origin —|

Magnified view showing filter kernel
. o ng pi

in the image

Image pixels

w(-1.-Df w(-1.0)

Image f

w©,-D | w00 | wo |Filterkernel, w(s,))

wt-n) | wwo | wan

=1y =D| =1 |fe=1y+D) Kernel coefficients

fay=1 | fwy | fey+n

e+ 1y = 0| s+ 1) |1+ 1+ 1)

Pixel values under kernel
when it is centered on (x, y)

Linear spatial filtering using a 3 x 3 kernel
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Linear spatial filtering

@ The spatial correlation (7= [H#HEd):

(1) 3 x 3 kernel: at any point (x,y) in the image f, the response
g(x,y) of the filter is the sum of products of the kernel
entries and the image pixel values:

gy) = w1 -Df(x=Ly—-1)+w(=10)f(x=1Ly)+-
+w(0,0)f(x,y) +---+w(1,1)f(x+1,y+1).
As x and y are varied, the center of the kernel moves from
pixel to pixel, generating the filtered image g.
(2) m x n kernel: Assume that m = 2p 41 and n = 2q + 1. Then

14 q
gloy) = Y Y wlijf(x+iy+j).

i=—pj=—1

@ The spatial convolution (% %7, * or ®): The mechanics are
the same, except that the kernel is rotated by 180° counterclockwise.
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Convolution of two functions: continuous cases

@ 1-D case: Let f and g be two integrable real-valued functions
with compact supports in IR. Then the convolution of f and g is
defined as a function in variable ¢,

/ f(r)g(t—71)dtr, VteR.

It can be shown on the next page that

(F+)(0)= [ _sft—mdy =g+, VteR,
and then the operation can be described as a weighted average of
the input f at t according to the weight function (or kernel) g.

@ 2-D case: Let f and g be two integrable real-valued functions
with compact supports in R?. Then the convolution of f and g is
defined as a function in variable x,

/f y)dy, VxecR>
°f*g:g*f,(f*g)*h:f (g*h),f (g+h)=(f*g)+(fxh)
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Commutativity: f x g = g * f

" f and g are two integrable functions with compact supports in R.

. 3L > 0suchthat f(t) =0=g(t) fort ¢ [-L,L].

o L
L (fxg)(t) = /ﬂof(T)g(f*T)dTZ[Lf(r)g(t—r)dr, VteR

Letn = —(t —t). Then T =t — 5y and dy = —dt, and we have

L t—L L
[ f@st=nar= [ fe—mgtni=dn = [ ft =gl
— t+L t—L

t+L L
166> 0, then [ f(t= gy = [ gn)f(t—mdn = (g£)(e).

t+L L
1t <0 then [ F(t— gl = [ gt =y = (s+f)(e).

L (fxg)(t) = (gxf)(H), VieR
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Convolution of two 1-D functions

(Fr8)t):= [ foglt=T)dr, teR

Wikipedia: https://en.wikipedia.org/wiki/Convolution
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https://en.wikipedia.org/wiki/Convolution

Discrete convolution: 1-D

The discrete convolution of input (signal) f and kernel g is defined by
(Fxg)(t) =}, flr)glt—1), teZ
T=—00,TEZ

@ When f and g have finite supports, a finite summation may be
used.

@ f and g can be viewed as piecewise constant functions in each
unit integer interval.
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Correlation vs. convolution: 1-D example

Correlation Convolution
— Origin Vi w ,— Origin f aw rotated 180°
00OO0O1TO0OO0OO0OO 12428 000100O0O0 82421
¥
00010000O0 00010000
12428 82421
L Starting position alignment L Starting position alignment
¢ Zero padding — ;7 Zero padding ‘0
— —
00000100O0O0O0O0 000001000000
12428 82421
- Starting position - Starting position
00000O1T0O0OO0OO0OO0OO0 000O0OO0O1TO0O0O0OO0OO0O0
12428 82421
L Pposition after 1 shift L Position after 1 shift
000001T000O0O0OO0 000001000O0O00O
12428 82421
Position after 3 shifts L position after 3 shifts
00000O1T0O0OO0OOO0OO 000OO0OO1TO0OOOOO0OO
12428 82421
Final position ) Final position —t
Correlation result Convolution result
08242100 01242800
Extended (full) correlation result Ex ded (full) i result

000824210000 000124280000




1-D discrete full convolution

Letu = [uj, - ,uy]" € R"andv = [v1,---,0,]" € R™. The
convolution of # and v is defined as

U109
U107 + U0
U103 + Uy + U3V,
Uk = : e R

Up—20m + Up—10p—1 + UnUp—2
Uy —10m + UnTp—1
UnOm
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Convolution: 1-D example in MATLAB

u=1[11000117]; % input signal
v =[111]; % filter kernel
wl = conv(u,vVv)

% full convolution, wl = conv (v, u) has the same result
wl=122101221

w2 = conv(u,v,’same’)

% returns the central part of the convolution that is the same size as u
w2 =2210122

w3 = conv(v,u,’same’)

% returns the central part of the convolution that is the same size as v
w3 =101

w4 = conv(u,v,’valid’)
% returns those parts that are computed without the zero-padded
wd =21012
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Correlation vs. convolution: 2-D example

Padded f

0O 0 0O0O0OO O
< Origin  f 0O 0 0 O0O0O0OO
00 00O 0O 0 0 O0O0OTO O
0O 0 0 O00O0 w 0001000
00100 123 000O00O0O0O0O0
00O O0OO0OO0O 456 0O0O0O0O0O0O0
00 O0OO0OO0O 789 00O0O0O0O0O0

