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Outline of “variational image segmentation”

In this lecture, we will give a brief introduction to the topics:

@ The energy-based models for image segmentation: the Mumford-Shah
model and the Chan-Vese model based on the level set formulation.

@ An efficient iterative thresholding method for image segmentation.

@ A local intensity clustering model for intensity inhomogeneous images.

The material of this lecture is mainly based on

@ P. Getreuer, Chan-Vese segmentation, [mage Processing On Line, 2
(2012), pp. 214-224.

@ D. Wang, H. Li, X. Wei, X.-P. Wang (£4%°F"), An efficient iterative
thresholding method for image segmentation, Journal of
Computational Physics, 350 (2017), pp. 657-667.

e C.Li (Z4liH), R. Huang, Z. Ding, J. C. Gatenby, D. N. Metaxas,
and J. C. Gore, A level set method for image segmentation in the
presence of intensity inhomogeneities with application to MRI,
IEEE Transactions on Image Processing, 20 (2011), pp. 2007-2016.
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Image segmentation in medical imaging

f & initialization C S(’UIIIUZ ted i mage

bias field b corrected image I

Bias field model: f = bl +n, where n is the noise

In what follows, Q) denotes an open bounded subset in R? and f : O — R
denotes the given grayscale image to be segmented.
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Mumford-Shah model (CPAM 1989)

Mumford-Shah model: it finds a piecewise smooth function 1 and a
curve set C, which separates the image domain into disjoint regions,
minimizing the energy functional:

r{}’icn (;1‘C| + A/Q(f(x) - u(x))zder ./(,)\C|Vu(x)|2dx),

where |C| denotes the total length of the curves in C.

@ The first term plays the regularization role, which ensures the
target objects can tightly be wrapped by C.

@ The second term is the data fidelity term, which forces u to be
close to the input image f.

@ The third term is the smoothing term, which forces the target
function u to be piecewise smooth within each of the regions
separated by the curvesin C.

@ 11 >0, A > 0are tuning parameters to modulate these three terms.
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Simplified Mumford-Shah model

@ The non-convexity of energy functional in the Mumford-Shah model
makes the minimization problem difficult to analyze and the
computational cost is much considerable.

@ The piecewise smooth model suffers for its sensitivity to the
initialization of C.

@ Simplified Mumford-Shah model: it finds a piecewise constant
function u and a curve set C to minimize the energy functional:

r{},icn<y IC] —l—/ﬂ(f(x) —u(x))2dx>.

Note that u is constant on each connected component of Q \ C.
The minimization problem is still non-convex.
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Chan (B % B)-Vese two-phase model

In 1999, Chan and Vese proposed a two-phase segmentation model
based on the level set formulation (“active contours without edges”,
LNCS 1999):

min ( |C}+V|Qm|+)t1/ (f(x) — 1) dx—l—)xz/

c1,02,C

— ) dx),

Out
where
@ ()i, denotes the region enclosed by the curves in C with area
‘Qin|r and Qout =0 \ Qin-
@ 11>0,v>0,A; >0,and A; > 0 are tuning parameters (actually,
one of them can be fixed as 1).
@ Chan-Vese model finds a piecewise constant function u and a

curve set C to minimize the energy functional, where u has only
two constant values,

u(x) = c1, xisinside C,
¢, xis outside C.
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Topological changes of C

To solve the minimization problem of Chan-Vese model, we evolve C
and find c1, ¢; to minimize the energy functional. However, it is
generally hard to handle topological changes of the curves in C.

9 oo

(quoted from wikipedia)
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Level set function

Therefore, we represent C implicitly by the zero level contour of a
level set function ¢ : 3 — R, i.e.,

C={xeQ: ¢(x)=0}.
The zero level contour C partitions the image domain into two
disjoint regions ()i, and Qgyt such that
¢(x) >0 for x € Oy, and ¢(x) <0 for x € Qoyt.

For example, given r > 0, we define a level set function, which is a
signed distance function,

¢(x) = plxy) =r— /22 +2

whose zero level contour is the circle of radius r > 0.
©

1
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Chan-Vese model

@ Let H denote the Heaviside function and ¢ the Dirac delta
function. Then

1 s>0, d -
H(s) = { 0 s<0, and %H(s) = 4(s).

