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Outline of “variational image denoising”

In this lecture, we will give a brief introduction to the topics:

The Rudin-Osher-Fatemi total variation model for image denoising.

Calculus of variations: the Euler-Lagrange equation.

The material of this lecture is based on

P. Getreuer, Rudin-Osher-Fatemi total variation denoising using
split Bregman, Image Processing On Line, 2 (2012), pp. 74-95.

T. Goldstein and S. Osher, The split Bregman method for L1

regularized problems, SIAM Journal on Imaging Sciences, 2 (2009),
pp. 323-343.

L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation
based noise removal algorithms, Physica D, 60 (1992), pp.
259-268.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Variational Image Denoising – 2/56



Total variation (總變差)

Let Ω := (a, b) ⊂ R be an open bounded interval. Let Pn = {x0, x1,
· · · , xn}, with x0 = a and xn = b, be an arbitrary partition of Ω = [a, b]
and ∆xi = xi − xi−1, for i = 1, 2, · · · , n. The total variation of a
real-valued function u : Ω → R is defined as

∥u∥TV(Ω) := sup
Pn

n

∑
i=1

∣∣u(xi)− u(xi−1)
∣∣.

If ∥u∥TV(Ω) < ∞, then we say that u is a function of bounded variation.

Remarks:

If u is a smooth function, then we have

∥u∥TV(Ω) = sup
Pn

n

∑
i=1

∣∣∣∣u(xi)− u(xi−1)

∆xi

∣∣∣∣∆xi =
∫

Ω
|u′(x)| dx.

∥u∥TV(Ω) = 0 does not imply u ≡ 0; any constant function u has
∥u∥TV(Ω) = 0 =⇒ ∥u∥TV(Ω) is not a norm on any vector space.
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Examples of bounded variation functions

All these three functions f , g and h have total variation 2

Remarks:

A function of bounded variation is not necessarily differentiable.

Since we mainly work on digital images in discrete domains, we can
tacitly assume the differentiability of u without loss of generality.
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Image denoising

The total variation of u = ∥u∥TV(Ω) =
∫

Ω
|u′(x)| dx if u is a

smooth function.

Image denoising is the problem of removing noise from a noisy
image.

minimizing
(∫

Ω
|u′(x)| dx + some data fidelity term︸ ︷︷ ︸

e.g.,
∫

Ω(u(x)−f (x))2dx

)
⇒ denoising!
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Figure 3.2. A signal (left image) and its noisy version (right image).
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Figure 3.3. Four reconstructions of a noisy signal by RLS solutions.

smooth enough and is very close to the noisy signal b. For λ = 10 the RLS solution is a
rather good estimate of the original vector x. For λ= 100 we get a smoother RLS signal,
but evidently it is less accurate than xRLS(10), especially near the boundaries. The RLS
solution for λ= 1000 is very smooth, but it is a rather poor estimate of the original signal.
In any case, it is evident that the parameter λ is chosen via a trade off between data fidelity
(closeness of x to b) and smoothness (size of Lx). The four plots where produced by the
MATLAB commands

L=zeros(299,300);
for i=1:299

L(i,i)=1;
L(i,i+1)=-1;

end

x_rls=(eye(300)+1*L’*L)\b;
x_rls=[x_rls,(eye(300)+10*L’*L)\b];
x_rls=[x_rls,(eye(300)+100*L’*L)\b];
x_rls=[x_rls,(eye(300)+1000*L’*L)\b];
figure(2)
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A noisy 1-D signal and its denoising version
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The bounded variation space BV(Ω)

Let Ω be an open subset of R2. The space of functions of bounded
variation BV(Ω) is defined as the space of real-valued function
u ∈ L1(Ω) such that the total variation is finite, i.e.,

BV(Ω) = {u ∈ L1(Ω) : ∥u∥TV(Ω) < ∞},

where

∥u∥TV(Ω) = sup
{ ∫

Ω u∇ · φdx : φ ∈ C1
c (Ω, R2), ∥φ∥(L∞(Ω))2 ≤ 1

}
C1

c (Ω, R2) is the space of continuously differentiable vector
functions with compact support in Ω.

