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Outline of “variational image segmentation”

In this lecture, we will give a brief introduction to the topics:

The energy-based models for image segmentation: the Mumford-Shah
model and the Chan-Vese model based on the level set formulation.

An efficient iterative thresholding method for image segmentation.

A local intensity clustering model for intensity inhomogeneous images.

The material of this lecture is mainly based on

P. Getreuer, Chan-Vese segmentation, Image Processing On Line, 2
(2012), pp. 214-224.

D. Wang, H. Li, X. Wei, X.-P. Wang (王筱平), An efficient iterative
thresholding method for image segmentation, Journal of
Computational Physics, 350 (2017), pp. 657-667.

C. Li (李純明), R. Huang, Z. Ding, J. C. Gatenby, D. N. Metaxas,
and J. C. Gore, A level set method for image segmentation in the
presence of intensity inhomogeneities with application to MRI,
IEEE Transactions on Image Processing, 20 (2011), pp. 2007-2016.
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Image segmentation in medical imaging

f & initialization C segmented image

bias field b corrected image I
Bias field model: f = bI + n, where n is the noise

In what follows, Ω denotes an open bounded subset in R2 and f : Ω→ R

denotes the given grayscale image to be segmented.
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Mumford-Shah model (CPAM 1989)

Mumford-Shah model: it finds a piecewise smooth function u and a
curve set C, which separates the image domain into disjoint regions,
minimizing the energy functional:

min
u,C

(
µ
∣∣C∣∣+ λ

∫
Ω

(
f (x)− u(x)

)2 dx +
∫

Ω\C

∣∣∇u(x)
∣∣2 dx

)
,

where |C| denotes the total length of the curves in C.

The first term plays the regularization role, which ensures the
target objects can tightly be wrapped by C.

The second term is the data fidelity term, which forces u to be
close to the input image f .

The third term is the smoothing term, which forces the target
function u to be piecewise smooth within each of the regions
separated by the curves in C.

µ > 0, λ > 0 are tuning parameters to modulate these three terms.
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Simplified Mumford-Shah model

The non-convexity of energy functional in the Mumford-Shah model
makes the minimization problem difficult to analyze and the
computational cost is much considerable.

The piecewise smooth model suffers for its sensitivity to the
initialization of C.

Simplified Mumford-Shah model: it finds a piecewise constant
function u and a curve set C to minimize the energy functional:

min
u,C

(
µ
∣∣C∣∣+ ∫

Ω

(
f (x)− u(x)

)2 dx
)

.

Note that u is constant on each connected component of Ω \ C.
The minimization problem is still non-convex.
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Chan (陳陳陳繁繁繁昌昌昌)-Vese two-phase model

In 1999, Chan and Vese proposed a two-phase segmentation model
based on the level set formulation (“active contours without edges”,
LNCS 1999):

min
c1,c2,C

(
µ
∣∣C∣∣+ ν

∣∣Ωin
∣∣+ λ1

∫
Ωin

(
f (x)− c1

)2 dx + λ2

∫
Ωout

(
f (x)− c2

)2 dx
)

,

where

Ωin denotes the region enclosed by the curves in C with area
|Ωin|, and Ωout := Ω \Ωin.

µ > 0, ν ≥ 0, λ1 > 0, and λ2 > 0 are tuning parameters (actually,
one of them can be fixed as 1).

Chan-Vese model finds a piecewise constant function u and a
curve set C to minimize the energy functional, where u has only
two constant values,

u(x) =

{
c1, x is inside C,
c2, x is outside C.
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Topological changes of C

To solve the minimization problem of Chan-Vese model, we evolve C
and find c1, c2 to minimize the energy functional. However, it is
generally hard to handle topological changes of the curves in C.

(quoted from wikipedia)
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Level set function

Therefore, we represent C implicitly by the zero level contour of a
level set function φ : Ω→ R, i.e.,

C = {x ∈ Ω : φ(x) = 0}.
The zero level contour C partitions the image domain into two
disjoint regions Ωin and Ωout such that

φ(x) ≥ 0 for x ∈ Ωin and φ(x) < 0 for x ∈ Ωout.

For example, given r > 0, we define a level set function, which is a
signed distance function,

φ(x) = φ(x, y) = r−
√

x2 + y2,

whose zero level contour is the circle of radius r > 0.
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Chan-Vese model

Let H denote the Heaviside function and δ the Dirac delta
function. Then

H(s) =
{

1 s ≥ 0,
0 s < 0, and

d
ds

H(s) = δ(s).