@ In terms of H, J, and the level set function ¢, the Chan-Vese
model has the form

min (i [ 6(9(0)| V()| e +v || Hp(x))
1 () — ) H(g())d
2 [ () - e2)’ (1~ H(p(x))) dx).
Original formulation:

min, (4]C| + V|0 + A1 /(')in(f(x)_C1)2+A2/Qm(f(x)—q)2).

Cl,Cz,C
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The regularized Heaviside and delta functions

The Heaviside function H and the Dirac delta function ¢ can be
approximately regularized as follows: for a sufficiently small € > 0,

1 2 gt
He(t) = i(l—i—;tan 1(2)),
d €
Oc(t) == —He(t) = ——5~
e(t) dt e(t) (€2 +12)’
- ..
[ e = /,mm‘“:'“:l

08 06 -04 02 0 02 04 06 08 1

1 08 06 04 02 0 02 04 06 08 1 1




Total length of C

The first term of the energy functional is the length of C, which can be
expressed as the total variation of H(¢),

: "~ dH
e = [ ot Vor)lax = [ |5 (@000)][Vo(w)]ax
= [ IVH(@())lax.
A heuristic argument to prove [C| = [, 5(¢(x))|V(x)|dx:

Suppose that the level set function ¢ is a s1gned distance function, then we
have |[V¢(x)| = 1 for all x € Q (a.e.). The contour C can be parametrized in
arclength s, z(s) = (x(s),y(s)) for0 < s < L:=|C|. Let N > 1be a large
integer. We approximate the é-function by

o= N <
0, otherwise.
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A heuristic argument (cont’d)

Let By be the narrow band defined by

By :={xeQ: |p(x)] <1/(2N)}.

Then
S o@EIVo@ldr =N [ [Vp()ldx.

The “centerline” of this band By is the curve C = {x € Q: ¢(x) = 0}.
Consider a point p = z(s) € C. Then the tangent vector and the normal
vector are z'(s) = (x'(s),(s)) and V¢(z(s)), respectively. Starting at p in the
direction V¢(p), we reach the boundary of By when we have traversed the
length /1 > 0 such that |V¢(p)|l = . It follows that near p = z(s) the width
o(s) of this band is approximately given by

1 1

PO =2 = NVpE) ~ N

Therefore we have

L
S o@ENIVo@ldr =N [ [Vp@)ldr~N [ p(s)ds =L = [c].
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An alternating iterative scheme

The minimization is solved by an alternating iterative scheme, i.e.,
alternatingly updating cq, ¢ and ¢.

(S1) Fixed ¢, the optimal values of ¢; and ¢, are the region averages,
(- Jof®)H(¢(x)) dx o= Jof®)(1—H(g(x))) dx
JoH($p(x))dx Jo(0—H(p(x)))dx

(52) Fixed cq, c3, we solve the initial-boundary value problem (IBVP)
to reach a steady-state:

) A\
ot =@ (W7 g v M e Al - ),
for t >0,xc€ ),

x) = ¢o(x),x € Q,

(0,
a—‘P—OOnaQt>o
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Example: Mumford-Shah vs. Chan-Vese

f Mumford-Shah Chan—Vese
piecewise-smooth approximation binary approximation

A&

P. Getreuer, Chan-Vese segmentation,
Image Processing On Line, 2 (2012), pp. 214-224.
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Energy decreasing in time variable

The IBVP can also be derived by considering the decreasing of the
Chan-Vese energy functional in time variable ¢.
(1) First, we introduce the time variable t and assume that the level

set function ¢ evolves in time t, ¢ = ¢(t,x,y). Let At > 0 be an
arbitrary small time step. We suppose that the Chan-Vese energy
functional is decreasing when the level set function ¢ evolves in time t.