L1(Ω) and L∞(Ω) are the usual Lp(Ω) space for p = 1 and
p = ∞, respectively, equipped with the ∥ · ∥Lp(Ω) norm.

BV(Ω) is a Banach space with the norm,

∥u∥BV(Ω) := ∥u∥L1(Ω) + ∥u∥TV(Ω).

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Variational Image Denoising – 6/56



The ROF total variation regularization model

Let f : Ω ⊂ R2 → R be a given noisy image. Rudin, Osher, and
Fatemi (Physica D, 1992) proposed the following TV/L2 model for
image denoising:

min
u∈BV(Ω)∩L2(Ω)

(
∥u∥TV(Ω)︸ ︷︷ ︸
regularizer

+
λ

2

∫
Ω

(
u(x)− f (x)

)2 dx︸ ︷︷ ︸
data fidelity

)
,

where λ > 0 is a tuning parameter which controls the regularization
strength. Notice that

A smaller value of λ will lead to a more regular solution.

The space of functions with bounded variation help remove
noise and preserve edges in the image.

The TV term allows the solution to have discontinuities.
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The existence, uniqueness and stability of solution

Theorem: Consider the ROF total variation model. Then we have

(1) If u is smooth, then ∥u∥TV(Ω) =
∫

Ω |∇u| dx :=
∫

Ω

√
u2

x + u2
y dx.

(2) If f ∈ L2(Ω), then the minimizer exists and is unique and is stable in
L2 with respect to perturbations in f .

ROF model for image denoising: Below we assume that u is smooth,
and we denote the function vector space BV(Ω) ∩ L2(Ω) as V :

min
u∈V

(∫
Ω
|∇u| dx +

λ

2

∫
Ω

(
u(x)− f (x)

)2 dx
)

.

Let E[·] be the energy functional over the function vector space V ,

E[u] :=
∫

Ω
|∇u| dx +

λ

2

∫
Ω

(
u(x)− f (x)

)2 dx.
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Calculus of variations (變分法)

Calculus of variations is a branch of mathematical analysis that
deals with maximizing or minimizing functionals. A real-valued
functional is a mapping from a subset of function vector space V
to the real numbers.
(1) A real-valued function, e.g., f : S ⊆ Rn → R.
(2) A real-valued functional, e.g., E : S ⊆ V → R.

Functionals are often expressed as definite integrals involving
functions and their derivatives, e.g.,

E[v] :=
∫

Ω
L
(
x, y, v(x, y), vx(x, y), vy(x, y)

)
dx,

for a given smooth function L.

The interest is in extremal functions that make the functional
attains a maximum or minimum value.

The extrema of functionals may be obtained by finding functions where
the “functional derivative” is equal to zero. This leads to solving the
associated Euler-Lagrange equation.
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Calculus of variations: a necessary condition

Let Ω ⊂ R2 be an open bounded domain. We consider the following
real-valued functional,

E[v] :=
∫

Ω
L
(
x, y, v(x, y), vx(x, y), vy(x, y)

)
dx,

where we assume that v ∈ C2(Ω) and L ∈ C2 with respect to its
arguments x = (x, y), v, vx and vy.

If E[v] attains a local minimum or maximum at u and η(x, y) is a
smooth function on Ω, then for ε close to 0, we have

E[u] ≤ E[u + εη], (or E[u] ≥ E[u + εη])

where δu := εη is called the variation of u.

