

MA3111: Mathematical Image Processing

Intensity Transformations and Spatial Filtering

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University
Jhongli District, Taoyuan City 320317, Taiwan

First version: April 13, 2021/Last updated: June 27, 2025

Spatial domain and transform domain

The spatial domain approach and transform domain approach are two main categories in image processing:

- *Spatial domain:* refers to the image plane itself, and image processing methods in this category are based on direct manipulation of pixels in an image.
- *Transform domain:* involves first transforming an image into the transform domain, doing the processing there, and obtaining the inverse transform to bring the results back into spatial domain.

Outline of “intensity transformations & spatial filtering”

In this lecture, we will discuss a number of classical techniques for two principal categories of *spatial domain processing*:

- *Intensity transformations* (强度變換): operate on single pixels of an image for tasks such as contrast manipulation and image thresholding.
- *Spatial filtering* (空間濾鏡): performs operations on the neighborhood of every pixel in an image. Examples of spatial filtering include image smoothing and sharpening.

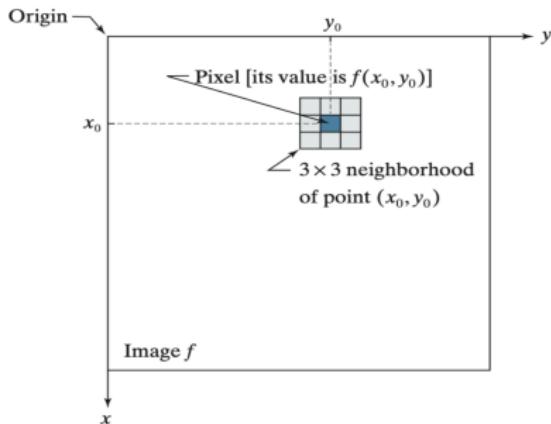
The material of this lecture is based on Chapter 3 in [GW2018].

Spatial domain process

The spatial domain process is generally posed in the form:

$$g(x, y) = T(f(x, y)),$$

where $f(x, y)$ is an input image, $g(x, y)$ is the output image, and T is an operator on f defined over a neighborhood (typically a rectangle) of point (x, y) .



A 3×3 neighborhood about the point (x_0, y_0) . The neighborhood is moved from pixel to pixel in the image to generate the output image.

Spatial filtering and intensity transformation

- **A smoothing spatial filter T :** Suppose that the neighborhood is a square of size 3×3 and that operator T is defined as *compute the average intensity of the pixels in the neighborhood. Then T is a smoothing filter* (平滑濾波器).

Consider an arbitrary location in an image f , say $(100, 150)$. Then

$$g(100, 150) = T(f(100, 150)) = \frac{1}{9} \sum_{i=-1}^1 \sum_{j=-1}^1 f(100 - i, 150 - j).$$

(A neighborhood processing technique)

- **Intensity transformation:** The smallest possible neighborhood is of size 1×1 . T becomes an intensity transformation of the form

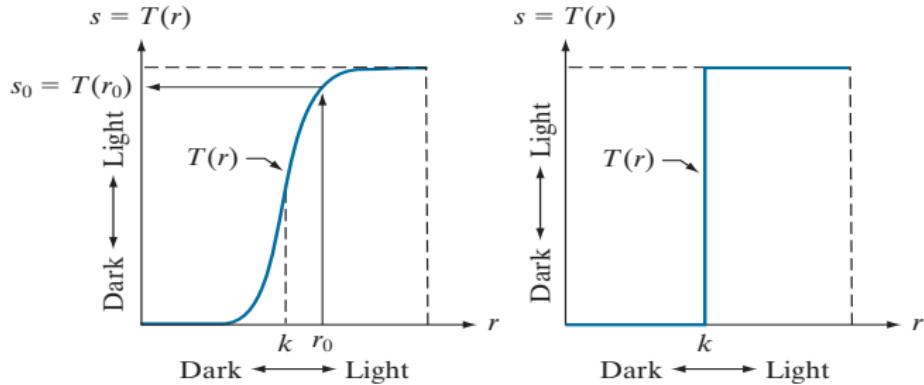
$$g(x, y) =: s = T(r) := T(f(x, y)).$$

(A point processing technique)

Intensity transformations

We will start by introducing several commonly used intensity transformations.

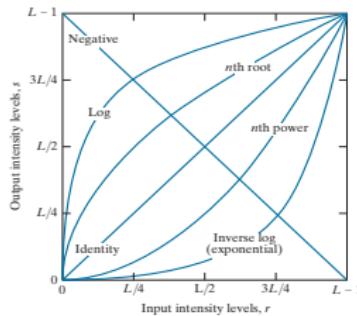
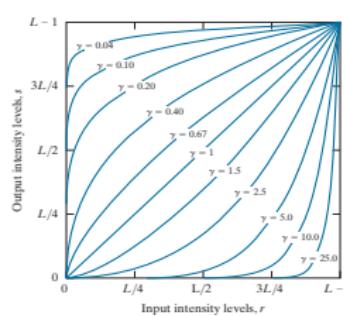
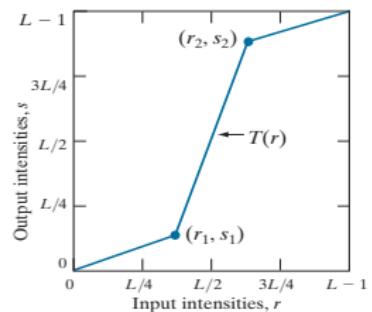
- **Contrast stretching (對比拉伸) function:** “left figure” produces an image of higher contrast than the original, by darkening the intensity levels below k and brightening the levels above k .
- **Thresholding (閾值、門檻) function:** In the limiting case shown in “right figure,” $T(r)$ produces a two level (binary) image.