(2) Fora given time t > 0, we define
0
o(x,y) = a‘f(t X, Y)At = ¢(t+ At x,y) — ¢(t,x,y),
Yp(xy) = ¢txy) +av(yy) = ¢t +alt,xy),

where 0 < « < 1. Then ¢y = ¢r + avy and ¢, = ¢y, + avy,.
(3) Let F be the integrand in the Chan-Vese energy functional. Then

EYl = [ PGy ity i,

F F F
J v+ J vl+a—vydx§0.

w=0 /Q acp Iy oy

Variational Image Segmentation — 15/62
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Energy decreasing in time variable (cont’d)

(4) Recall Green’s formula,
Vpdx = / n)pdeo — / V- w)pdx.
/Qw pdx aQ(w n)pdo Q( w)pdx

Letw = (%, a%), p = v, and n = (n1,ny) be the unit normal

vector to 00). Then
oF oF oF BP
Uy + =— 39, vydx = / ny 4+ — vdo

0 Oy e L 3,
d OF n d OF i
g * avag, ) 7
Thus,
dE[y] B oF o oF o oF
da la=o /(){w”‘(wc%)”‘(aym)”} x

+/an(aaqinl+ 841)—; )vdtr. (%)
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Energy decreasing in time variable (cont’d)

Since

d
o(5,y) = 2t y)A & Gl + DY) — Pt ),

it follows that v(x,y) ~ 0 for (x,y) € 0Q) and then

dE[y] / oF d oF d oF
. le=o~ Jo 3¢ (axaq;x) (83/8%) vdx <0
Therefore, we obtain a sufficient condition for dE[‘p] 0 <0,
a=

A OF /9 OF 9 oF
o (oY) = {&p(&c%)(@%)}‘
Note that

F(x,y, ¢, 0 dy) = uoe(p) |VP|+vHe($) + A1 (f — c1)*He(p)
+A2(f — c2)*(1 = He(9p)).
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Energy decreasing in time variable (cont’d)

By direct computations, we obtain

oF ,
% USL(P) |V | + e () + M (f — c1)*0e(¢p) — Ao (f — c2)*6e (),
oF bx o

— o)L = poclg) L,
oF ¢y

2=y
oPy Ho) 1G] Vol
It leads to the equation
op _ Vo 2 2
2= {n9- () —v =Ml -+ ralf -
which has to be supplemented with an initial condition,

¢(0,x) = ¢o(x), Vx € Q.
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Neumann boundary condition

For a given time t > 0, if the energy functional E attains a local (or
global) minimum at ¢ the we have

oF oF —
—n1 + —ny | vdo = 0 for any smooth function v on Q).
/ao <a¢x 1 3 2) for any fu

It follows that
opx gy 0 \ogy” gy

That is, we obtain the BC for t > 0,

v
)~n:(5€(cp)%-n.

de(p) 0 9P _
|V¢)\an_0 ond() — an—O on 9Q)
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Numerical implementation

@ Assume that the image domain () is the unit square [0,1] x [0,1].
@ Let Op := {(x;,yj)|i,j =0,1,--- ,M} be the set of grid points of
a uniform partition of Q with sizeh = 1/M.

@ Thenx; =ihand y; =jh,i,j=0,1,--- , M. Let 4)i,j(t) be the
spatial difference approximation to ¢(t, x;, ;).

@ Lett, = nAt,n > 0,and At > 0 be the time step, and let 47?,]- be
the full difference approximation to ¢(fn, x;, ;)

(© Suh-Yuh Yang ( Wi 1), Math. Dept., NCU, Taiwan Variational Image Segmentation — 20/62



Discrete differential operators and BC

@ Define the discrete differential operators: for 1 <1i,j <M —1,
(Pl-i-l,] (Pl,]

Vigij = ? , (forward difference)
Vigij = %, (backward difference)
V; ¢ij = w, (forward difference)
Vb = % (backward difference)
Vi+Vy Vi +V,

0 o 0 e ¥ Y

vx(l)i,j = (7)4)1,]1 vy‘l)i,j = (#)‘PL}
(central differences)
@ Discretize the homogeneous Neumann BC: g—i = 00n 00}

Poj = P10 Pmj=PMm-1j Pio = Pi1, Pim = Pim-1.
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Finite difference discretization: spatial variables

Performing the spatial discretization [Getreuer-2012], we have
a9y, Vi
atZ] = 56(4%,]-){ ( - ij —
\/’7 +(Vz (Pl,]) (vy‘i’i,j)
v 4)1 P )
\/’7 + x‘Pz,]) ( ;‘Pi,j)z

-V — Al(fi,j — C1)2 + /\Z(fi,j — Cz)Z},

wherei,j=1,2,--- ,M—1.

