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Sparse plus low rank matrix decomposition

Let M ∈ Rm×n be a given grayscale image. Suppose that M is the
superposition of a low-rank component L and a sparse component S,

M = L + S.
We are interested in finding the low-rank image L, which has high
repeatability along horizontal or vertical directions.

(schematic diagram)

The sparse plus low rank decomposition problem can be formulated as the
constrained minimization problem:

min
L,S

(
rank(L) + λ∥S∥0

)
subject to M = L + S,

where λ > 0 is a tuning parameter and ∥S∥0 denotes the number of
non-zero entries in S. The problem is not convex.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Principal Component Pursuit – 2/20



The principal component pursuit problem

We approximate the sparse plus low rank decomposition problem by
the following principal component pursuit (PCP) problem:

min
L,S

(
∥L∥∗ + λ∥S∥1

)
subject to M = L + S,

where ∥L∥∗ is the nuclear (Ky Fan/樊“土畿”) norm of L defined as

∥L∥∗ :=
r

∑
i=1

σi,

and r ∈ N+ is the rank of L and σi are the singular values of L, and
∥S∥1 denotes the ℓ1-norm of S (seen as a long vector in Rmn),

∥S∥1 := ∑
i,j
|Sij|.

⋆ How about the existence of solution for the PCP problem?
(cf. Candès-Li-Ma-Wright, J. ACM, 2011)
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The penalty formulation and alternating direction method

Let µ > 0 be the penalty parameter. Then we consider the relaxation
using a penalty term to replace the constraint,

min
L,S

(
∥L∥∗ + λ∥S∥1 +

µ

2
∥M − L − S∥2

F

)
,

where ∥ · ∥F is the Frobenius norm. We set, for example, S(0) = 0. The
ADM for the penalty formulation is given as follows: for k ≥ 0, find

L(k+1) = arg min
L

(
∥L∥∗ + λ∥S(k)∥1 +

µ

2
∥M − L − S(k)∥2

F

)
,

S(k+1) = arg min
S

(
∥L(k+1)∥∗ + λ∥S∥1 +

µ

2
∥M − L(k+1) − S∥2

F

)
.

By further analysis given below (pp. 7-15), we can prove that

L(k+1) = SVT 1
µ

(
M − S(k)),

S(k+1) = sign(M − L(k+1))⊙ max
{
|M − L(k+1)| − (λ/µ), 0

}
,

where ⊙ is the Hadamard product (i.e., element-wise product).
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SVD and SVT

Singular value decomposition (SVD)
Let M ∈ Rm×n. The SVD of M is the factorization in the form

M = UΣV⊤,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices (UU⊤ = I
and VV⊤ = I) and Σ ∈ Rm×n is diagonal with all non-negative
entries called the singular values of M.

Singular value thresholding (SVT)

Let M ∈ Rm×n. Suppose that the SVD of M is given by M = UΣV⊤.
Then the singular value thresholding (SVT) of M with threshold τ > 0
is defined by

SVTτ(M) = UDτ(Σ)V⊤,

where
Dτ(Σ)ii = max

{
Σii − τ, 0

}
.
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Background recovering using the penalty method
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Von Neumann trace inequality

First, we state without proof the square matrix case.

Theorem: If A and B are complex n × n matrices with singular values

σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) ≥ 0,
σ1(B) ≥ σ2(B) ≥ · · · ≥ σn(B) ≥ 0.

Then we have

|⟨A, B⟩F| := |trace(A∗B)| ≤
n

∑
i=1

σi(A)σi(B).

Moreover, the equality holds if A and B share the same singular vectors.

Notes:

If A = UΣV∗ then A∗ = VΣU∗, having the same singular values
σi(A∗) = σi(A), ∀ 1 ≤ i ≤ n. ∴ |trace(AB)| ≤ ∑n

i=1 σi(A)σi(B).

“Prove = if ...”: If A and B share the same singular vectors, say
A = UΣAV∗ and B = UΣBV∗, then we have
A∗B = V(ΣAΣB)V∗ = V(ΣBΣA)V∗ = B∗A = (A∗B)∗, Hermitian!
∴ trace(A∗B) = ∑n

i=1 λi(A∗B) = ∑n
i=1 σi(A)σi(B) ≥ 0.
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Von Neumann trace inequality for rectangular matrices

Corollary: Let A and B be complex m × n matrices with singular values

σ1(A) ≥ σ2(A) ≥ · · · ≥ σk(A) ≥ 0,
σ1(B) ≥ σ2(B) ≥ · · · ≥ σk(B) ≥ 0,

where k := min{m, n}. Then we have

|⟨A, B⟩F| := |trace(A∗B)| ≤
k

∑
i=1

σi(A)σi(B).

Moreover, the equality holds if A and B share the same singular vectors.