Define Φ(ε) := E[u + εη] in the variable ε. Then we have

0 = Φ′(0) = lim
ε→0

E[u + εη]− E[u]
ε − 0

=
∫

Ω

dL
dε

∣∣∣
ε=0

dx = 0,

which is just a necessary condition.
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The total derivative of L

Taking the total derivative of L(x, y, v, vx, vy), where v = u + εη
vx = ux + εηx and vy = uy + εηy, we have

dL
dε

=
∂L
∂x

dx
dε

+
∂L
∂y

dy
dε

+
∂L
∂v

dv
dε

+
∂L
∂vx

dvx

dε
+

∂L
∂vy

dvy

dε

=
∂L
∂x

0 +
∂L
∂y

0 +
∂L
∂v

η +
∂L
∂vx

ηx +
∂L
∂vy

ηy

=
∂L
∂v

η +
∂L
∂vx

ηx +
∂L
∂vy

ηy

=
∂L
∂v

η + (
∂L
∂vx

,
∂L
∂vy

) · ∇η.
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The divergence theorem

Let Ω ⊂ Rn be an open bounded domain with smooth boundary ∂Ω.
Let A : Ω ⊂ Rn → Rn be a smooth vector-valued function with
A(x) = (A1(x), A2(x), · · · , An(x))⊤. Then we have

∫
Ω
∇ · A dx =

∫
∂Ω

A · n dσ

where

∇ · A(x) :=
∂A1(x)

∂x1
+

∂A2(x)
∂x2

+ · · ·+ ∂An(x)
∂xn

,

n(x) := (n1(x), n2(x), · · · , nn(x))⊤

is the outward unit normal to ∂Ω.
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Application to two-dimensional domains (n = 2)

Assume v : Ω ⊂ R2 → R and w : Ω ⊂ R2 → R are smooth functions.

If A = (vw, 0)⊤ then
∫

Ω
∂(vw)

∂x dx =
∫

∂Ω vwn1 dσ, which implies∫
Ω

v
∂w
∂x

dx +
∫

Ω

∂v
∂x

w dx =
∫

∂Ω
vwn1 dσ. (⋆1)

If A = (0, vw)⊤ then
∫

Ω
∂(vw)

∂y dx =
∫

∂Ω vwn2 dσ, which implies∫
Ω

v
∂w
∂y

dx +
∫

Ω

∂v
∂y

w dx =
∫

∂Ω
vwn2 dσ. (⋆2)

Notation: n = 2, v : Ω ⊂ R2 → R a smooth function.

∇v := ( ∂v
∂x , ∂v

∂y )
⊤ = gradient of v

∆v := ∇ · ∇v := ∂2v
∂x2 +

∂2v
∂y2 = Laplacian of v

∂v
∂n := ∇v · n = ∂v

∂x n1 +
∂v
∂y n2 = normal derivative of v
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Integration by parts (Green’s formula)

Assume that v = (v1, v2)
⊤, v1, v2 : Ω ⊂ R2 → R and p : Ω ⊂ R2 → R

are all smooth functions. Then we have∫
Ω

v · ∇p dx =
∫

∂Ω
(v · n)p dσ −

∫
Ω
(∇ · v)p dx

Proof. By using (⋆1) and (⋆2), we have∫
Ω

v · ∇p dx =
∫

Ω

(
v1

∂p
∂x

+ v2
∂p
∂y

)
dx

=
∫

∂Ω
v1pn1 dσ −

∫
Ω

∂v1

∂x
p dx +

∫
∂Ω

v2pn2 dσ −
∫

Ω

∂v2

∂y
p dx

=
∫

∂Ω
(v · n)p dσ −

∫
Ω
(∇ · v)p dx.
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The total derivative of L

Let us go back to the total derivative,

dL
dε

=
∂L
∂v

η +
∂L
∂vx

ηx +
∂L
∂vy

ηy =
∂L
∂v

η +
( ∂L

∂vx
,

∂L
∂vy

)⊤
· ∇η

By the integration by parts (Green’s formula), we obtain

0 =
∫

Ω

dL
dε

∣∣∣
ε=0

dx =
∫

Ω

∂L
∂u

η +
( ∂L

∂ux
,

∂L
∂uy

)⊤ · ∇η dx

=
∫

Ω

∂L
∂u

η dx +
∫

∂Ω

(( ∂L
∂ux

,
∂L
∂uy

)⊤ · n
)

η dσ

−
∫

Ω

(
∇ · ( ∂L

∂ux
,

∂L
∂uy

)⊤
)