In terms of H, δ, and the level set function φ, the Chan-Vese
model has the form

min
c1, c2, φ

(
µ
∫

Ω
δ(φ(x))|∇φ(x)| dx + ν

∫
Ω

H(φ(x)) dx

+λ1

∫
Ω

(
f (x)− c1

)2H(φ(x)) dx

+λ2

∫
Ω

(
f (x)− c2

)2(1−H(φ(x))
)

dx
)

.

Original formulation:

min
c1,c2,C

(
µ
∣∣C∣∣+ ν

∣∣Ωin
∣∣+ λ1

∫
Ωin

(
f (x)− c1

)2
+ λ2

∫
Ωout

(
f (x)− c2

)2
)

.
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The regularized Heaviside and delta functions

The Heaviside function H and the Dirac delta function δ can be
approximately regularized as follows: for a sufficiently small ε > 0,

Hε(t) :=
1
2

(
1 +

2
π

tan−1(
t
ε
)
)

,

δε(t) :=
d
dt

Hε(t) =
ε

π(ε2 + t2)
,∫ ∞

−∞
δε(t)dt =

∫ ∞

−∞

ε

π(ε2 + t2)
dt = · · · = 1.
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Total length of C

The first term of the energy functional is the length of C, which can be
expressed as the total variation of H(φ),

∣∣C∣∣ =
∫

Ω
δ(φ(x))

∣∣∇φ(x)
∣∣dx =

∫
Ω

∣∣dH
dφ

(φ(x))
∣∣∣∣∇φ(x)

∣∣dx

=
∫

Ω
|∇H(φ(x))|dx.

A heuristic argument to prove |C| =
∫

Ω δ(φ(x))|∇φ(x)|dx:

Suppose that the level set function φ is a signed distance function, then we
have |∇φ(x)| = 1 for all x ∈ Ω (a.e.). The contour C can be parametrized in
arc length s, z(s) = (x(s), y(s)) for 0 ≤ s ≤ L := |C|. Let N � 1 be a large
integer. We approximate the δ-function by

δN(t) :=

{
N, |t| ≤ 1

2N ,

0, otherwise.
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A heuristic argument (cont’d)

Let BN be the narrow band defined by

BN := {x ∈ Ω : |φ(x)| ≤ 1/(2N)}.

Then ∫
Ω

δ(φ(x))|∇φ(x)|dx ≈ N
∫

BN

|∇φ(x)|dx.

The “centerline” of this band BN is the curve C = {x ∈ Ω : φ(x) = 0}.
Consider a point p = z(s) ∈ C. Then the tangent vector and the normal
vector are z′(s) = (x′(s), y′(s)) and ∇φ(z(s)), respectively. Starting at p in the
direction ∇φ(p), we reach the boundary of BN when we have traversed the
length h > 0 such that |∇φ(p)|h = 1

2N . It follows that near p = z(s) the width
ρ(s) of this band is approximately given by

ρ(s) = 2h =
1

N|∇φ(z(s))| =
1
N

.

Therefore we have∫
Ω

δ(φ(x))|∇φ(x)|dx ≈ N
∫

BN

|∇φ(x)|dx ≈ N
∫ L

0
ρ(s)ds = L = |C|.
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An alternating iterative scheme

The minimization is solved by an alternating iterative scheme, i.e.,
alternatingly updating c1, c2 and φ.

(S1) Fixed φ, the optimal values of c1 and c2 are the region averages,

c1 =

∫
Ω f (x)H(φ(x)) dx∫

Ω H(φ(x)) dx
, c2 =

∫
Ω f (x)

(
1−H(φ(x))

)
dx∫

Ω

(
1−H(φ(x))

)
dx

.

(S2) Fixed c1, c2, we solve the initial-boundary value problem (IBVP)
to reach a steady-state:

∂φ

∂t
= δε(φ)

(
µ∇ · ∇φ

|∇φ| − ν− λ1(f − c1)
2 + λ2(f − c2)

2
)

,

for t > 0, x ∈ Ω,

φ(0, x) = φ0(x), x ∈ Ω,

∂φ

∂n
= 0 on ∂Ω, t ≥ 0.
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Example: Mumford-Shah vs. Chan-Vese

P. Getreuer, Chan-Vese segmentation,
Image Processing On Line, 2 (2012), pp. 214-224.
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Energy decreasing in time variable

The IBVP can also be derived by considering the decreasing of the
Chan-Vese energy functional in time variable t.

(1) First, we introduce the time variable t and assume that the level
set function φ evolves in time t, φ = φ(t, x, y). Let ∆t > 0 be an
arbitrary small time step. We suppose that the Chan-Vese energy
functional is decreasing when the level set function φ evolves in time t.

