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Outline of “variational image deblurring”

In this lecture, we will give a brief introduction to the topics:
@ The blurring kernels of motion blur and Gaussian blur.

@ The standard total variation model for variational image deblurring.

The material of this lecture is mainly based on

@ T. F. Chan and C.-K. Wong, Total variation blind deconvolution,
IEEE Transaction on Image Processing, 7 (1998), pp. 370-375.

@ Y. Wang, W. Yin, and Y. Zhang, A fast algorithm for image
deblurring with total variation regularization, CAAM Technical
Report TR 07-10, 2007, Rice University.
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Blurry and noisy image restoration

@ Image restoration (.14 1£75): One of the important tasks in
image processing is to recover images from noisy and blurry
observations.

To recover a sharp image from its blurry observation is the problem
known as image deblurring (F18 ZA5H).

@ These blurring artifacts may come from different sources, such
as atmospheric turbulence, diffraction, optical defocusing,
camera shaking, and more.

@ The blurry and noisy observation is generally modeled as
fx) = (Ka)(x) +n(x), x€Q,

where # is the clean image, n is the Gaussian noise, and K is a
blurring operator.

We may assume the image domain is Q) and zero-valued for all
x € R2\ Q.
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Linear and shift-invariant blurring operator K

The blurring operator K is typically assumed to be a “linear” and
“shift-invariant” operator, expressed in the convolutional form:

(Ku)(x) = /Qh(x— s)u(s)ds =: (hxu)(x), x€Q,

where x denotes the convolution operation and h is the so-called point spread
function (blurring kernel) associated with the linear blurring operator K.
Therefore, the image deblurring is also called the image deconvolution.

@ Kis linear:
(K(au+ po))(x) = /Q h(x — s) (au(s) + po(s))ds
= - =a(Ku)(x) + B(Ko)(x), Vxe€Q.
@ K is shift-invariant: Let g(x) = f(x — T) for T € R?. Then
(K = [ hx—s)g(s)ds = (hxg)(x) = (g)(¥
/]RZ g(x —s)h(s)ds = /]sz(x — T —s)h(s)ds
(fxh)(x—1)=(Kf)(x —T), VxeQ.
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Creating a 2-D blurring filter H in Matlab

Motion blur:
>> H = fspecial ('motion’, len, theta)

returns a filter to approximate the linear motion of a camera by the
length of 1en pixels of the motion, with an angle of theta degrees in
a counterclockwise direction.

The default 1en is 9 pixels and the default theta is 0 degree.

Examples:

>> H = fspecial ('motion’, 5, 45)

0 0 0 0.0501 0.0304

0 0 0.0519 0.1771 0.0501
H= 0 0.0519 0.1771 0.0519 0
0.0501 0.1771 0.0519 0 0
0.0304 0.0501 0 0 0
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Motion blur (cont’d)

>> H = fspecial (‘motion’, 5, 30)
0 0 0.0268 0.1268 0.1464
H = 0 0.1000 0.2000 0.1000 0
0.1464 0.1268 0.0268 0 0
>> H = fspecial ("motion’, 5, 60)

0 0 0.1464

0 0.1000 0.1268

H = 0.0268 0.2000 0.0268
0.1268 0.1000 0
0.1464 0 0
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A motion filter and blurred image: cameraman

Read image cameraman. png and display it:

>> I = imread(’cameraman.png’);
>> imshow (I);

Create a motion filter and use it to blur the image:

>> H = fspecial ('motion’, 30, 45);
>> motion blur = imfilter (I, H, ’'replicate’);

Display the blurred image:

>> imshow (motion_blur);
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Gaussian blur

>> H = fspecial (gaussian’, hsize, sigma)

returns a rotationally symmetric Gaussian lowpass filter of size
hsize with standard deviation sigma.

Example:
>> H = fspecial (gaussian’, 5, 1)
0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133
H = 0.0219 0.0983 0.1621 0.0983 0.0219

0.0133 0.0596 0.0983 0.0596 0.0133
0.0030 0.0133 0.0219 0.0133 0.0030

Here fspecial creates Gaussian filters using

2 2
—(nt+n
(1722) Hy (0 12)
Hg(”lrnz) =e 20 and H(nlan) [ B ———
1 2
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A Gaussian filter and blurred image: cameraman

Read image cameraman. png and display it:

>> I = imread(’cameraman.png’);
>> imshow (I);

Create a Gaussian filter and use it to blur the image:

>> H = fspecial (gaussian’, 30, 5);
>> gaussianblur = imfilter (I, H, ’'replicate’);

Display the blurred image:

>> imshow (gaussian_blur) ;
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Blurry and noisy image restoration

The total variation (TV) regularization has become one of the
standard techniques known for preserving sharp discontinuities such
as edges and object boundaries.