Proof: Assume that m > n. Then k := min{m, n} = n. We define two
m × m matrices X and Y by

X = [A | 0]m×m and Y = [B | 0]m×m.
Then we have

|⟨X, Y⟩F| = |trace(X∗Y)| = |trace(A∗B)| = |⟨A, B⟩F|.
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Proof of Von Neumann’s trace inequality (cont’d)

Claim: σi(X) = σi(A) and similarly, σi(Y) = σi(B), ∀ i = 1, 2, · · · , n.

Suppose that the SVD of A is given by Am×n = Um×mΣm×nV∗
n×n.

Define three m × m matrices,

UX = Um×m, ΣX = [Σm×n | 0]m×m, V∗
X =

[
V∗

n×n 0
0 I

]
m×m

.

Then

UXΣXV∗
X = Um×m[Σm×n | 0]

[
V∗

n×n 0
0 I

]
= [Um×mΣm×n | 0]

[
V∗

n×n 0
0 I

]
= [Um×mΣm×nV∗

n×n | 0] = [Am×n | 0] = X,

which implies that σi(X) = σi(A), ∀ i = 1, 2, · · · , n. Therefore,

|⟨A, B⟩F| = |⟨X, Y⟩F| ≤
n

∑
i=1

σi(X)σi(Y) =
n

∑
i=1

σi(A)σi(B). □
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SVTτ(Y) Theorem

Theorem: Given an m × n real matrix Y and τ > 0, we have

SVTτ(Y) = arg min
X∈Rm×n

(
τ∥X∥∗ +

1
2
∥X − Y∥2

F

)
.

Proof: Let k := min{m, n}. Then for any X ∈ Rm×n, we have

1
2
∥X − Y∥2

F =
1
2

tr((X − Y)⊤(X − Y))

=
1
2

tr(X⊤X)− tr(X⊤Y) +
1
2

tr(Y⊤Y)

=
1
2

n

∑
i=1

λi(X⊤X) +
1
2

n

∑
i=1

λi(Y⊤Y)− tr(X⊤Y)

≥ 1
2

k

∑
i=1

σ2
i (X) +

1
2

k

∑
i=1

σ2
i (Y)−

k

∑
i=1

σi(X)σi(Y)

=
1
2

k

∑
i=1

(
σi(X)− σi(Y)

)2.
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SVTτ(Y) Theorem (cont’d)

Therefore, we obtain for any X ∈ Rm×n,

F(X) := τ∥X∥∗+
1
2
∥X −Y∥2

F ≥ τ∥X∥∗+
1
2

k

∑
i=1

(
σi(X)−σi(Y)

)2
=: G(X).

It is already known that for a given τ > 0 and a fixed y ∈ R, the
minimizer of the real-valued function,

f (x) = τ|x|+ 1
2
(y − x)2, x ∈ R,

is given by the soft-thresholding operator Sτ ,

arg min
x∈R

f (x) = Sτ(y) := sign(y)max{|y| − τ, 0}.

Also note that ∥X∥∗ = ∑k
i=1 σi(X). Therefore, we find the fact that

X̂ = arg min
X∈Rm×n

G(X) ⇔ σi(X̂) = Sτ(σi(Y))

= sign(σi(Y))max{|σi(Y)| − τ, 0}
= max{σi(Y)− τ, 0}, ∀ i = 1, 2, · · · , k.
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SVTτ(Y) Theorem (cont’d)

Based on the above observation, we are going to construct such a
matrix X̂ which has the same singular vectors with Y. Suppose that
the SVD of Y is given by Y = UΣV⊤. Define the diagonal matrix Σ̂ by

Σ̂ :=



. . .
max{σi(Y)− τ, 0}

. . .


m×n

and then define X̂ := UΣ̂V⊤ = SVTτ(Y). Therefore, the equality in
Von Neumann’s trace inequality holds, and we have

τ∥X̂∥∗+
1
2
∥X̂ −Y∥2

F = τ∥X̂∥∗+
1
2

k

∑
i=1

(
σi(X̂)−σi(Y)

)2
= min

X∈Rm×n
G(X).

That is, we attain a minimum of F(X) at X̂ = SVTτ(Y).
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F(X) is a strictly convex function in X ∈ Rm×n

Note that F(X) is a strictly convex function in X ∈ Rm×n, since

∥X − Y∥2
F is strictly convex in X ∈ Rm×n.

∥X∥∗ is convex in X ∈ Rm×n, since it is a norm.

“convex function + strictly convex function” is strictly convex.

Suppose that X̂1 and X̂2 are two different minimizers of the strictly
convex function F(X). Then

F(
1
2
(X̂1 + X̂2)) <

1
2

F(X̂1) +
1
2

F(X̂2) = F(X̂1), a contradiction!