$$g(x, y) =: s = T(r) := T(f(x, y))$$

Some examples: $g(x, y) =: s = T(r) := T(f(x, y))$

- **Negative transformation:** The negative of an image with intensity levels in $[0, L - 1]$ is obtained by $s = L - 1 - r$.
e.g., $L = 256$ (uint8) or $L = 65536$ (uint16).
- **Log transformation:** $s = c \log(1 + r)$, where $c > 0$ is a constant.
- **Power-law (gamma) transformation:** $s = cr^\gamma$, where c and γ are positive constants. *Note that inputs and outputs are typically normalized in the range $[0, 1]$, i.e., $r \in [0, 1]$.*
- **Piecewise linear transformation**

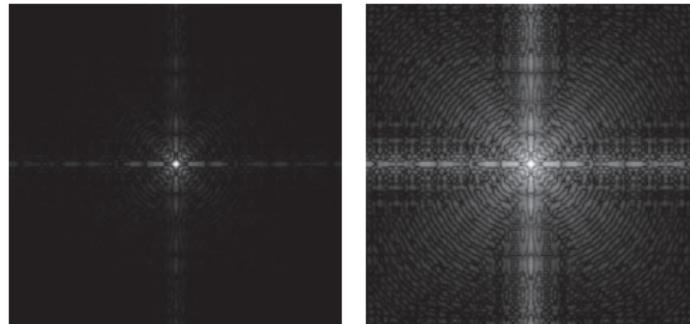


(γ -transf. with $c = 1$)

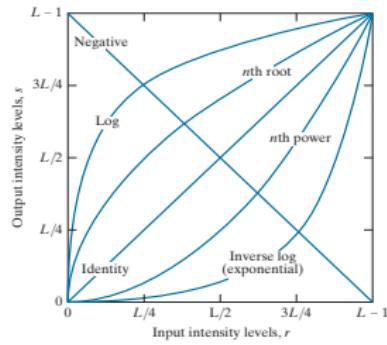
Negative images (負片)

*Color image: B is the negative image of positive image A;
Grayscale image: D is the negative image of positive image C.
(cited from Wikipedia)*

Log image

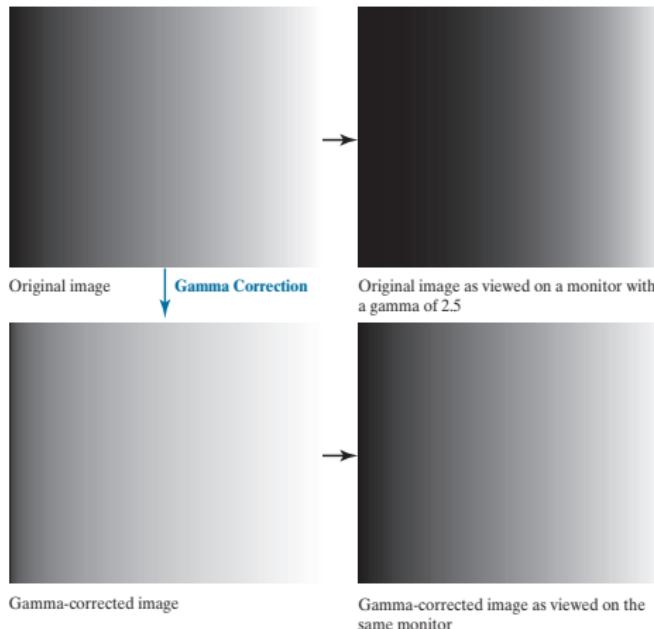


Log transformation of Fourier spectrum with $c = 1$



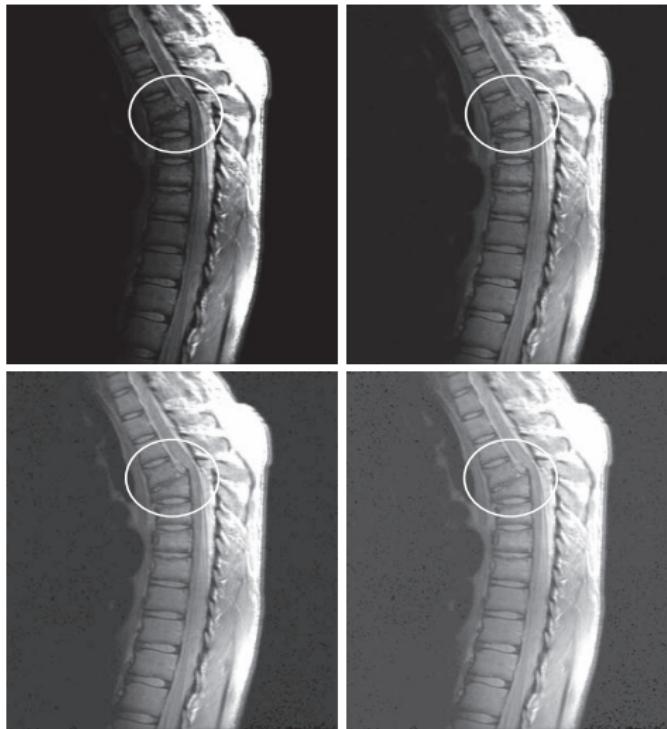
Images of gamma transformation

Many devices used for image capture, printing, and display obey a power law, e.g., cathode ray tube (CRT, 陰極射線管、映像管)



Intensity ramp images with $c = 1$, $\gamma = 2.5$ and correction $s = r^{1/(2.5)}$