The purpose of small positive parameter 11 in the denominators prevents
division by zero.

(© Suh-Yuh Yang ( B ), Math. Dept., NCU, Taiwan Variational Image Segmentation — 22/62



Spatial discretization

Define
H
Ajj = ,
\/172 + (VE¢ij)? + (Vi )2
Bij = K

\/’72 + (V9912 + (Vi ¢i)%

Using the fact Vi ¢;; = w, Vi i = w and taking the
backward difference at A; ;(¢;11; — ¢i;) and B; j(¢i;j+1 — ¢ij), then the
discretization can be written as

d¢; 1
;Pt] = 0e(9i)) { 2 (Ai,j(4)i+l,j —¢ij) —Aii1,i(¢ij — 471'71,]'))

1
iz (Bfff(‘Pier —¢ij) = Bija(¢ij — ‘Pi,jfl))

—V — /\1(fi,]' - C1)2 + /\Z(fi,]' — Cz)z}.
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Temporal discretization

Define
~ 1 ~ 1
Aij = 124ijy Aicrj = 174i)
1 ~ 1

Bij = 12Bij, Bij-1=13Bij1-

Time is discretized with a semi-implicit Gauss-Seidel method, values
$ij, Pi—1j, $ij—1 are evaluated at time £,1 and all others at time ;.

n+1 n

=gl ~ - ~ ~

L] L +1 +1
= %) {Ai,f¢?+1,j + Ais1 ¢+ Bijdiia + Bijadii

- (1711’,/‘ +Ai1j+Bij+ Ei,j&) 4’}?1

-V — /\1(]2',]' — C1)2 +/\2(fi,j — Cz)z}.
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Gauss-Seidel scheme

This allows ¢ at time ¢, 1 to be solved by one Gauss-Seidel sweep from
left to right, bottom to top:

p= {¢ff/ + Atoe(¢7) (Ai,j4’?+1,j + A1+ Bl
+§i,j71¢2]t11 —v—=M(fij - 1)® + Ma(fij — C2)2> }

-1
{1+At(5€(¢1])( ZJ+A, 1]+B,J+B,] ])} ,

where
A = H
Y 2 n—+1 2’
i+ (@ o)+ (0l /@)
B = [

i+ (0, — 9/ @) + (@ — gt /)
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Gauss-Seidel scheme

We can rewrite Ai,j and Ei,j as follows:

~ H
Aij = 2 2’
hz\/n2+(<¢?+l,j—¢;g>/h) + (90 — 97/ (2)
_ (n/h)
\/(hﬁ)z + (P — Op)* + ((4’3j+1 9/ )
B — K
1, 2
i+ (1920 — 0 @0) + (0~ 0t /)
(u/h)

\/(hﬂ)2+(( i+1,j (Pln+11]) ) +( Zj_¢;l+1,j)2.

In numerical implementation, we take (hy) = 1078,
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Numerical experiments

initial contour
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The iterative convolution-thresholding scheme

@ Most image segmentation models incorporate the level set
formulation for solving the associated minimization problems. It
generally results in initial-boundary value problems for PDEs.

@ We are going to employ an iterative convolution-thresholding (ICT)
scheme [WLWW-]JCP2017] for multi-phase image segmentation
based on the Chan-Vese model.

@ In the ICT scheme, total length of C is approximated by a
non-local multi-phase energy constructed based on convolution of
the heat kernel with the characteristic functions of regions.

@ The ICT scheme is divided into two steps. It works by alternating
a convolution step with the thresholding step. The convolution can
be implemented efficiently on a uniform mesh using the fast
Fourier transform (FFT) with the optimal complexity of
O(NlogN) per iteration.
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The approximate Chan-Vese functional

Letf : O — R be the given grayscale image to be segmented.