η dx, (⋆)

where L(x, y, v, vx, vy)⇝ L(x, y, u, ux, uy) when ε = 0. Taking arbitrary
smooth functions η’s with η(x) = 0 on ∂Ω, we have∫

Ω
η
{∂L

∂u
−∇ · ( ∂L

∂ux
,

∂L
∂uy

)⊤
}

dx = 0.
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The Euler-Lagrange equation

According to the fundamental lemma of calculus of variations (see next
page), we obtain the functional derivative of E at u,

∂L
∂u

−∇ · ( ∂L
∂ux

,
∂L
∂uy

)⊤ = 0 in Ω, (⋆⋆)

which is the so-called Euler-Lagrange equation.

By substituting (⋆⋆) into (⋆), we have∫
∂Ω

η
( ∂L

∂ux
n1 +

∂L
∂uy

n2

)
dσ = 0,

for any smooth function η on Ω, which implies the
homogeneous Neumann boundary condition (BC),

∂L
∂ux

n1 +
∂L
∂uy

n2 = 0 on ∂Ω.
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Fundamental lemma of calculus of variations

If F is a continuous real-valued function on an open bounded set Ω ⊂ R2

and satisfies ∫
Ω

F(x)G(x) dx = 0

for all compactly supported smooth functions G on Ω, then we have

F(x) = 0 for all x ∈ Ω.

Note: If F is continuous on the closure Ω, then we require only that G
vanishes on the boundary ∂Ω of Ω to ensure the assertion in the above
lemma.
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Euler-Lagrange equation of the ROF model

Consider the regularized minimization problem:

min
u∈V

(
F(u) +

λ

2

∫
Ω

(
u(x)− f (x)

)2 dx
)

,

where V is a suitable space and λ > 0 is the regularization parameter.

ROF regularizer: F(u) =
∫

Ω |∇u| dx =
∫

Ω

√
u2

x + u2
y dx, we have

L(x, y, u, ux, uy) = L(u, ux, uy) =
√

u2
x + u2

y +
λ

2
(u − f )2,

which leads to the Euler-Lagrange equation with the Neumann BC,

−∇ ·
( ∇u
|∇u|

)
+ λu = λf in Ω,

∂u
∂n

= 0 on ∂Ω.

The homogeneous Neumann BC comes from

0 =
∂L
∂ux

n1 +
∂L
∂uy

n2 = (
∂L
∂ux

,
∂L
∂uy

) · n =
∇u
|∇u| · n =

1
|∇u|

∂u
∂n

on ∂Ω.

(If |∇u| = 0 ⇒ ∇u = 0 ⇒ ∇u · n = 0; otherwise ∂u
∂n = 0)
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The Euler-Lagrange equations of a Tikhonov regularizer

Consider the regularized minimization problem:

min
u∈V

(
F(u) +

λ

2

∫
Ω

(
u(x)− f (x)

)2 dx
)

,

where V is a suitable space and λ > 0 is the regularization parameter.

Tikhonov quadratic regularizer: F(u) = 1
2

∫
Ω u2 dx, we have

L(x, y, u, ux, uy) = L(u, ux, uy) =
1
2

u2 +
λ

2
(u − f )2,

which implies the Euler-Lagrange equation,

u + λu = λf in Ω =⇒ u =
λ

1 + λ
f in Ω,

but without any boundary condition because
∂L
∂ux

= 0 =
∂L
∂uy

.
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Another Tikhonov quadratic regularizer

Consider the regularized minimization problem:

min
u∈V

(
F(u) +

λ

2

∫
Ω

(
u(x)− f (x)

)2 dx
)

,

where V is a suitable space and λ > 0 is the regularization parameter.

Tikhonov regularizer: Let F(u) = 1
2

∫
Ω |∇u|2 dx = 1

2

∫
Ω u2

x + u2
y dx.

Then we have

L(x, y, u, ux, uy) = L(u, ux, uy) =
1
2
(u2

x + u2
y) +

λ

2
(u − f )2,

which implies the Euler-Lagrange equation,

−∇ · ∇u + λu = λf in Ω =⇒ − 1
λ

∆u + u = f in Ω,

with the homogeneous Neumann BC,

0 =
∂L
∂ux

n1 +
∂L
∂uy

n2 = ∇u · n =
∂u
∂n

on ∂Ω.