Gamma transformation: MRI of a fractured human spine



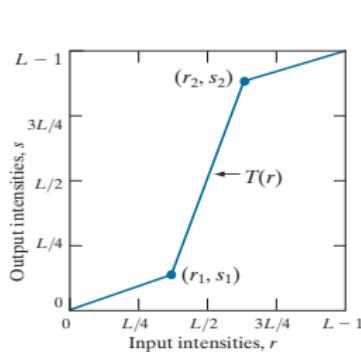
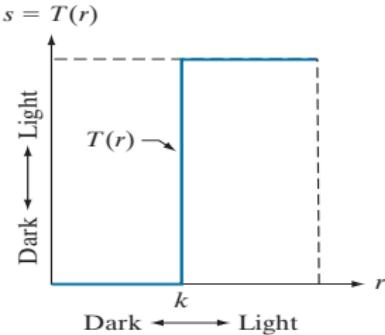
Region of the fracture is enclosed by the circle: $c = 1, \gamma = 0.6, 0.4, 0.3$

Gamma transformation: aerial images (空拍影像)

$$c = 1, \gamma = 3.0, 4.0, 5.0$$

Piecewise linear transformation: contrast stretching

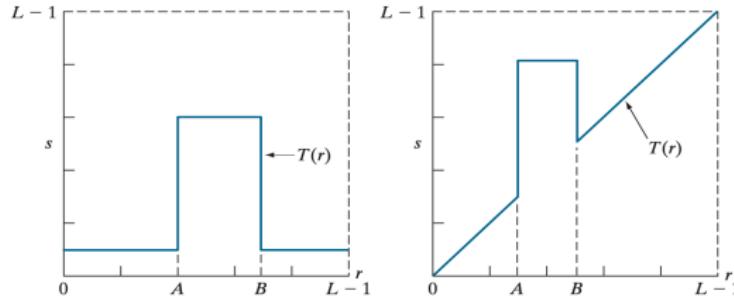
*A low-contrast electron microscope image of pollen (花粉);
Result of contrast stretching; Result of thresholding*



(Right) thresholding function: $r_1 = r_2 = k, s_1 = 0, s_2 = L - 1$

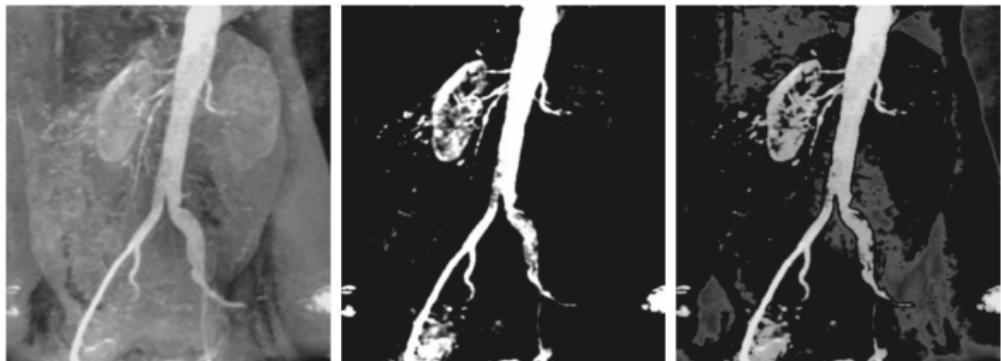
Intensity-level slicing (强度準位切片)

- Intensity-level slicing is to highlight a specific range of intensities in an image, e.g., enhancing features in satellite imagery such as masses of water, and enhancing flaws in X-ray images.
- One approach is to display in one value (say, white) all the values in the range of interest and in another (say, black) all other intensities, i.e., produces a binary image.
- The second approach brightens (or darkens) the desired range of intensities, but leaves all other intensity levels in the image unchanged.



(Left) first approach; (Right) second approach

Examples of the intensity-level slicing



(L) aortic angiogram (X-ray photograph); (M) first approach; (R) second approach, with the selected range set near black

Histogram (直方圖)

- Let r_k , for $k = 0, 1, \dots, L - 1$, denote the intensities of an L -level image $f(x, y)$. The unnormalized histogram of f is defined as

$$h(r_k) = n_k, \quad k = 0, 1, \dots, L - 1,$$

where n_k is the number of pixels in f with intensity r_k .

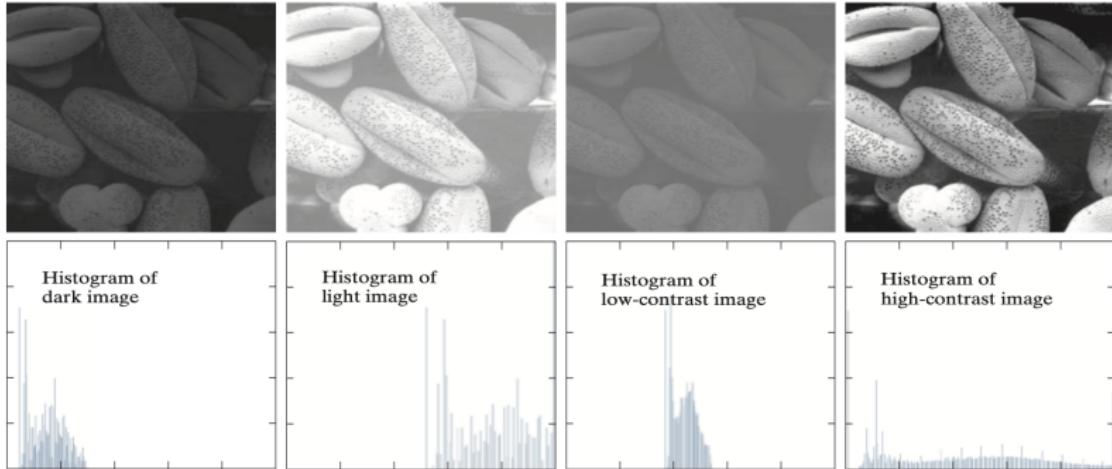
- The normalized histogram of f is defined as

$$p(r_k) = \frac{h(r_k)}{mn} = \frac{n_k}{mn},$$

where f is an $m \times n$ image. *That is, $p(r_k)$ is the probability of intensity level r_k occurring in an image, and we have $\sum_{k=0}^{L-1} p(r_k) = 1$.*

- Histograms are simple to compute and are also suitable for fast hardware implementations, thus making histogram-based techniques a popular tool for real-time image processing.