@ Suppose f approximately takes n distinct constants ¢, - - -, ¢, in
the disjoint regions ()4, - - -, ), (n-phase partition) with
boundaries Cy, - - - , Cy, respectively, that separate Q).

LetC = U’ C;. Then O\ C = U, Q).
@ Let x; be the characteristic function of the desirable region ();,

1 xe @

n
Xilx) = { 0 otherwise, and ZXi =1inO\C.

i=1

@ Let x = (x1,x2, - "+ , Xn)- We define the set S of the characteristic
vector functions by

S = {X € (BV(Q))" : xi(x) € {0,1},ixi(x) —1Vxe Q\c},

where BV (Q)) is the usual bounded variation space.
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The approximate Chan-Vese functional (cont’d)

In [WLWW-JCP2017], the authors considered the following model:

) _ )2
) Z N + | () — e d).
Letc:= (c1,¢2, -+ ,¢n). Then we look for x* and ¢* such that
n .
(x',¢") = argmin ) (AIC] + [ xi(x)gi(@) ),

XES,cER™ =1

where

8i(x) = (f(x) — )™
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The length of C;

Let 0 < T < 1. Define the heat kernel G by

2
e oP(~150)

Then the length of C; N C; can be approximated by (see CPAM-2015)

66l 7 [ @G )

where * represents the convolution operation, and therefore

|Ci| ~ \/7/ Xi(x)Gr(x *X}( x) dx.
= 1]#1

S. Esedoglu and F. Otto, Threshold dynamics for networks with
arbitrary surface tensions, Communications on Pure and Applied
Mathematics, 68 (2015), pp. 808-864.

Gr(x) :=
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The approximate energy functional and ICT scheme

The total energy functional can be approximated by

Er(x€) = \F/ Xi(%)Gr(x) * x;(x dX+/xz )gi(x) dx),
i:1 j= 1]7&1

and our goal is to solve the following minimization problem:

(x*,c*) = argmin & (x, c).
XES, ceR”
The minimization problem can be solved by the ICT scheme, i.e.,
alternatively updating x and c. Suppose that we have the k-th
iterations for k > 0, X(k) = ( )(( ), ng), e, X,(qk)) and ¢, then find

x%tD € S and ¢*+1) € R sequentially such that

X(k+1) — argminET(X,C(H)I
XES

k) — argmingf(x(kﬂ)/c)-
CEH—{”
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The c-subproblem

Note that the energy functional is given by

n
Z \/7/ Xi(x)Gr(x *X] dx+/ Xi(x)gi(x dx
' = 1]#1

i=1
Then
k k1
min £ (x ", ¢) = min [ 1) () - c)2dx
Letting
9 (k+1) N2 g —
5 @@ e =0
we have
(k+1) i
2/ ) () (Fa) — ) dx =0 = ¢; = Jox (k+(13)c)f(x) *
Jaxi (x) dx
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The x-subproblem

Consider the x-subproblem:

(+1) — argmin & (x, ).

XES

X

Note that the minimization problem is a non-convex problem since
the characteristic function set S is not a convex set. In order to
circumvent this drawback, we define the convex hull K of S by

n
K= {x e (BV(Q))":0< xi(x) <1, Y_xi(x) =1Vx € Q\c}.
i=1
Then we consider the convex relaxed minimization problem instead:

min & (x, ¢®)).
xek
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The x-subproblem (cont’d)

In [WLWW-JCP2017], the authors proved that:

Assume that x* € K is a minimizer of E(x, ¢™) on K, i.e.,

Er(x", c(k)) = min & (x, c(k)).
XEX

Then x* € S and hence it is also a minimizer of E+(x, c(k>) onS, ie.,

Er(x", c<k)) = min & (x, c(k>).
XS

Another approach is to show that - (x, c¥)) is a concave functional
on the convex set K. Then minimizers can only be attained at the
boundary points of the convex set K, i.e., the subset S.
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How to solve the x-subproblem

Linearizing & (x, c(k)) at x(k), we obtain

g‘r(?(rc(k)) ~ k k) +2/ (;;SCT

(xix) - Y (x)) e

x=x
= &)+ Y [ ow(uw -V w)
i=1"

where function q)l(k)

0 < ¢ (x) —22\[ Z Ge(x )( )+ ().