(2) For a given time t ≥ 0, we define

v(x, y) :=
∂φ

∂t
(t, x, y)∆t ≈ φ(t + ∆t, x, y)− φ(t, x, y),

ψ(x, y) := φ(t, x, y) + αv(x, y) ≈ φ(t + α∆t, x, y),

where 0 < α� 1. Then ψx = φx + αvx and ψy = φy + αvy.

(3) Let F be the integrand in the Chan-Vese energy functional. Then

E[ψ] :=
∫

Ω
F(x, y, ψ, ψx, ψy) dx,

dE[ψ]
dα

∣∣∣
α=0

=
∫

Ω

∂F
∂φ

v +
∂F
∂φx

vx +
∂F
∂φy

vy dx ≤ 0.
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Energy decreasing in time variable (cont’d)

(4) Recall Green’s formula,∫
Ω

w · ∇p dx =
∫

∂Ω
(w · n)p dσ −

∫
Ω
(∇ ·w)p dx.

Let w =
(

∂F
∂φx

, ∂F
∂φy

)
, p = v, and n = (n1, n2) be the unit normal

vector to ∂Ω. Then∫
Ω

∂F
∂φx

vx +
∂F
∂φy

vy dx =
∫

∂Ω

(
∂F
∂φx

n1 +
∂F
∂φy

n2

)
v dσ

−
∫

Ω

(
∂

∂x
∂F
∂φx

+
∂

∂y
∂F
∂φy

)
v dx

Thus,

dE[ψ]
dα

∣∣∣
α=0

=
∫

Ω

{
∂F
∂φ

v−
( ∂

∂x
∂F
∂φx

)
v−

( ∂

∂y
∂F
∂φy

)
v
}

dx

+
∫

∂Ω

( ∂F
∂φx

n1 +
∂F
∂φy

n2

)
v dσ. (?)
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Energy decreasing in time variable (cont’d)

Since

v(x, y) :=
∂φ

∂t
(t, x, y)∆t ≈ φ(t + ∆t, x, y)− φ(t, x, y),

it follows that v(x, y) ≈ 0 for (x, y) ∈ ∂Ω and then

dE[ψ]
dα

∣∣∣
α=0

=
∫

Ω

{
∂F
∂φ
−
( ∂

∂x
∂F
∂φx

)
−
( ∂

∂y
∂F
∂φy

)}
v dx ≤ 0.

Therefore, we obtain a sufficient condition for dE[ψ]
dα

∣∣∣
α=0
≤ 0,

∂φ

∂t
(t, x, y) = −

{
∂F
∂φ
−
( ∂

∂x
∂F
∂φx

)
−
( ∂

∂y
∂F
∂φy

)}
.

Note that

F(x, y, φ, φx, φy) = µδε(φ) |∇φ|+ νHε(φ) + λ1(f − c1)
2Hε(φ)

+λ2(f − c2)
2(1−Hε(φ)

)
.
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Energy decreasing in time variable (cont’d)

By direct computations, we obtain

∂F
∂φ

= µδ′ε(φ) |∇φ|+ νδε(φ) + λ1(f − c1)
2δε(φ)− λ2(f − c2)

2δε(φ),

∂F
∂φx

= µδε(φ)
φx√

φ2
x + φ2

y

= µδε(φ)
φx

|∇φ| ,

∂F
∂φy

= µδε(φ)
φy

|∇φ| .

It leads to the equation

∂φ

∂t
= δε(φ)

{
µ∇ ·

( ∇φ

|∇φ|

)
− ν− λ1(f − c1)

2 + λ2(f − c2)
2)

}
,

which has to be supplemented with an initial condition,

φ(0, x) = φ0(x), ∀ x ∈ Ω.
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Neumann boundary condition

For a given time t ≥ 0, if the energy functional E attains a local (or
global) minimum at φ the we have∫

∂Ω

(
∂F
∂φx

n1 +
∂F
∂φy

n2

)
v dσ = 0 for any smooth function v on Ω.

It follows that

0 =
∂F
∂φx

n1 +
∂F
∂φy

n2 =
( ∂F

∂φx
,

∂F
∂φy

)
· n = δε(φ)

∇φ

|∇φ| · n.

That is, we obtain the BC for t ≥ 0,

δε(φ)

|∇φ|
∂φ

∂n
= 0 on ∂Ω =⇒ ∂φ

∂n
= 0 on ∂Ω
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Numerical implementation

Assume that the image domain Ω is the unit square [0, 1]× [0, 1].

Let ΩD := {(xi, yj)| i, j = 0, 1, · · · , M} be the set of grid points of
a uniform partition of Ω with size h = 1/M.

Then xi = ih and yj = jh, i, j = 0, 1, · · · , M. Let φi,j(t) be the
spatial difference approximation to φ(t, xi, yj).