Four image types and their corresponding histograms



*The horizontal axis of the histograms are values of r_k
and the vertical axis are values of $p(r_k)$*

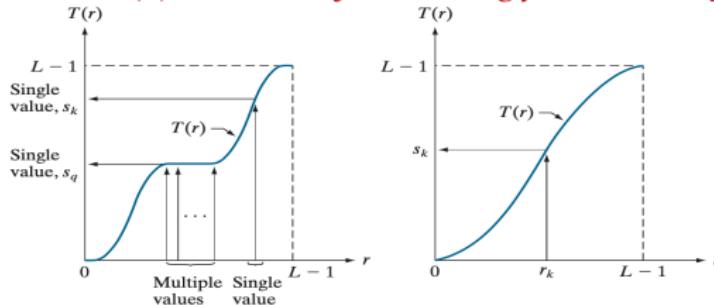
Monotonic increasing intensity transformation

Let the variable r denote the intensities of an image to be processed. Assume that $r \in [0, L - 1]$ with $r = 0$ representing black and $r = L - 1$ representing white. We will consider the intensity transformation

$$s = T(r), \quad 0 \leq r \leq L - 1.$$

That is, for a given intensity value r in the input image, T produces an output intensity value s , where we assume that

- $T(r)$ is a monotonic increasing function in the interval $[0, L - 1]$.
- $T(r) \in [0, L - 1]$ for all $r \in [0, L - 1]$.
- If we need to use the inverse $r = T^{-1}(s)$, $s \in \text{range}(T)$, then we further assume $T(r)$ is a strictly increasing function in $[0, L - 1]$.



Histogram equalization (HE, 直方圖均衡化)

An example of monotonic increasing intensity transformation is the histogram equalized image: $g(x, y) =: s = T(r) := T(f(x, y))$

- We are given a grayscale image $f : \bar{\Omega} \rightarrow [0, 1]$. The cumulative histogram (*cumulative distribution function*) T is defined by considering f as a random variable: for $\eta \in [0, 1]$, we define

$$\begin{aligned} T(\eta) &:= \text{Prob}(f \leq \eta) \\ &= \frac{1}{|\bar{\Omega}|} \left| \{(x, y) \in \bar{\Omega} : f(x, y) \leq \eta\} \right|, \end{aligned}$$

where $|\cdot|$ denotes the area. *Then $T : [0, 1] \rightarrow [0, 1]$ is a monotonic increasing and onto function.*

- The histogram equalized image $g : \bar{\Omega} \rightarrow [0, 1]$ is obtained by defining

$$g(x, y) := T(f(x, y)).$$

Histogram equalized image $g \sim \mathcal{U}(0, 1)$ if T is invertible

If T is strictly increasing, then T is invertible and the cumulative distribution function of the histogram equalized image g is

$$\begin{aligned} \text{Prob}(g \leq \eta) &= \text{Prob}(T(f) \leq \eta) = \text{Prob}(f \leq T^{-1}(\eta)) \\ &= T(T^{-1}(\eta)) = \eta. \end{aligned}$$

Hence, the probability density function of g is

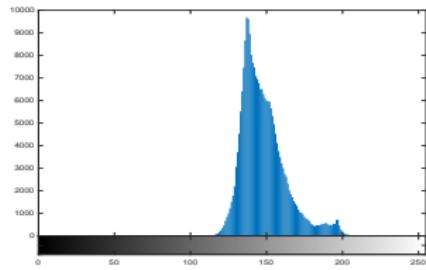
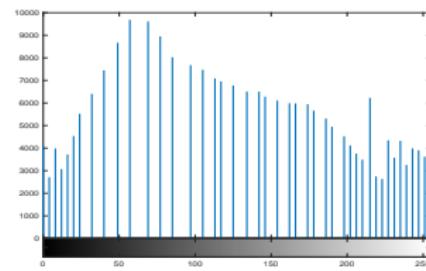
$$p(t) = \begin{cases} 1 & \text{for } 0 \leq t \leq 1, \\ 0 & \text{elsewhere.} \end{cases}$$

Therefore, g has a uniform distribution, i.e., $g \sim \mathcal{U}(0, 1)$.

