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Outline of “variational image deblurring”

In this lecture, we will give a brief introduction to the topics:

The blurring kernels of motion blur and Gaussian blur.

The standard total variation model for variational image deblurring.

The material of this lecture is mainly based on

T. F. Chan and C.-K. Wong, Total variation blind deconvolution,
IEEE Transaction on Image Processing, 7 (1998), pp. 370-375.

Y. Wang, W. Yin, and Y. Zhang, A fast algorithm for image
deblurring with total variation regularization, CAAM Technical
Report TR 07-10, 2007, Rice University.
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Blurry and noisy image restoration

Image restoration (影像修復): One of the important tasks in
image processing is to recover images from noisy and blurry
observations.

To recover a sharp image from its blurry observation is the problem
known as image deblurring (影像去模糊).

These blurring artifacts may come from different sources, such
as atmospheric turbulence, diffraction, optical defocusing,
camera shaking, and more.

The blurry and noisy observation is generally modeled as

f (x) = (Kū)(x) + n(x), x ∈ Ω,

where ū is the clean image, n is the Gaussian noise, and K is a
blurring operator.

We may assume the image domain is Ω and zero-valued for all
x ∈ R2 \Ω.
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Linear and shift-invariant blurring operator K

The blurring operator K is typically assumed to be a “linear” and
“shift-invariant” operator, expressed in the convolutional form:

(Ku)(x) =
∫

Ω
h(x− s)u(s)ds =: (h ⋆ u)(x), x ∈ Ω,

where ⋆ denotes the convolution operation and h is the so-called point spread
function (blurring kernel) associated with the linear blurring operator K.
Therefore, the image deblurring is also called the image deconvolution.

K is linear:(
K(αu + βv)

)
(x) =

∫
Ω

h(x− s)
(
αu(s) + βv(s)

)
ds

= · · · = α(Ku)(x) + β(Kv)(x), ∀ x ∈ Ω.

K is shift-invariant: Let g(x) = f (x− τ) for τ ∈ R2. Then

(Kg)(x) =
∫

R2
h(x− s)g(s)ds = (h ⋆ g)(x) = (g ⋆ h)(x)

=
∫

R2
g(x− s)h(s)ds =

∫
R2

f (x− τ − s)h(s)ds

= (f ⋆ h)(x− τ) = (Kf )(x− τ), ∀ x ∈ Ω.
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Creating a 2-D blurring filter H in Matlab

Motion blur:

>> H = fspecial(’motion’, len, theta)

returns a filter to approximate the linear motion of a camera by the
length of len pixels of the motion, with an angle of theta degrees in
a counterclockwise direction.

The default len is 9 pixels and the default theta is 0 degree.

Examples:

>> H = fspecial(’motion’, 5, 45)

H =


0 0 0 0.0501 0.0304
0 0 0.0519 0.1771 0.0501
0 0.0519 0.1771 0.0519 0

0.0501 0.1771 0.0519 0 0
0.0304 0.0501 0 0 0


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Motion blur (cont’d)

>> H = fspecial(’motion’, 5, 30)

H =

 0 0 0.0268 0.1268 0.1464
0 0.1000 0.2000 0.1000 0

0.1464 0.1268 0.0268 0 0


>> H = fspecial(’motion’, 5, 60)

H =


0 0 0.1464
0 0.1000 0.1268

0.0268 0.2000 0.0268
0.1268 0.1000 0
0.1464 0 0


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A motion filter and blurred image: cameraman

Read image cameraman.png and display it:

>> I = imread(’cameraman.png’);
>> imshow(I);

Create a motion filter and use it to blur the image:

>> H = fspecial(’motion’, 30, 45);
>> motion blur = imfilter(I, H, ’replicate’);

Display the blurred image:

>> imshow(motion blur);
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Gaussian blur

>> H = fspecial(’gaussian’, hsize, sigma)

returns a rotationally symmetric Gaussian lowpass filter of size
hsize with standard deviation sigma.