J=LiF

is given by

© Suh-Yuh Yang (5 Math. Dept., NCU, Taiwan Variational Image Segmentation — 36/62



How to solve the x-subproblem (cont’d)

Dropping the constant terms in £¢(x, c(¥)), then the x-subproblem
becomes

(k+1) _ 23 [ o® () d
X _argmmz Q(Pi () xi(x) dx.

xek =1
Because (pi(k) (x) > 0and x;(x) > 0 for all x € (), the minimizer x**1)
of the above problem can be easily attained at

Oy (6
) ) { L if g () = min 97 (x),

0, otherwise,

fori=1,2,--- ,nandx € O\ C.
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Numerical experiment #1

5 lterations
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Numerical experiment #2
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Numerical experiment #3

segmentation A= 0.005

) Suh-Yuh Yang (#5#i/%), Math. Dept., NC iwa /ariational Image Segmentati



Numerical experiment #4
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Intensity inhomogeneous images

Letf : O — R be the given grayscale image to be segmented.

f & initialization C  segmented image

bias field b corrected image 1

Bias field model: f = bl + n, where n is the noise
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Local intensity clustering model

e C.Li (Z4lifH), R. Huang, Z. Ding, J. C. Gatenby, D. N. Metaxas,
and J. C. Gore, A level set method for image segmentation in the
presence of intensity inhomogeneities with application to MRI,
IEEE Transactions on Image Processing, 20 (2011), pp. 2007-2016.

@ We need to introduce a bias field model for dealing with
intensity inhomogeneous images.

@ The level set approach can be replaced by the iterative
convolution-thresholding (ICT) scheme.
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The bias field model

@ The bias field may arise from improper image acquisition in
various imaging modalities, especially in the medical imaging
domain, such as MRI, PET, CT, etc.

@ We assume that the bias field accounts for the intensity
inhomogeneity of image. Of course, intensity inhomogeneity
can also occur due to spatial variations in illumination.

@ The model of bias field in medical images is commonly based
upon the assumption that it is a low-frequency artifact and
perceived as a smooth spatially varying function.

@ We assume the multiplicative model with additive noise:
f(x) =b(x)I(x) +n(x), VxeQ,

f is the observed image, I the true image, b the bias field, and n
an additive zero-mean Gaussian noise, all are unknown except f.
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Local intensity clustering property

@ Suppose that the true image I approximately takes n distinct
constants c1, ¢, - - -, ¢ in the disjoint regions (21, Oy, - - -, Uy,

@ Lety € Oand
N(yp)={xeQ: [x—yl> <p}

Then {N (y,p) N Q;}!"_; forms a natural partition of N (y, p).

@ Since b is assumed to be a slowly varying function, it is
reasonable that

f(x) =b(y)c;+n(x), VxeN(yp)NnQ,.

@ The set of these local intensities {f(x)| x € N (y,p)} has been
naturally classified into n clusters with the cluster centers b(y)c; in
the sense of k-means clustering.
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Local intensity clustering property (cont’d)

@ We introduce a nonnegative kernel function K : R> — R, a
truncated Gaussian function,

1 =113
- I V] f < 7
K(z)=1{ a exp(~ .7 ). forlzl <p

0, otherwise,
a > 0 is a normalization constant such that [, K(z)dz =1,

o > 0 is the standard deviation of the Gaussian function.

@ We then define a local clustering criterion function £ (y) by
n
2
EW) = ¥ [ Ky~ ()~ bly)a)*dx
i=17€Y

The smaller the value of £(y), the better the classification of the
local intensities {f(x)| x € N'(y,p)}.
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The local intensity clustering model of Li et al.

@ Lietal. defined the optimal partition {€);}"_; of Q) as the one
such that the local clustering criterion function £(y) is
minimized for all y € Q.