Let tn = n∆t, n ≥ 0, and ∆t > 0 be the time step, and let φn
i,j be

the full difference approximation to φ(tn, xi, yj).
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Discrete differential operators and BC

Define the discrete differential operators: for 1 ≤ i, j ≤ M− 1,

∇+
x φi,j =

φi+1,j − φi,j

h
, (forward difference)

∇−x φi,j =
φi,j − φi−1,j

h
, (backward difference)

∇+
y φi,j =

φi,j+1 − φi,j

h
, (forward difference)

∇−y φi,j =
φi,j − φi,j−1

h
, (backward difference)

∇0
xφi,j :=

(∇+
x +∇−x

2

)
φi,j, ∇0

yφi,j :=
(∇+

y +∇−y
2

)
φi,j.

(central differences)

Discretize the homogeneous Neumann BC:
∂φ

∂n
= 0 on ∂Ω

φ0,j = φ1,j, φM,j = φM−1,j, φi,0 = φi,1, φi,M = φi,M−1.
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Finite difference discretization: spatial variables

Performing the spatial discretization [Getreuer-2012], we have

∂φi,j

∂t
= δε(φi,j)

{
µ
(
∇−x

∇+
x φi,j√

η2 + (∇+
x φi,j)2 + (∇0

yφi,j)2

+∇−y
∇+

y φi,j√
η2 + (∇0

xφi,j)2 + (∇+
y φi,j)2

)

−ν− λ1(fi,j − c1)
2 + λ2(fi,j − c2)

2
}

,

where i, j = 1, 2, · · · , M− 1.

The purpose of small positive parameter η in the denominators prevents
division by zero.
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Spatial discretization

Define

Ai,j =
µ√

η2 + (∇+
x φi,j)2 + (∇0

yφi,j)2
,

Bi,j =
µ√

η2 + (∇0
xφi,j)2 + (∇+

y φi,j)2
.

Using the fact ∇+
x φi,j =

φi+1,j−φi,j
h , ∇+

y φi,j =
φi,j+1−φi,j

h and taking the
backward difference at Ai,j(φi+1,j − φi,j) and Bi,j(φi,j+1 − φi,j), then the
discretization can be written as

∂φi,j

∂t
= δε(φi,j)

{
1
h2

(
Ai,j(φi+1,j − φi,j)−Ai−1,j(φi,j − φi−1,j)

)
+

1
h2

(
Bi,j(φi,j+1 − φi,j)− Bi,j−1(φi,j − φi,j−1)

)
−ν− λ1(fi,j − c1)

2 + λ2(fi,j − c2)
2
}

.
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Temporal discretization

Define

Ãi,j =
1
h2 Ai,j, Ãi−1,j =

1
h2 Ai,j,

B̃i,j =
1
h2 Bi,j, B̃i,j−1 =

1
h2 Bi,j−1.

Time is discretized with a semi-implicit Gauss-Seidel method, values
φi,j, φi−1,j, φi,j−1 are evaluated at time tn+1 and all others at time tn.

φn+1
i,j − φn

i,j

∆t
= δε(φ

n
i,j)

{
Ãi,jφ

n
i+1,j + Ãi−1,jφ

n+1
i−1,j + B̃i,jφ

n
i,j+1 + B̃i,j−1φn+1

i,j−1

−
(

Ãi,j + Ãi−1,j + B̃i,j + B̃i,j−1

)
φn+1

i,j

−ν− λ1(fi,j − c1)
2 + λ2(fi,j − c2)

2
}

.
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Gauss-Seidel scheme

This allows φ at time tn+1 to be solved by one Gauss-Seidel sweep from
left to right, bottom to top:

φn+1
i,j =

{
φn

i,j + ∆tδε(φ
n
i,j)
(

Ãi,jφ
n
i+1,j + Ãi−1,jφ

n+1
i−1,j + B̃i,jφ

n
i,j+1

+B̃i,j−1φn+1
i,j−1 − ν− λ1(fi,j − c1)

2 + λ2(fi,j − c2)
2
)}

×
{

1 + ∆tδε(φi,j)
(

Ãi,j + Ãi−1,j + B̃i,j + B̃i,j−1

)}−1

,

where

Ãi,j =
µ

h2

√
η2 +

(
(φn

i+1,j − φn
i,j)/h

)2
+
(
(φn

i,j+1 − φn+1
i,j−1)/(2h)

)2
,

B̃i,j =
µ

h2

√
η2 +

(
(φn

i+1,j − φn+1
i−1,j)/(2h)

)2
+
(
(φn

i,j − φn
i+1,j)/h

)2
.
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Gauss-Seidel scheme

We can rewrite Ãi,j and B̃i,j as follows:

Ãi,j =
µ

h2

√
η2 +

(
(φn

i+1,j − φn
i,j)/h

)2
+
(
(φn

i,j+1 − φn+1
i,j−1)/(2h)

)2
,

=
(µ/h)√

(hη)2 + (φn
i+1,j − φn

i,j)
2 +

(
(φn

i,j+1 − φn+1
i,j−1)/2

)2
,

B̃i,j =
µ

h2

√
η2 +

(
(φn

i+1,j − φn+1
i−1,j)/(2h)

)2
+
(
(φn

i,j − φn
i+1,j)/h

)2

=
(µ/h)√

(hη)2 +
(
(φn

i+1,j − φn+1
i−1,j)/2

)2
+ (φn

i,j − φn
i+1,j)

2

.

In numerical implementation, we take (hη) = 10−8.
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Numerical experiments
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The iterative convolution-thresholding scheme

Most image segmentation models incorporate the level set
formulation for solving the associated minimization problems. It
generally results in initial-boundary value problems for PDEs.

We are going to employ an iterative convolution-thresholding (ICT)
scheme [WLWW-JCP2017] for multi-phase image segmentation
based on the Chan-Vese model.

In the ICT scheme, total length of C is approximated by a
non-local multi-phase energy constructed based on convolution of
the heat kernel with the characteristic functions of regions.

The ICT scheme is divided into two steps. It works by alternating
a convolution step with the thresholding step. The convolution can
be implemented efficiently on a uniform mesh using the fast
Fourier transform (FFT) with the optimal complexity of
O(N log N) per iteration.
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The approximate Chan-Vese functional

Let f : Ω→ R be the given grayscale image to be segmented.

Suppose f approximately takes n distinct constants c1, · · · , cn in
the disjoint regions Ω1, · · · , Ωn (n-phase partition) with
boundaries C1, · · · , Cn, respectively, that separate Ω.

Let C = ∪n
i=1Ci. Then Ω \ C = ∪n

i=1Ωi.

Let χi be the characteristic function of the desirable region Ωi,

χi(x) =
{

1 x ∈ Ωi,
0 otherwise, and

n

∑
i=1

χi = 1 in Ω \ C.

Let χ = (χ1, χ2, · · · , χn). We define the set S of the characteristic
vector functions by

S =
{

χ ∈ (BV(Ω))n : χi(x) ∈ {0, 1},
n

∑
i=1

χi(x) = 1 ∀x ∈ Ω \ C
}

,

where BV(Ω) is the usual bounded variation space.
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The approximate Chan-Vese functional (cont’d)

In [WLWW-JCP2017], the authors considered the following model:

min
{Ωi},{ci}

n

∑
i=1

(
λ|Ci|+

∫
Ωi

(f (x)− ci)
2 dx

)
.

Let c := (c1, c2, · · · , cn). Then we look for χ∗ and c∗ such that

(χ∗, c∗) = arg min
χ∈S ,c∈Rn

n

∑
i=1

(
λ|Ci|+

∫
Ω

χi(x)gi(x) dx
)

,

where
gi(x) := (f (x)− ci)

2.
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The length of Ci

Let 0 < τ � 1. Define the heat kernel Gτ by

Gτ(x) :=
1

4πτ
exp

(
−
‖x‖2

2
4τ

)
.

Then the length of Ci ∩ Cj can be approximated by (see CPAM-2015)

|Ci ∩ Cj| ≈
√

π

τ

∫
Ω

χi(x)Gτ(x) ∗ χj(x) dx,

where ∗ represents the convolution operation, and therefore

|Ci| ≈
n

∑
j=1,j 6=i

√
π

τ

∫
Ω

χi(x)Gτ(x) ∗ χj(x) dx.

S. Esedoḡlu and F. Otto, Threshold dynamics for networks with
arbitrary surface tensions, Communications on Pure and Applied
Mathematics, 68 (2015), pp. 808-864.
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The approximate energy functional and ICT scheme

The total energy functional can be approximated by

Eτ(χ, c) =
n

∑
i=1

(
λ

n

∑
j=1,j 6=i

√
π

τ

∫
Ω

χi(x)Gτ(x) ∗ χj(x) dx +
∫

Ω
χi(x)gi(x) dx

)
,

and our goal is to solve the following minimization problem:

(χ∗, c∗) = arg min
χ∈S ,c∈Rn

Eτ(χ, c).