Recall: Let X be a random variable and $p(t)$ the probability density function (pdf) of X . The cumulative distribution function (cdf) of X is

$$F(\eta) := \text{Prob}(X \leq \eta) = \int_{-\infty}^{\eta} p(t) dt.$$

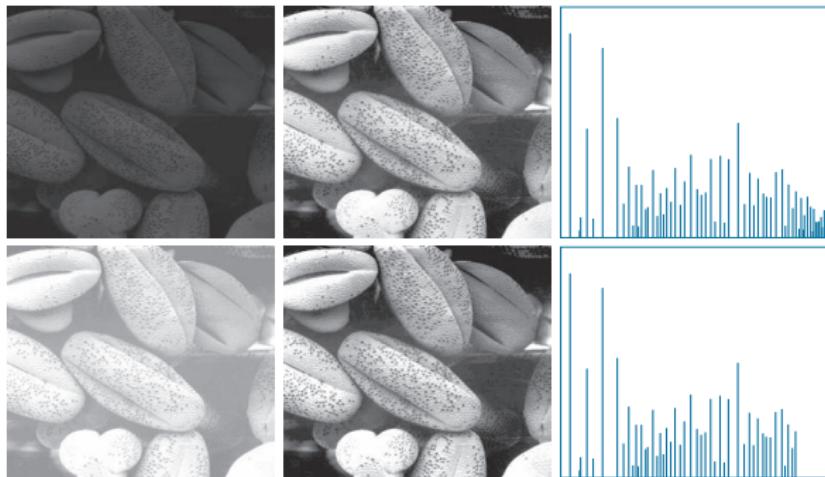
Example of histogram equalized image



*Histogram equalization of 400×600 image:
(top) before; (bottom) after; and the corresponding histograms*

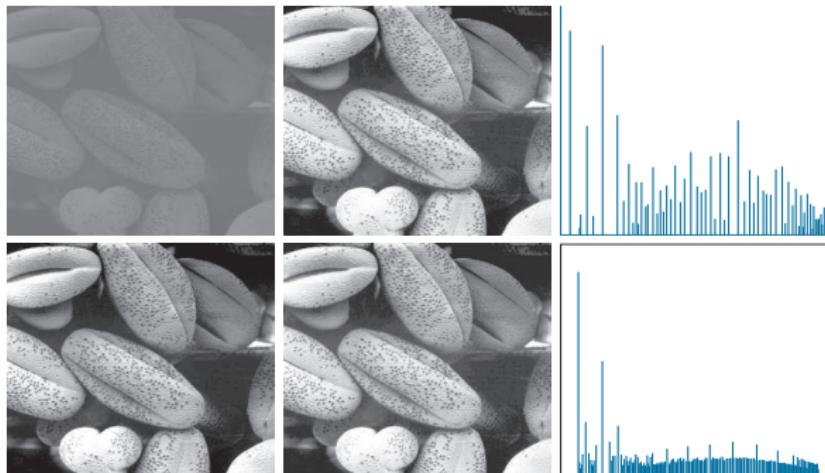
Matlab commands: `imhist(A)`, `histeq(A)`,
`histogram(A, 'Normalization', 'probability')`

Histogram-equalized images



Histogram-equalized images and the corresponding normalized histograms

Histogram-equalized images (cont'd)

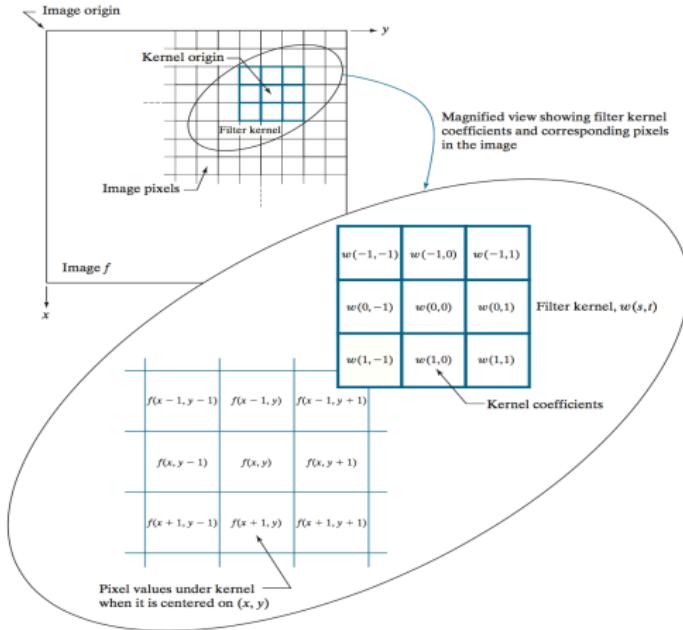


Histogram-equalized images and the corresponding normalized histograms

Spatial filter (空間濾波)

- *Spatial filtering modifies an image by replacing the value of each pixel by a function of the values of the pixel and its neighbors.* (discrete!)
- If the operation performed on the image pixels is linear, then the filter is called a linear spatial filter. Otherwise, the filter is a nonlinear spatial filter.
- *A linear spatial filter performs a sum-of-products operation between an image f and a filter kernel w .* The kernel is an array whose size defines the neighborhood of operation, and whose entries determine the nature of the filter.
- Other terms used to refer to a “*spatial filter kernel*” are “*mask*,” “*template*,” and “*window*.” We use the term “*filter kernel*” or simply “*kernel*.”

Filter kernel of a linear spatial filter



Linear spatial filtering using a 3×3 kernel

Linear spatial filtering

① The spatial correlation (空間相關):

(1) 3×3 kernel: at any point (x, y) in the image f , the response $g(x, y)$ of the filter is the sum of products of the kernel entries and the image pixel values:

$$g(x, y) = w(-1, -1)f(x - 1, y - 1) + w(-1, 0)f(x - 1, y) + \dots \\ + \underbrace{w(0, 0)f(x, y)}_{\text{center of the kernel}} + \dots + w(1, 1)f(x + 1, y + 1).$$

As x and y are varied, the *center of the kernel* moves from pixel to pixel, generating the filtered image g .

(2) $m \times n$ kernel: Assume that $m = 2p + 1$ and $n = 2q + 1$. Then

$$g(x, y) = \sum_{i=-p}^p \sum_{j=-q}^q w(i, j)f(x + i, y + j).$$

② The spatial convolution (空間卷積, $*$ or \circledast): The mechanics are the same, except that the kernel is *rotated by 180° counterclockwise*. The details will be given below.