Example:

>> H = fspecial(’gaussian’, 5, 1)

H =


0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133
0.0219 0.0983 0.1621 0.0983 0.0219
0.0133 0.0596 0.0983 0.0596 0.0133
0.0030 0.0133 0.0219 0.0133 0.0030


Here fspecial creates Gaussian filters using

Hg(n1, n2) := e
−(n2

1 + n2
2)

2σ2 and H(n1, n2) :=
Hg(n1, n2)

∑
n1

∑
n2

Hg
.
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A Gaussian filter and blurred image: cameraman

Read image cameraman.png and display it:

>> I = imread(’cameraman.png’);
>> imshow(I);

Create a Gaussian filter and use it to blur the image:

>> H = fspecial(’gaussian’, 30, 5);
>> gaussian blur = imfilter(I, H, ’replicate’);

Display the blurred image:

>> imshow(gaussian blur);
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Blurry and noisy image restoration

The total variation (TV) regularization has become one of the
standard techniques known for preserving sharp discontinuities such
as edges and object boundaries.

Let f : Ω ⊂ R2 → R be a given blurry and noisy image in L2(Ω). The
standard total variation model recovers an image from f by solving
the TV/L2 problem:

min
u

∫
Ω
|∇u(x)|dx +

λ

2

∫
Ω

(
(Ku)(x)− f (x)

)2dx,

where λ > 0 is a model parameter, K is a linear blurring operator, u is
the unknown image to be restored, and

|∇u(x)| := ∥∇u(x)∥2 =

√
(∂u/∂x)2 + (∂u/∂y)2.

Here, we assume that (Ku)(x) = (h ⋆ u)(x) for all x ∈ Ω and the point
spread function h is given.

If both the blur kernel h and the latent sharp image u are unknown, the
problem is called “blind image deblurring” or “blind image deconvolution.”
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The energy functional

Since the energy functional in the TV/L2 problem is convex, u is optimal if
and only if it satisfies the first-order optimality condition. Define the
energy functional

E[u] :=
∫

Ω
|∇u(x)|+ λ

2
(
(Ku)(x)− f (x)

)2dx.

For any smooth function η with η = 0 on ∂Ω, let Φ(ε) := E[u + εη],
then we have

0 = Φ′(0) =
d
dε

Φ(ε)
∣∣∣
ε=0

= lim
ε→0

E[u + εη]− E[u]
ε− 0

= lim
ε→0

1
ε

(∫
Ω
|∇u(x) + ε∇η(x)|+ λ

2
(
(Ku + εKη)(x)− f (x)

)2dx

−
∫

Ω
|∇u(x)|+ λ

2
(
(Ku)(x)− f (x)

)2dx
)

=
(∫

Ω

∇u(x) + ε∇η(x)
|∇u(x) + ε∇η(x)|

∣∣∣
ε=0
· ∇η(x)dx

)
+ lim

ε→0

1
ε

λ

2

(∫
Ω

(
ε(Kη)(x)

)2
+ 2ε(Kη)(x)

(
(Ku)(x)− f (x)

))
.
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The Euler-Lagrange equation

Then, by Green’s formula, we obtain

0 =
∫

Ω
−∇ · ∇u(x)

|∇u(x)| η(x) + λ(Kη)(x)
(
(Ku)(x)− f (x)

)
dx

=
∫

Ω
−∇ · ∇u(x)

|∇u(x)| η(x) + λη(x)K∗
(
(Ku)(x)− f (x)

)
dx

=
∫

Ω

(
−∇ · ∇u(x)

|∇u(x)| + λK∗
(
(Ku)(x)− f (x)

))
η(x)dx

for any smooth function η with η = 0 on ∂Ω, where K∗ is the adjoint
operator of K. Therefore, we attain the Euler-Lagrange equation,

−∇ ·
( ∇u
|∇u|

)
+ λK∗(Ku− f ) = 0 for x ∈ Ω,

or equivalently,

∇ ·
( ∇u
|∇u|

)
− λK∗(Ku− f ) = 0 for x ∈ Ω,

along with the Neumann boundary condition, ∂u(x)/∂n = 0 on ∂Ω.
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The adjoint operator

Let V be a real (or complex) Hilbert space with inner product ⟨·, ·⟩,
e.g., L2(Ω) with the inner product ⟨f , g⟩ :=

∫
Ω fg dΩ.

Consider a continuous (i.e., bounded) linear operator T : V → V .
Then the adjoint of T is the continuous linear operator
T∗ : V → V satisfying

⟨Tx, y⟩ = ⟨x, T∗y⟩, ∀ x, y ∈ V .

Existence and uniqueness of this operator follows from the Riesz
representation theorem.