The minimization problem can be solved by the ICT scheme, i.e.,
alternatively updating χ and c. Suppose that we have the k-th
iterations for k ≥ 0, χ(k) = (χ

(k)
1 , χ

(k)
2 , · · · , χ

(k)
n ) and c(k), then find

χ(k+1) ∈ S and c(k+1) ∈ Rn sequentially such that

χ(k+1) = arg min
χ∈S

Eτ(χ, c(k)),

c(k+1) = arg min
c∈Rn

Eτ(χ
(k+1), c).
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The c-subproblem

Note that the energy functional is given by

Eτ(χ, c) =
n

∑
i=1

(
λ

n

∑
j=1,j 6=i

√
π

τ

∫
Ω

χi(x)Gτ(x) ∗ χj(x) dx +
∫

Ω
χi(x)gi(x) dx

)
.

Then

min
c∈Rn
Eτ(χ

(k+1), c) = min
c∈Rn

∫
Ω

χ
(k+1)
i (x)(f (x)− ci)

2 dx

Letting
∂

∂ci

∫
Ω

χ
(k+1)
i (x)(f (x)− ci)

2 dx = 0,

we have

−2
∫

Ω
χ
(k+1)
i (x)(f (x)− ci) dx = 0 =⇒ ci =

∫
Ω χ

(k+1)
i (x)f (x) dx∫

Ω χ
(k+1)
i (x) dx

.
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The χ-subproblem

Consider the χ-subproblem:

χ(k+1) = arg min
χ∈S

Eτ(χ, c(k)).

Note that the minimization problem is a non-convex problem since
the characteristic function set S is not a convex set. In order to
circumvent this drawback, we define the convex hull K of S by

K =
{

χ ∈ (BV(Ω))n : 0 ≤ χi(x) ≤ 1,
n

∑
i=1

χi(x) = 1 ∀x ∈ Ω \ C
}

.

Then we consider the convex relaxed minimization problem instead:

min
χ∈K
Eτ(χ, c(k)).
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The χ-subproblem (cont’d)

In [WLWW-JCP2017], the authors proved that:

Assume that χ∗ ∈ K is a minimizer of Eτ(χ, c(k)) on K, i.e.,

Eτ(χ
∗, c(k)) = min

χ∈K
Eτ(χ, c(k)).

Then χ∗ ∈ S and hence it is also a minimizer of Eτ(χ, c(k)) on S , i.e.,

Eτ(χ
∗, c(k)) = min

χ∈S
Eτ(χ, c(k)).

Another approach is to show that Eτ(χ, c(k)) is a concave functional
on the convex set K. Then minimizers can only be attained at the
boundary points of the convex set K, i.e., the subset S .
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How to solve the χ-subproblem

Linearizing Eτ(χ, c(k)) at χ(k), we obtain

Eτ(χ, c(k)) ≈ Eτ(χ
(k), c(k)) +

n

∑
i=1

∫
Ω

δEτ

δχi

∣∣∣
χ=χ(k)

(
χi(x)− χ

(k)
i (x)

)
dx

:= Eτ(χ
(k), c(k)) +

n

∑
i=1

∫
Ω

ϕ
(k)
i (x)

(
χi(x)− χ

(k)
i (x)

)
dx,

where function ϕ
(k)
i is given by

0 ≤ ϕ
(k)
i (x) := 2λ

√
π

τ

n

∑
j=1,i 6=j

Gτ(x) ∗ χ
(k)
j (x) + g(k)i (x).
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How to solve the χ-subproblem (cont’d)

Dropping the constant terms in Eτ(χ, c(k)), then the χ-subproblem
becomes

χ(k+1) = arg min
χ∈K

n

∑
i=1

∫
Ω

ϕ
(k)
i (x)χi(x) dx.

Because ϕ
(k)
i (x) ≥ 0 and χi(x) ≥ 0 for all x ∈ Ω, the minimizer χ(k+1)

of the above problem can be easily attained at

χ
(k+1)
i (x) =

{
1, if ϕ

(k)
i (x) = min

1≤`≤n
ϕ
(k)
` (x),

0, otherwise,

for i = 1, 2, · · · , n and x ∈ Ω \ C.
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Numerical experiment #1
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Numerical experiment #2
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Numerical experiment #3
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Numerical experiment #4
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Intensity inhomogeneous images

Let f : Ω→ R be the given grayscale image to be segmented.

f & initialization C segmented image

bias field b corrected image I

Bias field model: f = bI + n, where n is the noise
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Local intensity clustering model

C. Li (李純明), R. Huang, Z. Ding, J. C. Gatenby, D. N. Metaxas,
and J. C. Gore, A level set method for image segmentation in the
presence of intensity inhomogeneities with application to MRI,
IEEE Transactions on Image Processing, 20 (2011), pp. 2007-2016.

We need to introduce a bias field model for dealing with
intensity inhomogeneous images.