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Variational Image Denoising – 20/56



Numerical results of the two Tikhonov models

Consider the two Tikhonov models:

min
u∈V

(
F(u) +

λ

2

∫
Ω

(
u(x)− f (x)

)2 dx
)

, F(u) =
1
2

∫
Ω

u2 dx &
1
2

∫
Ω
|∇u|2 dx.

In the first model, there is no regularization of any kind, since
u(x) = ( λ

1+λ )f (x) in Ω. Obviously, this is a wrong choice.

In the second model, the function space is V := H1(Ω). However,
there is too much regularization. In fact, the image u belongs to
H1(Ω), which cannot present discontinuities such as edges or
boundaries of objects.

λ = 1, (T1): F(u) = 1
2

∫
Ω u2 dx, (T2): F(u) = 1

2

∫
Ω |∇u|2 dx
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Model Tikhonov2 for different λ’s

λ = 1, 1/2, 1/3, 1/4; F(u) = 1
2

∫
Ω |∇u|2 dx
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Three indices to measure the quality

Below are three indices to measure the produced image quality and
evaluate denoising performance. Let ũ be the clean digital grayscale
image of pixel size M × N, u be the mean intensity of the clean image, and u
be the produced (denoised) image.

MSE(ũ, u) :=
1

MN

M

∑
i=1

N

∑
j=1

(ũi,j − ui,j)
2 (mean squared error)

PSNR := 10 log10

( 2552

MSE(ũ, u)

)
(peak signal to noise ratio)

SNR := 10 log10

(MSE(ũ, u)
MSE(ũ, u)

)
(signal to noise ratio)

In general, the higher the value of PSNR the better the quality of the
produced image.

There is another index, structural similarity (SSIM). The maximum
value of SSIM is 1.
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Nonlinear PDE-based denoising algorithm

The boundary value problem (BVP) of the ROF model is given by

−∇ ·
( ∇u
|∇u|

)
+ λu = λf in Ω,

∂u
∂n

= 0 on ∂Ω.

Since the energy functional of ROF model is convex, the solution of the BVP
is the minimizer of the ROF minimization model.

The numerical solution of the above BVP can be obtained by evolving
a finite difference approximation of the parabolic PDE with the
homogeneous Neumann BC to reach a steady state:

Heat−type equation︷ ︸︸ ︷
∂u
∂t

−∇ ·
( ∇u
|∇u|

)
+ λu = λf for (t, x) ∈ (0, T)× Ω,

∇u · n = 0 for t ∈ [0, T] and x ∈ ∂Ω︸ ︷︷ ︸
homogeneous Neumann BC

⊕ u(0, x) = f (x) for x ∈ Ω.︸ ︷︷ ︸
initial condition
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Numerical differentiation: 1-D

Let v : [a, b] → R and let a = x0 < x1 < · · · < xN = b be a uniform
partition of [a, b] with grid size h = (b − a)/N > 0.

Forward difference for v′(xi): Assume that v ∈ C2[a, b]. Then for
i = 1, 2, · · · , N − 1, by Taylor’s theorem, we have

v(xi + h) = v(xi) + v′(xi)h + 1
2 v′′(ξi)h2 for some ξi ∈ (xi, xi + h).

∴ v′(xi) =
1
h
(
v(xi + h)− v(xi)

)
− 1

2 v′′(ξi)h

∴ v′(xi) ≈ 1
h
(
v(xi+1)− v(xi)

)
, it is a first-order approximation!

Backward difference for v′(xi): Assume that v ∈ C2[a, b]. Then for
i = 1, 2, · · · , N − 1, by Taylor’s theorem, we have

v(xi − h) = v(xi)− v′(xi)h + 1
2 v′′(ξi)h2 for some ξi ∈ (xi − h, xi).