This can be seen as a generalization of the adjoint matrix of a
square matrix , i.e., the conjugate transpose of a square matrix.
For example, let A ∈ R3×3. Then

⟨Ax, y⟩ = y⊤Ax = ⟨x, A⊤y⟩, ∀ x, y ∈ R3.
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What is the adjoint operator K∗ of K?

Suppose that the linear and shift-invariant blurring operator
K : L2(Ω)→ L2(Ω) is defined as

(Ku)(x) := (h ⋆ u)(x) =
∫

Ω
h(x− s)u(s)ds ∀ x ∈ Ω,

where h is the given kernel function.

⟨Ku, v⟩L2(Ω) =
∫

Ω

(∫
Ω

h(x− s)u(s)ds
)

v(x)dx

=
∫

Ω
u(s)

(∫
Ω

h(x− s)v(x)dx
)

ds.

Let h̃(x) = h(−x) for all x ∈ R2. Then for all u, v ∈ L2(Ω), we have

⟨u, K∗v⟩L2(Ω) = ⟨Ku, v⟩L2(Ω) =
∫

Ω
u(s)

(∫
Ω

h̃(s− x)v(x)dx
)

ds

= ⟨u, h̃ ⋆ v⟩L2(Ω).

Therefore, (K∗v)(x) = (h̃ ⋆ v)(x).
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Nonlinear PDE based image restoration

Consider the E-L equation with the homogeneous BC, ∂u
∂n = 0 on ∂Ω.

∇ ·
( ∇u
|∇u|δ

)
− λK∗(Ku− f ) = 0,

where | · |δ :=
√
| · |2 + δ2, 0 < δ≪ 1, to avoid division by zero.

Rudin-Osher (1994) used the artificial time marching method:

u← u + ∆t
{
∇ ·

( ∇u
|∇u|δ

)
− λK∗(Ku− f )

}
.

This method is very easy to implement but converges slowly
due to the nonlinearity of the diffusion operator.

Vogel-Oman (1996) used a lagged diffusivity procedure to partially
overcome this difficulty by solving the following equation for
u(n+1) iteratively:

∇ ·
(∇u(n+1)

|∇u(n)|δ

)
− λK∗(Ku(n+1) − f ) = 0.
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An equivalent constrained convex problem

By introducing a new variable w(x) := ∇u(x), we obtain an
equivalent constrained convex minimization problem:

min
u,w

∫
Ω
|w(x)|dx +

λ

2

∫
Ω

(
(Ku)(x)− f (x)

)2dx,

subject to w(x) = ∇u(x), x ∈ Ω.

Wang-Yin-Zhang (2007) considered the L2-norm-square penalty
formulation to obtain the unconstrained problem:

min
u,w

∫
Ω
|w(x)|dx +

λ

2

∫
Ω

(
(Ku)(x)− f (x)

)2dx +
β

2

∫
Ω

∣∣w(x)−∇u(x)
∣∣2dx,

where β > 0 is a sufficiently large penalty parameter in order to
approximate the solution of the original problem.
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The discrete form of the unconstrained problem

Suppose that f = [fij] is an N×N digital image. Let us consider the
discrete form of the unconstrained problem:

min
u,w

N

∑
i,j=1
∥wij∥+

λ

2
∥Ku− f∥2

F +
β

2

N

∑
i,j=1
∥(∂+u)ij −wij∥2,

where K is the discrete convolution operator, ∥ · ∥ is the Euclidean
norm in R2, i.e., ∥ · ∥ := ∥ · ∥2, and ∥ · ∥F is the Frobenius norm,

wij =

(
(w1)ij
(w2)ij

)
∈ R2.

Moreover, ∂+ denotes the forward finite difference operator,

(∂+u)ij =

(
(∂+1 u)ij
(∂+2 u)ij

)
=

(
ui+1,j − uij
ui,j+1 − uij

)
∈ R2.
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An alternating method

We will solve the discrete problem by alternately minimizing the
objective function with respect to w while fixing u, and vice versa.

w-subproblem: For a fixed u, we solve

min
w

N

∑
i,j=1

(
∥wij∥+

β

2
∥wij − (∂+u)ij∥2

)
,

which permits a closed-form solution

wij = max
(
∥(∂+u)ij∥ −

1
β

, 0
) (∂+u)ij

∥(∂+u)ij∥
, 1 ≤ i, j,≤ N,

where we follow the convention that 0 · (0/0) := 0. The computation
complexity is of order O(N2).
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An alternating method (cont’d)

u-subproblem: For a fixed w = (w1, w2)
⊤, we solve the following

problem with a special structure:

min
u

λ

2
∥Ku− f∥2

F +
β

2
∥∂+1 u−w1∥2

F +
β

2
∥∂+2 u−w2∥2

F,

where Ku = H ⋆ u with a given blurring filter H, ∂+1 u = [(∂+1 u)ij],
w1 = [(w1)ij], and so on, and all are matrices in RN×N.