Letf : O C R? — R be a given blurry and noisy image in L2(Q)). The
standard total variation model recovers an image from f by solving
the TV/L2 problem:

m”m/Q \Vu(x)|dx+%/0((l<u)(x) —f(x))zdx,

where A > 0 is a model parameter, K is a linear blurring operator, u is
the unknown image to be restored, and

Vu(x)| = || Vu(@)[l = \/ (0u/0x)> + (9u/dy)>.
Here, we assume that (Ku)(x) = (h*u)(x) for all x € ) and the point
spread function / is given.

If both the blur kernel h and the latent sharp image u are unknown, the
problem is called “blind image deblurring” or “blind image deconvolution.”
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The energy functional

Since the energy functional in the TV/L2 problem is convex, u is optimal if
and only if it satisfies the first-order optimality condition. Define the
energy functional

2

Bl = [ 19u)] + 5 (K@) — £ (x) .

For any smooth function # with # = 0 on 9Q), let ®(¢) := E[u + e7],
then we have

0 =

© Suh-Yuh Yang (

o'(0) = Lo e)

— lim E[u + ¢ey] — E[u]
de

e=0 &—0 e—0

tim = ([ 1V(0) + eV (0)] + 5 (K -+ ek () — £ )

e—0 €
— 19+ 5 () ) — £ ) e

(/ Vu(x) +eViy(x)
a |Vu(x) + eV (x)]

im 2 ([ (i) () + 25 (6) () () — £(2) ).

e—0¢€ 2

o Vi (x)dx)
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The Euler-Lagrange equation

Then, by Green’s formula, we obtain
0 - /(1_V'|§ZE ;| (%) + A(Krp) () ((Ku) (%) = f (x) ) dx
- /, (x)
|V“ x)|
= /Q(—V. |qu ;| + AK* ((Ku)(x) —f(x)))r](x)dx

for any smooth function # with 7 = 0 on 9(), where K* is the adjoint
operator of K. Therefore, we attain the Euler-Lagrange equation,

17(x) + A (x)K* ((Ku) (%) — f (x) ) dx

Vu . B
-V (|V |>+/\K (Ku—f)=0 forxeQ,

or equivalently,

Vu N B
V. <W> —AK*(Ku—f)=0 forxeQ,

along with the Neumann boundary condition, du(x)/dn = 0 on 0Q).
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The adjoint operator

Let V be a real (or complex) Hilbert space with inner product (-, -),
e.g., L*(Q)) with the inner product (f,g) := [, fg dQ.

@ Consider a continuous (i.e., bounded) linear operator T : V — V.
Then the adjoint of T is the continuous linear operator
T* :V — V satisfying

(Tx,y) = (x, T"y), Vxyel.

@ Existence and uniqueness of this operator follows from the Riesz
representation theorem.

@ This can be seen as a generalization of the adjoint matrix of a
square matrix , i.e., the conjugate transpose of a square matrix.
For example, let A € R3>*3. Then

(Ax,y) = yTAx = (x,ATy>, Vuxye R3.

7), Math. Dept., NCU, Taiwan Variational Image Deblurring — 13/25



What is the adjoint operator K* of K?
Suppose that the linear and shift-invariant blurring operator
K:L*(Q) — L?(Q) is defined as

(Ku)(x) := (h*u)(x) = /Qh(x— s)u(s)ds VxeQ,

where & is the given kernel function.
(Ku,0)12() = /Q (/Q h(x — s)u(s)ds)v(x)dx

= /Qu(s)(/ah(x—s)v(x)dx>ds.

Let hi(x) = h(—x) for all x € R2. Then for all u,v € L2(Q), we have

(, K02y = (Ku,0)p2(qy) :/ u(s) (/()E(s—x)v(x)dx)ds

Q
= <M,h*U>L2(Q).

Therefore, (K*0)(x) = (h*v)(x).
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Nonlinear PDE based image restoration

Consider the E-L equation with the homogeneous BC, % = 0 on 9Q).
Vu
(=) = AK*(Ku—f) =0
v <|Vu|5> (Ku—f) =0,
where | - |5 := /| - |>+ 62,0 < 6§ < 1, to avoid division by zero.
@ Rudin-Osher (1994) used the artificial time marching method:
Vu N
U< u+At{V- (m> — AK*(Ku —f)}

This method is very easy to implement but converges slowly
due to the nonlinearity of the diffusion operator.

@ Vogel-Oman (1996) used a lagged diffusivity procedure to partially
overcome this difficulty by solving the following equation for
u("*+1) jteratively:

(n+1)
' (Vu
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An equivalent constrained convex problem

By introducing a new variable w(x) := Vu(x), we obtain an
equivalent constrained convex minimization problem:

min [ fwo(@)ldx+ % [ () ) = (),

10,
subject to w(x) = Vu(x), x € Q.