(a) ()
< Initial position for w Correlation result Full correlation result
727310000 00000O0O0DO
4 5 610 0 0 O 0O 0 0 0O 0O 0 0O 0 O0 OO0
7 8. 910 0 0 0 098 7 0098700
0O 001000 0O 6 540 0O 0 6 5400
0O 00 O0OOO o 03210 003 2100
0O 00 O0O0O0OO 0O 0 00O 0 0 00 O0OO O
0O 00 O0OO0OO o 0O 0 0 O0O0OOO
(© (@) ©)

vRotated w Convolution result Full convolution result
9"877/0 0 0 0 000O0OGO OO
16 5 400 0 0 O 00 0 O0O 0 0 0 O0O0OO O
3 2 110 0 0 0 01230 0012300
0O 001000 0 45 6 0 00 45 6 00
0O 0 0 O0O0OTP O 07 8 90 007 8 9 00
0O 0 0 O0O0OTP O 00 0 O0O 0O 0 0O0OOO o
0O 0 0 O0O0O0OO o 0O 000 OOO O

® (2 (h)




2-D discrete convolution: conv2 (£, K, ’valid’)

of[r|{1{1]otofo]

o|lo|1|1]|1]0]0]. 114|341
ofofof1]1]1]o0 1]of1 12]4]3]3
ojolofi]rfolo| = Jo[1]o| =-[1]2]3]4]1
olof[t][1]ololo]. 101 133|121
o|l1]1]{ofofofo 3(3[1]1]o
o|l1]o]ofofofo

no padding, stride 1

(e X4

In MATLAB: conv2 (£f,K,’valid’)

Full convolution: conv2 (£f,K) = (74+3—1) x (743 — 1) matrix!
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Stride (F E)

1/1(2|0|0|2
4(3|1|5(2|1 1
251145®0 < |2
1(3(2(|3|1/a n 7
2|/5/4(0|0|1
3/4(4|1|3|a
1/1(2|0|0|2
4(3|1|5(2|1 1T2To
2|5|1|1|4|s5s 21 |14

® [ol23] =
1/3(2(|3|1/4a

112

2|5/4(0|0|1
3/a|a|1|3|a

(correction: 34 34)

Convolution of a 6 x 6 matrix and a 3 x 3 filter kernel with stride 3,
no padding = 2 x 2 matrix
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Padding (3E1)

12 115(22 |15 |11 |12

8 (12122 |7 | 9

ojofofo|o|o|o]o
ol1][1]2|0f0]2]0 5|11|12|4 |5 |8
0j4/3/1/2]|2|1|0 ol2 10(14| 5 |10 8 |12
“201140‘)@020— 14| 8 [1a|11|21| 3
ol1(3|2(3|1]a]o0 -_

1|0 415|619/ 7|8
o|2(ofalo|o|1]0
o(3(alal1(3]a]o
ojofofo|o|o|o]o

Convolution of a 6 x 6 matrix with zero-padding 1
and a 3 x 3 filter kernel with stride 1

In MATLAB: conv2 (f,K, ' same’)
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A Matlab file for convolution and correlation

clear all
clc
m=5; $image size
w=3; $window size of convolution
I=reshape(l:m"2,m,m)
K=reshape (1l:w" 2, w, w)
$convolution
conv2_output=conv2 (I,K,’valid’)
$manual implementation
C=zeros (m-w+1l,m-w+1);
for i=1l:m-w+1l
for j=l:m-w+1l
C(i,j)=sum(sum (I (i:i+w-1,J:j+w-1) .*rot90(K,2)));
end
end
C
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A Matlab file for convolution and correlation (cont’d)

$correlation
corr_output=filter2(K,I,’valid’)
% manual implementation
D=zeros (m-w+1l,m-w+1);
for i=1l:m-w+1l
for j=l:m-w+1l
D(i,j)=sum(sum (I (i:i+w-1,j:j+w-1) .*K));
end
end
D

)

% function ‘imfilter’ is provided in the MATLAB toolbox
imfilter_conv_output=imfilter(I,K,’conv’,’same’)
imfilter_corr_output=imfilter(I,K,’corr’,’same’)
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Results of the Matlab file

corr_output =

I= 411 636 861
456 681 906
1 6 11 16 21 501 726 951
2 7 12 17 22
3 8 13 18 23
4 9 14 19 24 D =
5 10 15 20 25

411 636 861
456 681 906

K = 501 726 951
1 4 7
2 5 8 imfilter_conv_output =
3 6 9

32 114 249 384 440
68 219 444 669 734

conv2_output = 89 264 489 714 773
110 309 534 759 812
219 444 669 96 252 417 582 600

264 489 714
309 534 759
imfilter_corr_output =

C = 128 276 441 606 320
202 411 636 861 436

219 444 669 241 456 681 906 457
264 489 714 280 501 726 951 478
309 534 759 184 318 453 588 280
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Convolution operation = spatial filtering

o|1]|o0
k8|14

o 1|0

o|-1]0
S EIEAE

o -1, 0

1|0 1
* 202

101

Different kernels reveal a different characteristics of the input image
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Example of edge detection: Sobel operator

The Sobel operator is used for edge detection, which creates an image
that emphasizes edges. Below are two kernels used in the operation:

-1 0 1 -1 -2 -1
Sobel X =fx*| —2 0 2 Sobel Y = f 0o 0 0
-1 0 1 1 2 1

original Sobel X

Sobel Y magnitude
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