Convolution of two functions: continuous cases

- **1-D case:** Let f and g be two integrable real-valued functions with compact supports in \mathbb{R} . Then the convolution of f and g is defined as a function in variable t ,

$$(f * g)(t) := \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau, \quad \forall t \in \mathbb{R}.$$

It can be shown on the next page that

$$(f * g)(t) = \int_{-\infty}^{\infty} g(\eta)f(t - \eta) d\eta = (g * f)(t), \quad \forall t \in \mathbb{R},$$

and then the operation can be described as *a weighted average of the input f at t according to the weight function (or kernel) g* .

- **2-D case:** Let f and g be two integrable real-valued functions with compact supports in \mathbb{R}^2 . Then the convolution of f and g is defined as a function in variable x ,

$$(f * g)(x) := \int_{\mathbb{R}^2} f(y)g(x - y) dy, \quad \forall x \in \mathbb{R}^2.$$

- $f * g = g * f, (f * g) * h = f * (g * h), f * (g + h) = (f * g) + (f * h)$

Commutativity: $f * g = g * f$ (1-D case)

$\because f$ and g are two integrable functions with compact supports in \mathbb{R} .

$\therefore \exists L > 0$ such that $f(t) = 0 = g(t)$ for $t \notin [-L, L]$.

$$\therefore (f * g)(t) := \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau = \int_{-L}^L f(\tau)g(t - \tau)d\tau, \quad \forall t \in \mathbb{R}$$

Let $\eta = -(\tau - t)$. Then $\tau = t - \eta$ and $d\eta = -d\tau$, and we have

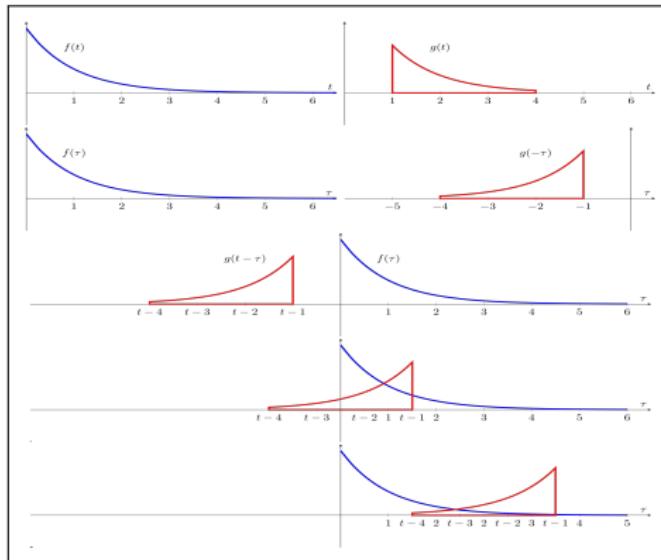
$$\int_{-L}^L f(\tau)g(t - \tau)d\tau = \int_{t+L}^{t-L} f(t - \eta)g(\eta)(-d\eta) = \int_{t-L}^{t+L} f(t - \eta)g(\eta)d\eta.$$

If $t \geq 0$, then $\int_{t-L}^{t+L} f(t - \eta)g(\eta)d\eta = \int_{-L}^L g(\eta)f(t - \eta)d\eta = (g * f)(t)$.

If $t < 0$, then $\int_{t-L}^{t+L} f(t - \eta)g(\eta)d\eta = \int_{-L}^L g(\eta)f(t - \eta)d\eta = (g * f)(t)$.

$$\therefore (f * g)(t) = (g * f)(t), \quad \forall t \in \mathbb{R}$$

Convolution of two 1-D functions



$$(f * g)(t) := \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau, \quad t \in \mathbb{R}$$

Wikipedia: <https://en.wikipedia.org/wiki/Convolution>

Discrete convolution: 1-D

The discrete convolution of input (signal) f and kernel g is defined by

$$(f * g)(t) := \sum_{\tau=-\infty, \tau \in \mathbb{Z}}^{\infty} f(\tau)g(t - \tau), \quad t \in \mathbb{Z}.$$

- When f and g have finite supports, a finite summation may be used.
- f and g can be viewed as piecewise constant functions in each unit integer interval.

Correlation vs. convolution: 1-D example

Correlation

$$\begin{array}{ccccccc} \text{Origin} & f & w \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\ & & & & & & 0 \\ & & & & & & 1 & 2 & 4 & 2 & 8 \end{array}$$

$$\begin{array}{ccccccc} & & & & & & \\ \downarrow & & & & & & \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \end{array}$$

$$\begin{array}{ccccccc} \mathbf{1} & 2 & 4 & 2 & 8 & & \\ \uparrow & & & & & & \end{array}$$

Starting position alignment

$$\begin{array}{ccccccc} & \text{Zero padding} & & & & & \\ \downarrow & & & & & & \downarrow \\ 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$$

$$\begin{array}{ccccccc} \mathbf{1} & 2 & 4 & 2 & 8 & & \\ \uparrow & & & & & & \end{array}$$

Starting position

$$\begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbf{1} & 2 & 4 & 2 & 8 & & & & & & & & \end{array}$$

Position after 1 shift

$$\begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbf{1} & 2 & 4 & 2 & 8 & & & & & & & & \end{array}$$

Position after 3 shifts

$$\begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ & & & & & & \mathbf{1} & 2 & 4 & 2 & 8 & & \end{array}$$

Final position \uparrow

Correlation result

$$0 \ 8 \ 2 \ 4 \ 2 \ 1 \ 0 \ 0$$

Extended (full) correlation result

$$0 \ 0 \ 0 \ 8 \ 2 \ 4 \ 2 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0$$