Therefore, we can solve a linear least-squares problem in the form:

min
u
∥

A
B
C

 u−

 f
w1
w2

 ∥2
2,

where u, f , w1, and w2 are vectorization of [uij], [fij], [w1ij], and [w2ij],
respectively. However, the linear least-squares solver (by solving the
normal equations, or using the QR decomposition, or using the SVD) has
high complexity, leading to significant costs!
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u-subproblem: an FFT-based algorithm

We can use the FFT to solve the u-subproblem:

Since K, ∂+1 , ∂+2 are all discrete convolutions, if we transform the
u-subproblem into the Fourier domain, then these operations
become element-wise products, e.g., F (H ⋆ u) = F (H) ◦ F (u).
Since the Fourier transform preserves the Frobenius norm, we
obtain an equivalent problem (set γ := β/λ):

min
u
∥F (H) ◦ F (u)−F (f )∥2

F + γ∥F (∂+1 ) ◦ F (u)−F (w1)∥2
F

+γ∥F (∂+2 ) ◦ F (u)−F (w2)∥2
F.

After solving for F (u) (using first-order optimality condtion),
we obtain the solution to the u-subproblem by

u = F−1
( F (H)∗ ◦ F (f ) + γ

(
F (∂+1 )∗ ◦ F (w1) +F (∂+2 )∗ ◦ F (w2)

)
F (H)∗ ◦ F (H) + γ

(
F (∂+1 )∗ ◦ F (∂

+
1 ) +F (∂

+
2 )
∗ ◦ F (∂+2 )

)),

where “∗′′ denotes complex conjugacy and the division is
element-wise. Therefore, it requires two ffts and one ifft per iteration.
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Selection of model parameters

Noisy level control parameter λ: An appropriate λ should give
a solution u satisfying

∥Ku− f∥2 ≈ ∥Kū− f∥2 = σ2 = Var(n).

Constraint penalty parameter β: Parameter β cannot be too
small because it would allow ∇u = w to be violated excessively.
However, β cannot be too large either because the larger the β is
the less updates applied to w and u, making the algorithm take
more iterations. Therefore, we should choose β in a continuation
way to balance the speed and accuracy.

Prescribed maximum value βmax: The initial value of β is
relatively small (e.g., β = 4). Then β is increased (e.g., doubled)
until a prescribed maximum value βmax is reached (e,g, 220).
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Numerical experiments

% creat a blurring filter
>> H = fspecial(’motion’, 41, 135)
% add Gaussian white noise with mean 0 and variance 10−3

>> f = imnoise(original, ’gaussian’, 0, 1e-3)

(All the numerical experiments are performed by Pei-Chiang Shao)
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Numerical experiments

% creat a blurring filter
>> H = fspecial(’gaussian’, 41, 10)
% add Gaussian white noise with mean 0 and variance 10−6

>> f = imnoise(original, ’gaussian’, 0, 1e-6)
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Total variation blind deconvolution

Chan-Wong (1998) formulated the blind deconvolution problem as

min
u,h

1
2

∫
Ω

(
(h ⋆ u)(x)− f (x)

)2dx + α1

∫
Ω
|∇u(x)|dx + α2

∫
Ω
|∇h(x)|dx,

where the use of TV regularization for the blurring kernel h is due to
the fact that some blurring kernels can have edges.

The first-order optimality conditions give

u(−x) ⋆
(
(u ⋆ h)(x)− f (x)

)
− α2∇ ·

( ∇h(x)
|∇h(x)|

)
= 0, x ∈ Ω,

h(−x) ⋆
(
(h ⋆ u)(x)− f (x)

)
− α1∇ ·

( ∇u(x)
|∇u(x)|

)
= 0, x ∈ Ω,

which are the associated Euler-Lagrange equations.

A further study is needed!
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