The level set approach can be replaced by the iterative
convolution-thresholding (ICT) scheme.
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The bias field model

The bias field may arise from improper image acquisition in
various imaging modalities, especially in the medical imaging
domain, such as MRI, PET, CT, etc.

We assume that the bias field accounts for the intensity
inhomogeneity of image. Of course, intensity inhomogeneity
can also occur due to spatial variations in illumination.

The model of bias field in medical images is commonly based
upon the assumption that it is a low-frequency artifact and
perceived as a smooth spatially varying function.

We assume the multiplicative model with additive noise:

f (x) = b(x)I(x) + n(x), ∀ x ∈ Ω,

f is the observed image, I the true image, b the bias field, and n
an additive zero-mean Gaussian noise, all are unknown except f .
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Local intensity clustering property

Suppose that the true image I approximately takes n distinct
constants c1, c2, · · · , cn in the disjoint regions Ω1, Ω2, · · · , Ωn.

Let y ∈ Ω and

N (y, ρ) := {x ∈ Ω : ‖x− y‖2 < ρ}.

Then {N (y, ρ) ∩Ωi}n
i=1 forms a natural partition of N (y, ρ).

Since b is assumed to be a slowly varying function, it is
reasonable that

f (x) ≈ b(y)ci + n(x), ∀ x ∈ N (y, ρ) ∩Ωi.

The set of these local intensities {f (x)| x ∈ N (y, ρ)} has been
naturally classified into n clusters with the cluster centers b(y)ci in
the sense of k-means clustering.
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Local intensity clustering property (cont’d)

We introduce a nonnegative kernel function K : R2 → R, a
truncated Gaussian function,

K(z) =


1
a

exp
(
−
‖z‖2

2
2σ2

)
, for ‖z‖2 ≤ ρ,

0, otherwise,

a > 0 is a normalization constant such that
∫

R2 K(z) dz = 1,
σ > 0 is the standard deviation of the Gaussian function.

We then define a local clustering criterion function E(y) by

E(y) =
n

∑
i=1

∫
Ωi

K(y− x)
(
f (x)− b(y)ci

)2 dx.

The smaller the value of E(y), the better the classification of the
local intensities {f (x)| x ∈ N (y, ρ)}.
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The local intensity clustering model of Li et al.

Li et al. defined the optimal partition {Ωi}n
i=1 of Ω as the one

such that the local clustering criterion function E(y) is
minimized for all y ∈ Ω.

They minimized the integral of E(y) with respect to y over Ω,
which plays the role of the data fitting term.

They considered the following local intensity clustering model:

min
C,b,c

(
µ
∣∣C∣∣+ ∫

Ω

n

∑
i=1

∫
Ωi

K(y− x)
(
f (x)− b(y)ci

)2 dx dy
)

,

where c = (c1, c2, · · · , cn) ∈ Rn.

The energy functional is converted to a level set formulation by
representing the disjoint regions Ω1, Ω2, · · · , Ωn with a number
of level set functions.
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Numerical experiment: level set formulation

Initial contour 100 iterations

Bias field Bias corrected image
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Numerical experiment: level set formulation

Initial contour 30 iterations

Bias field Bias corrected image
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ICT scheme for solving the model

The ICT scheme can solve the model by considering the following
energy functional:

Eτ(χ, b, c) = µ

√
π

τ

n

∑
i=1

n

∑
j=1,j 6=i

∫
Ω

χi(x)
(
Gτ ∗ χj

)
(x) dx

+
∫

Ω

n

∑
i=1

∫
Ω

χi(x)K(y− x)
(
f (x)− b(y)ci

)2 dx dy.

We consider the minimization problem:

min
χ∈S ,b,c

Eτ(χ, b, c).
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Three subproblems

Divide the minimization problem into three subproblems: find
χ(k+1) ∈ S , b(k+1), and c(k+1) sequentially such that

χ(k+1) = arg min
χ∈S

E1(χ), where E1(χ) := Eτ(χ, b(k), c(k)),

b(k+1) = arg min
b
E2(b), where E2(b) := Eτ(χ

(k+1), b, c(k)),

c(k+1) = arg min
c
E3(c), where E3(c) := Eτ(χ

(k+1), b(k+1), c).
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b-subproblem

We set the functional derivative δE2/δb to be zero,

δE2

δb
=

n

∑
i=1

∫
Ω

χ
(k+1)
i (x)K(y− x)

(
f (x)− b(y)c(k)i

)
(−2c(k)i ) dx = 0,

which implies

b(y)
∫

Ω

( n

∑
i=1

(c(k)i )2χ
(k+1)
i (x)

)
K(y− x) dx =

∫
Ω

( n

∑
i=1

c(k)i χ
(k+1)
i (x)

)
f (x)K(y− x)dx.