Convolution

$$\begin{array}{ccccccc} \text{Origin} & f & w \text{ rotated } 180^\circ \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\ & & & & & & 8 & 2 & 4 & 2 & 1 \end{array}$$

$$\begin{array}{ccccccc} 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\ \mathbf{8} & 2 & 4 & 2 & 1 & & \\ \uparrow & & & & & & \end{array}$$

Starting position alignment

$$\begin{array}{ccccccc} & \text{Zero padding} & & & & & \\ \downarrow & & & & & & \downarrow \\ 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$$

$$\begin{array}{ccccccc} \mathbf{8} & 2 & 4 & 2 & 1 & & \\ \uparrow & & & & & & \end{array}$$

Starting position

$$\begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbf{8} & 2 & 4 & 2 & 1 & & & & & & & & \end{array}$$

Position after 1 shift

$$\begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ & & & & & & \mathbf{8} & 2 & 4 & 2 & 1 & & \end{array}$$

Position after 3 shifts

$$\begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ & & & & & & \mathbf{8} & 2 & 4 & 2 & 1 & & \end{array}$$

Final position \uparrow

Convolution result

$$0 \ 1 \ 2 \ 4 \ 2 \ 8 \ 0 \ 0$$

Extended (full) convolution result

$$0 \ 0 \ 0 \ 1 \ 2 \ 4 \ 2 \ 8 \ 0 \ 0 \ 0 \ 0 \ 0$$

1-D discrete full convolution

Let $u = [u_1, \dots, u_n]^\top \in \mathbb{R}^n$ and $v = [v_1, \dots, v_m]^\top \in \mathbb{R}^m$. *The (full) convolution of u and v* is defined as

$$u * v := \begin{bmatrix} u_1 v_1 \\ u_1 v_2 + u_2 v_1 \\ u_1 v_3 + u_2 v_2 + u_3 v_1 \\ \vdots \\ u_{n-2} v_m + u_{n-1} v_{m-1} + u_n v_{m-2} \\ u_{n-1} v_m + u_n v_{m-1} \\ u_n v_m \end{bmatrix} \in \mathbb{R}^{m+n-1}.$$

Convolution: 1-D example in MATLAB

```
u = [1 1 0 0 0 1 1];      % input signal
v = [1 1 1];              % filter kernel


---


w1 = conv(u,v)
% full convolution, w1 = conv(v,u) has the same result
w1 = 1 2 2 1 0 1 2 2 1


---


w2 = conv(u,v,'same')
% returns the central part of the convolution that is the same size as u
w2 = 2 2 1 0 1 2 2


---


w3 = conv(v,u,'same')
% returns the central part of the convolution that is the same size as v
w3 = 1 0 1


---


w4 = conv(u,v,'valid')
% returns those parts that are computed without the zero-padded
w4 = 2 1 0 1 2
```

Correlation vs. convolution: 2-D example

Padded f									
Origin f					0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	w	0	0	0	1
0	0	0	0	0	1	2	3	0	0
0	0	0	0	0	4	5	6	0	0
0	0	0	0	0	7	8	9	0	0

Initial position for w			Correlation result			Full correlation result		
1	2	3	0	0	0	0	0	0
4	5	6	0	0	0	0	0	0
7	8	9	0	0	0	0	9	8
0	0	0	1	0	0	0	6	5
0	0	0	0	0	0	0	3	2
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
(c)			(d)			(e)		
Rotated w			Convolution result			Full convolution result		
9	8	7	0	0	0	0	0	0
6	5	4	0	0	0	0	0	0
3	2	1	0	0	0	0	1	2
0	0	0	1	0	0	0	4	5
0	0	0	0	0	0	0	7	8
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
(f)			(g)			(h)		

2-D discrete convolution: `conv2(f, K, 'valid')`

The diagram shows a 7x7 input matrix and a 3x3 kernel matrix. The input matrix has a 3x3 blue shaded region. The kernel matrix has a 1 highlighted in orange. The result of the convolution is a 5x5 matrix, also with a 1 highlighted in orange. The operation is represented by $*$ and $=$.

0	1	1	1	0	0	0
0	0	1	1	1	0	0
0	0	0	1	1	1	0
0	0	0	1	1	0	0
0	0	1	1	0	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0

1	0	1
0	1	0
1	0	1

1	4	3	4	1
1	2	4	3	3
1	2	3	4	1
1	3	3	1	1
3	3	1	1	0

no padding, stride 1

In MATLAB: `conv2(f, K, 'valid')`

Full convolution: `conv2(f, K) \Rightarrow $(7 + 3 - 1) \times (7 + 3 - 1)$ matrix!`

Stride (步長)