Wang-Yin-Zhang (2007) considered the L?>-norm-square penalty
formulation to obtain the unconstrained problem:

u,w

min /Q (%) |dx + % _/(')((Ku)(x) — F(x)) P + g /Q |w(x) — Vu(x)2dx,

where B > 0 is a sufficiently large penalty parameter in order to
approximate the solution of the original problem.
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The discrete form of the unconstrained problem

Suppose that f = [f;] is an N x N digital image. Let us consider the
discrete form of the unconstrained problem:

min Z lwijll + 5 IIKH *f||p+ Z 17 1) — wyl|?,

,] 1
where K is the discrete convolution operator, || - || is the Euclidean
norminIR?, ie., || - || := | - ||, and || - || is the Frobenius norm,

wijj = < EZSZ ) € R%.

Moreover, 91 denotes the forward finite difference operator,

a-&-u),. U; PRy
ot ), = (9 ij ) - < i+l ij ) c R2.
( u)l] < (a;”)zj ui,]+l uz]
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An alternating method

We will solve the discrete problem by alternately minimizing the
objective function with respect to w while fixing u, and vice versa.

w-subproblem: For a fixed u, we solve
N
- p +. 012
min X (IRogl + ey = @+ u)517),
which permits a closed-form solution
1 > (9% u)j

7/0 T/t I ]-Sl/]/SN/
B

[(@Fu);ll’
where we follow the convention that 0 - (0/0) := 0. The computation
complexity is of order O(N?).

wy = max (|07 u)ll -
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An alternating method (cont’d)

u-subproblem: For a fixed w = (wy,w,) ", we solve the following
problem with a special structure:

LA
min 2 K — 1+ & 71— wn [} + £ 05 u — wall,

where Ku = H » u with a given blurring filter H, 9 u = [(9] u);],
w1 = [(w1);], and so on, and all are matrices in RN*N,

Therefore, we can solve a linear least-squares problem in the form:

A
min | [B| u— || |3
wr

where u, f, w1, and w; are vectorization of [u;], [f;j], [w1;], and [wy;],
respectively. However, the linear least-squares solver (by solving the
normal equations, or using the QR decomposition, or using the SVD) has
high complexity, leading to significant costs!
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u-subproblem: an FFT-based algorithm

We can use the FFT to solve the u-subproblem:

@ Since K, 9,0, are all discrete convolutions, if we transform the
u-subproblem into the Fourier domain, then these operations
become element-wise products, e.g., F(H x u) = F(H) o F(u).

@ Since the Fourier transform preserves the Frobenius norm, we
obtain an equivalent problem (set v := B/A):

min | F(H) o F(u) = F(F|If + 1[I F(0F) 0 F(u) = F(wn)lI}
+I1F(95) o F(u) — F(w2) |1}

@ After solving for F(u) (using first-order optimality condtion),
we obtain the solution to the u-subproblem by

_ f—l( F(H)* o F(f) + v (F(97)* o F(wy) + F(33)* o F(ws)) )
F(H)* o F(H) +y(F@])* o F(3)) + F(35)* o F(25))/’

where denotes complex conjugacy and the division is
element-wise. Therefore, it requires two ffts and one ifft per iteration.

/l*//
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Selection of model parameters

@ Noisy level control parameter A: An appropriate A should give
a solution u satisfying

|| Ku ffHZ ~ ||Ki —f||2 =% = Var(n).

@ Constraint penalty parameter 5: Parameter 5 cannot be too
small because it would allow Vu = w to be violated excessively.
However, B cannot be too large either because the larger the § is
the less updates applied to w and u, making the algorithm take
more iterations. Therefore, we should choose f§ in a continuation
way to balance the speed and accuracy.

@ Prescribed maximum value ,4,: The initial value of 8 is
relatively small (e.g., B = 4). Then B is increased (e.g., doubled)
until a prescribed maximum value By is reached (e,g, 220y,
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Numerical experiments

% creat a blurring filter

>> H = fspecial (motion’, 41, 135)

% add Gaussian white noise with mean 0 and variance 103
>> f = imnoise(original, ’‘gaussian’, 0, le-3)

Original image size = 512x512 Blurry image (SNR 5.9065) Blurry and noisy image (SNR 5.6328)
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Numerical experiments

% creat a blurring filter

>> H = fspecial ('gaussian’, 41, 10)

% add Gaussian white noise with mean 0 and variance 10~°
>> f = imnoise(original, ’‘gaussian’, 0, le-6)

Original image size =512x512 Blurry image (SNR 6.2287) Blurry and noisy image (SNR 6.2282)
\

; 4 , 4

L, L,

%=10000(SNR 9.6682) 2=50000(SNR 10.5387) A =250000(SNR 11.2205)
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Total variation blind deconvolution

Chan-Wong (1998) formulated the blind deconvolution problem as

min%/ﬂ((h*u)(x) —f(x))zdx—i—le/O]Vu(x)|dx+a2/ﬂ|Vh(x)\dx,

where the use of TV regularization for the blurring kernel / is due to
the fact that some blurring kernels can have edges.

The first-order optimality conditions give

u(—x)* (uxh)(x) —f(x)) —aV - Qg:g;) =0, x€Q,
h(—x) % ((hxu)(x) — f(x)) — 1V (gzgz%) =0, x€Q,

which are the associated Euler-Lagrange equations.

A further study is needed!
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