Then

b(k+1)(y) =
((J1f ) ∗ K)(y)
(J2 ∗ K)(y)

for y ∈ Ω \ C,

where

J1(x) =
n

∑
i=1

c(k)i χ
(k+1)
i (x) and J2(x) =

n

∑
i=1

(c(k)i )2χ
(k+1)
i (x).
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c-subproblem

Setting all the derivatives of E3 with respect to ci to be zero, we obtain

∂E3

∂ci
= 2

∫
Ω

∫
Ω

χ
(k+1)
i (x)K(y− x)

(
f (x)− b(k+1)(y)ci

)(
−b(k+1)(y)

)
dxdy

= 0.

Since K(y− x) = K(x− y), we can exchange the order of integrations,

ci

∫
Ω

∫
Ω

χ
(k+1)
i (x)

(
b(k+1)(y)

)2K(x− y) dydx

=
∫

Ω

∫
Ω

χ
(k+1)
i (x)f (x)b(k+1)(y)K(x− y) dydx.

It leads to

c(k+1)
i =

∫
Ω χ

(k+1)
i (x)f (x)

(
b(k+1) ∗ K

)
(x) dx∫

Ω χ
(k+1)
i (x)

(
(b(k+1))2 ∗ K

)
(x) dx

for i = 1, 2, · · · , n.
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χ-subproblem

Linearizing the energy functional E1(χ) at χ(k), we have

E1(χ) ≈ E1(χ
(k)) +

n

∑
i=1

∫
Ω

δE1

δχi

∣∣∣
χ=χ(k)

(
χi(x)− χ

(k)
i (x)

)
dx

:= E1(χ
(k)) +

n

∑
i=1

∫
Ω

ϕ
(k)
i (x)

(
χi(x)− χ

(k)
i (x)

)
dx.

where function ϕ
(k)
i is given by

0 ≤ ϕ
(k)
i (x) := 2µ

√
π

τ

n

∑
j=1,j 6=i

Gτ(x) ∗ χ
(k)
j (x)

+
∫

Ω
K(y− x)

(
f (x)− b(k)(y)c(k)i

)2 dy.
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χ-subproblem (cont’d)

We then replace the minimization problem with

χ(k+1) = arg min
χ∈K

(
E1(χ

(k)) +
n

∑
i=1

∫
Ω

ϕ
(k)
i (x)χi(x) dx

−
n

∑
i=1

∫
Ω

ϕ
(k)
i (x)χ(k)

i (x) dx
)

= arg min
χ∈K

( n

∑
i=1

∫
Ω

ϕ
(k)
i (x)χi(x) dx

)
.

Because ϕ
(k)
i (x) ≥ 0 and χi(x) ≥ 0 for all x ∈ Ω, the minimizer χ(k+1)

can be easily attained at

χ
(k+1)
i (x) =

{
1, if ϕ

(k)
i (x) = min

1≤`≤n
ϕ
(k)
` (x),

0, otherwise,

for i = 1, 2, · · · , n and x ∈ Ω \ C.
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Numerical experiment: ICT scheme

Initial contour 21 iterations

bias field bias correcct image 
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Numerical experiment: ICT scheme

Initial contour 25 iterations

bias field bias correcct image 
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Numerical experiment: ICT scheme

Initial contour 43 iterations

bias field bias correcct image 
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Numerical experiment: ICT scheme

Initial contour 23 iterations

bias field bias correcct image 
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Numerical experiment: ICT scheme

Initial contour 19 iterations

bias field bias correcct image 
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Numerical experiment: ICT scheme

Initial contour 20 iterations

bias field bias correcct image 

c© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Variational Image Segmentation – 61/62



References

1 T. F. Chan and L. A. Vese, Active contours without edges, IEEE
Transactions on Image Processing, 10 (2001), pp. 266-277.

2 P. Getreuer, Chan-Vese segmentation, Image Processing On Line, 2
(2012), pp. 214-224.

3 C. Li, R. Huang, Z. Ding, J. C. Gatenby, D. N. Metaxas, and J. C.
Gore, A level set method for image segmentation in the presence
of intensity inhomogeneities with application to MRI, IEEE
Transactions on Image Processing, 20 (2011), pp. 2007-2016.

4 W.-T. Liao, S.-Y. Yang, and C.-S. You, An entropy-weighted local
intensity clustering-based model for segmenting intensity
inhomogeneous images, Multimedia Systems, 30 (2024), article 49.

5 D. Wang, H. Li, X. Wei, X.-P. Wang, An efficient iterative
thresholding method for image segmentation, Journal of
Computational Physics, 350 (2017), pp. 657-667.

c© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Variational Image Segmentation – 62/62