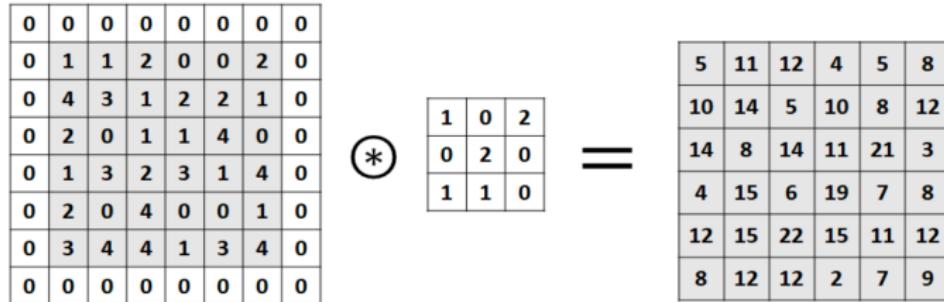
$$\begin{array}{|c|c|c|c|c|c|} \hline 1 & 1 & 2 & 0 & 0 & 2 \\ \hline 4 & 3 & 1 & 5 & 2 & 1 \\ \hline 2 & 5 & 1 & 1 & 4 & 5 \\ \hline 1 & 3 & 2 & 3 & 1 & 4 \\ \hline 2 & 5 & 4 & 0 & 0 & 1 \\ \hline 3 & 4 & 4 & 1 & 3 & 4 \\ \hline \end{array} \quad (*) \quad \begin{array}{|c|c|c|} \hline 1 & 2 & 0 \\ \hline 0 & 2 & 3 \\ \hline 1 & 1 & 2 \\ \hline \end{array} \quad \rightarrow \quad \begin{array}{|c|c|} \hline 21 & \\ \hline & \\ \hline & \\ \hline \end{array}$$

$$\begin{array}{|c|c|c|c|c|c|} \hline 1 & 1 & 2 & 0 & 0 & 2 \\ \hline 4 & 3 & 1 & 5 & 2 & 1 \\ \hline 2 & 5 & 1 & 1 & 4 & 5 \\ \hline 1 & 3 & 2 & 3 & 1 & 4 \\ \hline 2 & 5 & 4 & 0 & 0 & 1 \\ \hline 3 & 4 & 4 & 1 & 3 & 4 \\ \hline \end{array} \quad (*) \quad \begin{array}{|c|c|c|} \hline 1 & 2 & 0 \\ \hline 0 & 2 & 3 \\ \hline 1 & 1 & 2 \\ \hline \end{array} \quad \rightarrow \quad \begin{array}{|c|c|} \hline 21 & 14 \\ \hline & \\ \hline & \\ \hline \end{array}$$

(correction: 34 34)

Convolution of a 6×6 matrix and a 3×3 filter kernel with stride 3,
no padding $\Rightarrow 2 \times 2$ matrix

Padding (填補)



The diagram illustrates the convolution process with zero-padding. On the left is a 6x6 input matrix with padding (0s). In the center is a 3x3 filter kernel. An asterisk with a circle around it (\circledast) indicates the convolution operation. To the right is an equals sign (=), followed by the resulting 6x6 output matrix.

0	0	0	0	0	0	0	0	0
0	1	1	2	0	0	2	0	
0	4	3	1	2	2	1	0	
0	2	0	1	1	4	0	0	
0	1	3	2	3	1	4	0	
0	2	0	4	0	0	1	0	
0	3	4	4	1	3	4	0	
0	0	0	0	0	0	0	0	

1	0	2
0	2	0
1	1	0

=

5	11	12	4	5	8	
10	14	5	10	8	12	
14	8	14	11	21	3	
4	15	6	19	7	8	
12	15	22	15	11	12	
8	12	12	2	7	9	

*Convolution of a 6×6 matrix with zero-padding 1
and a 3×3 filter kernel with stride 1*

In MATLAB: `conv2(f, K, 'same')`

A Matlab file for convolution and correlation

```
clear all
clc
m=5;%image size
w=3;%window size of convolution
I=reshape(1:m^2,m,m)
K=reshape(1:w^2,w,w)
%convolution
conv2_output=conv2(I,K,'valid')
%manual implementation
C=zeros(m-w+1,m-w+1);
for i=1:m-w+1
    for j=1:m-w+1
        C(i,j)=sum(sum(I(i:i+w-1,j:j+w-1).*rot90(K,2)));
    end
end
C
```

A Matlab file for convolution and correlation (cont'd)

```
%correlation
corr_output=filter2(K,I,'valid')
% manual implementation
D=zeros(m-w+1,m-w+1);
for i=1:m-w+1
    for j=1:m-w+1
        D(i,j)=sum(sum(I(i:i+w-1,j:j+w-1).*K));
    end
end
D
```

```
% function 'imfilter' is provided in the MATLAB toolbox
imfilter_conv_output=imfilter(I,K,'conv','same')
imfilter_corr_output=imfilter(I,K,'corr','same')
```

Results of the Matlab file

```
corr_output =  
  
I =  
1 6 11 16 21 411 636 861  
2 7 12 17 22 456 681 906  
3 8 13 18 23 501 726 951  
4 9 14 19 24 D =  
5 10 15 20 25 411 636 861  
456 681 906  
501 726 951  
  
K =  
1 4 7 imfilter_conv_output =  
2 5 8  
3 6 9 32 114 249 384 440  
68 219 444 669 734  
89 264 489 714 773  
110 309 534 759 812  
96 252 417 582 600  
  
conv2_output =  
219 444 669  
264 489 714  
309 534 759 imfilter_corr_output =  
  
C =  
128 276 441 606 320  
202 411 636 861 436  
219 444 669 241 456 681 906 457  
264 489 714 280 501 726 951 478  
309 534 759 184 318 453 588 280
```

Convolution operation = spatial filtering

$$\ast^{1/8}$$

0	1	0
1	4	1
0	1	0

$$\ast$$

0	-1	0
-1	4	-1
0	-1	0

$$\ast$$

1	0	-1
2	0	-2
1	0	-1

Different kernels reveal a different characteristics of the input image

Example of edge detection: Sobel operator

The Sobel operator is used for edge detection, which creates an image that emphasizes edges. Below are two kernels used in the operation:

$$\text{Sobel } X = f * \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

original

$$\text{Sobel } Y = f * \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Sobel X

Sobel Y

magnitude

$$\text{magnitude}(i,j) := \|(SobelX(i,j), SobelY(i,j))\|_2$$