@ They minimized the integral of £(y) with respect to y over (),
which plays the role of the data fitting term.

@ They considered the following local intensity clustering model:
» N . )
min (nlc| + /Q ,:21 /n,- K(y =) (f(x) = b(y)ei)* dxdy ),

where ¢ = (c1,¢2,- -+ ,cn) € R™.

@ The energy functional is converted to a level set formulation by
representing the disjoint regions (31, ()y, - - -, {3, with a number
of level set functions.
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Numerical experiment: level set formulation

Initial contour 100 iterations

Bias field Bias corrected image
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Numerical experiment: level set formulation

Initial contour 30 iterations

Bias field Bias corrected image
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ICT scheme for solving the model

The ICT scheme can solve the model by considering the following
energy functional:

E(x,bc) = Z Z / %) (Ge # xj) (x) dx

i=1j=1,j#i

# L 0Kt~ () ~ b)) dedy

We consider the minimization problem:

E(x,b,
Xrék“b‘c (X, b,c).
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Three subproblems

Divide the minimization problem into three subproblems: find
x%) € 8, b*+1), and ¢*+1) sequentially such that

X" = argmin& (x), where & (x) := E(x, b", c®)),
XES

plktl)  — argmin & (b), where &(b) ::&()((kﬂ),b,C(k)),
b

(D = argmin&(c), where &(c) i= & (x 1, 64D, ¢).
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b-subproblem

We set the functional derivative 6&, /b to be zero,

= Z / F K (y — ) (F(x) — b)) (~2c ) dx = 0,

which implies

bt9) (2l 0 Ky -y = [ (0 )oKty -

Then
ki) () — (W) *K)(y)
e T T A

where

() =Y c®x V() and Jo(x) = 2<c (02, (41) (1
i=1
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c-subproblem

Setting all the derivatives of £3 with respect to ¢; to be zero, we obtain

aais = Z/Q/Q)(i(kﬂ)(x)K(y—x)(f(x)_b(k+1)(y)ci)(_b(k+1)(y))dxdy

Since K(y — x) = K(x —y), we can exchange the order of integrations,

i [ [ k+l><y>)21<<x—y>dydx
= [ [ bt (K — )y
It leads to

ey _ Joxi Y @G (00 < K) () dx
l Ja ka+1>( ) ((0*+1))2 % K) (x) dx

fori=1,2,---,n.

(© Suh-Yuh Yang (#57#8), Math. Dept., NCU, Taiwan Variational Image Segmentation — 53/62



Xx-subproblem

Linearizing the energy functional & (x) at x(¥), we have
5&

+2/ oxi
= ")+ ; o6 ) = 27 @) ax.

(xi(x) — P (%)) dx

1%

&1(x)

XX

where function q)(k)

;s given by

0< o) Y Gelw) P )

j=Lj#
+ /Q K(y =) () = b9 (y)e)? dy.

ﬁ
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x-subproblem (cont’d)

We then replace the minimization problem with

n
A0 = argmin(&(x¥) + Y [ o i) dx
xXeK i=1/Q
-¥ [ oP e @ dx)

= argmin(z /Q (pl(k)(x))(i(x) dx).

XEL  i=1

Because (pi(k> (x) > 0and x;(x) > 0 for all x € O, the minimizer !

can be easily attained at

k+1)

1<t<n

(k+1) (x> _ { 1/ if q)l(k> (x) = min ¢2k) (x)l
0, otherwise,
fori=1,2,---,nandx € Q\C.
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Numerical experiment: ICT scheme

Initial contour 21 iterations

bias field

bias correcct image

"
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Numerical experiment: ICT scheme

Initial contour 25 iterations

bias field bias correcct image
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Numerical experiment: ICT scheme

Initial contour 43 iterations
bias field bias correcct image
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Numerical experiment: ICT scheme

Initial contour 23 iterations

bias field bias correcct image
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Numerical experiment: ICT scheme

Initial contour 19 iterations

bias field bias correcct image
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Numerical experiment: ICT scheme

Initial contour 20 iterations

bias field bias correcct image
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