Therefore, the minimizer of F(X) is unique! This completes the proof
of the theorem. □
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Another direct proof of the uniqueness of minimizer X̂

Claim: The minimizer of F(X) is unique, that is, X̂ = SVTτ(Y).
Proof: Suppose that X̂1 and X̂2 are two different minimizers of F(X).
By the triangle inequality, we have

τ∥ X̂1 + X̂2

2
∥∗ +

1
2
∥ X̂1 + X̂2

2
− Y∥2

F

≤ τ

2
∥X̂1∥∗ +

τ

2
∥X̂2∥∗ +

1
2
∥ X̂1 − Y

2
+

X̂2 − Y
2

∥2
F. (⋆)

Note that ( a
2
+

b
2

)2
=

a2

2
+

b2

2
−

(a − b
2

)2
, ∀ a, b ∈ R.

Therefore, we obtain

RHS(⋆) =
τ

2
∥X̂1∥∗ +

τ

2
∥X̂2∥∗ +

1
4
∥X̂1 − Y∥2

F +
1
4
∥X̂2 − Y∥2

F

−1
2
∥ X̂1 − X̂2

2
∥2

F = τ∥X̂1∥∗ +
1
2
∥X̂1 − Y∥2

F −
1
2
∥ X̂1 − X̂2

2
∥2

F︸ ︷︷ ︸
>0

,

a contradiction!
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Solution of the ADM for penalty formulation

By the SVTτ(Y) Theorem, we have

L(k+1) := arg min
L

(
∥L∥∗ +

µ

2
∥M − L − S(k)∥2

F

)
= SVT 1

µ

(
M − S(k)).

Using the soft-thresholding operator Sτ again, we have

S(k+1) := arg min
S

(
λ∥S∥1 +

µ

2
∥M − L(k+1) − S∥2

F

)
= sign(M − L(k+1))⊙ max

{
|M − L(k+1)| − (λ/µ), 0

}
,

where ⊙ is the Hadamard element-wise product.
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Another approach for solving the PCP problem

Recall the principal component pursuit problem:

min
L,S

(
∥L∥∗ + λ∥S∥1

)
subject to M = L + S.

The augmented Lagrangian function is defined as

L(L, S, Y)

:= ∥L∥∗ + λ∥S∥1 +
〈

Y︸︷︷︸
multiplier

, M − L − S
〉
+

µ

2
∥M − L − S∥2

F︸ ︷︷ ︸
penalty

= ∥L∥∗ + λ∥S∥1 +
µ

2
∥M − L − S + µ−1Y∥2

F −
1

2µ
∥Y∥2

F.

We then apply the alternating direction method to minimize the
augmented Lagrangian function L(L, S, Y). The resulting method is
called the augmented Lagrange multiplier (ALM) method.
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The augmented Lagrange multiplier method

The ALM method is given by

L(k+1) := arg min
L

(
∥L∥∗+λ∥S(k)∥1 +

µ

2
∥M − L − S(k) + µ−1Y(k)∥2

F

− 1
2µ

∥Y(k)∥2
F

)
,

S(k+1) := arg min
S

(
∥L(k+1)∥∗ + λ∥S∥1 +

µ

2
∥M − L(k+1) − S + µ−1Y(k)∥2

F

− 1
2µ

∥Y(k)∥2
F

)
,

Y(k+1) := Y(k) + µ
(
M − L(k+1) − S(k+1)).

The explicit form of the iterative solution (L(k+1), S(k+1), Y(k+1)) of
ALM method is presented on the next page, which can be proved by
using the SVTτ(Y) Theorem and the soft-thresholding operator Sτ .

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Principal Component Pursuit – 17/20



Iterative solutions of the ALM method

The iterative solution (L(k+1), S(k+1), Y(k+1)) of the ALM method is
given by

L(k+1) := arg min
L

(
∥L∥∗ +

µ

2
∥L − (M − S(k) + µ−1Y(k))∥2

F

)
= arg min

L

( 1
µ
∥L∥∗ +

1
2
∥L − (M − S(k) + µ−1Y(k))∥2

F

)
= SVT 1

µ

(
M − S(k) + µ−1Y(k)),

S(k+1) := arg min
S

(
λ∥S∥1 +

µ

2
∥S − (M − L(k+1) + µ−1Y(k))∥2

F

)
= arg min

S

(λ

µ
∥S∥1 +

1
2
∥S − (M − L(k+1) + µ−1Y(k))∥2

F

)
= sign(M − L(k+1) + µ−1Y(k))

⊙max
{
|M − L(k+1) + µ−1Y(k)| − (λ/µ), 0

}
,

Y(k+1) := Y(k) + µ
(
M − L(k+1) − S(k+1)).
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Background recovering using the ALM method

(λ, µ) = (0.0007, 0.5) (λ, µ) = (0.006, 5)

(λ, µ) = (0.007525, 0.04) (λ, µ) = (0.0025, 1.5)
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