∴ v′(xi) =
1
h
(
v(xi)− v(xi − h)

)
+ 1

2 v′′(ξi)h

∴ v′(xi) ≈ 1
h
(
v(xi)− v(xi−1)

)
, it is a first-order approximation!
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Numerical differentiation (cont’d)

Central difference for v′(xi): Assume that v ∈ C3[a, b]. Then for
i = 1, 2, · · · , N − 1, by Taylor’s theorem, we have

v(xi + h) = v(xi) + v′(xi)h + 1
2 v′′(xi)h2 + 1

6 v(3)(ξi1)h3,

v(xi − h) = v(xi)− v′(xi)h + 1
2 v′′(xi)h2 − 1

6 v(3)(ξi2)h3,
for some ξi1 ∈ (xi, xi + h) and ξi2 ∈ (xi − h, xi).

Subtracting the second equation from the first equation, we have

v(xi + h)− v(xi − h) = 2v′(xi)h + 1
6 h3(v(3)(ξi1) + v(3)(ξi2)

)
.

∴ v′(xi) =
1

2h
(
v(xi + h)− v(xi − h)

)
− 1

6 h2 1
2
(
v(3)(ξi1) + v(3)(ξi2)

)
∵ 1

2
(
v(3)(ξi1) + v(3)(ξi2)

)
is between v(3)(ξi1) and v(3)(ξi2)

∴ By the intermediate value theorem, ∃ ξi ∈ (xi − h, xi + h) such that

v(3)(ξi) =
1
2
(
v(3)(ξi1) + v(3)(ξi2)

)
∴ v′(xi) =

1
2h
(
v(xi + h)− v(xi − h)

)
− 1

6 h2v(3)(ξi)

∴ v′(xi) ≈ 1
2h
(
v(xi+1)− v(xi−1)

)
, 2nd-order approximation!
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Numerical differentiation (cont’d)

Central difference for v′′(xi): Assume that v ∈ C4[a, b]. Then for
i = 1, 2, · · · , N − 1, by Taylor’s theorem, we have

v(xi + h) = v(xi) + v′(xi)h + 1
2 v′′(xi)h2 + 1

6 v(3)(xi)h3 + 1
24 v(4)(ξi1)h4,

v(xi − h) = v(xi)− v′(xi)h + 1
2 v′′(xi)h2 − 1

6 v(3)(xi)h3 + 1
24 v(4)(ξi2)h4,

for some ξi1 ∈ (xi, xi + h) and ξi2 ∈ (xi − h, xi).

Adding these two equations, we have

v(xi + h) + v(xi − h) = 2v(xi) + v′′(xi)h2 + 1
24{v(4)(ξi1) + v(4)(ξi2)}h4.

∴
v′′(xi) =

1
h2 {v(xi + h)− 2v(xi) + v(xi − h)} − h2

24{v(4)(ξi1) + v(4)(ξi2)}

∵ v ∈ C4[a, b], 1
2{v(4)(ξi1) + v(4)(ξi2)} between v(4)(ξi1) & v(4)(ξi2)

∴ By IVT, ∃ ξi between ξi1 and ξi2 (⇒ ξi ∈ (xi − h, xi + h)) such that

v(4)(ξi) =
1
2{v(4)(ξi1) + v(4)(ξi2)}

∴ v′′(xi) =
1
h2 {v(xi + h)− 2v(xi) + v(xi − h)} − 1

12 h2v(4)(ξi)

∴ v′′(xi) ≈ 1
h2 {v(xi+1)− 2v(xi) + v(xi−1)}, 2nd-order approximation!
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Let un
i,j denote an approximation to u(tn, xi, yj)

∂u
∂x

(tn, xi, yj) ≈ ∇+
x un

i,j :=
un

i+1,j − un
i,j

h
(forward difference in x)

∂u
∂x

(tn, xi, yj) ≈ ∇−
x un

i,j :=
un

i,j − un
i−1,j

h
(backward difference in x)

∂u
∂x

(tn, xi, yj) ≈ ∇xun
i,j :=

un
i+1,j − un

i−1,j

2h
=

1
2

(
∇+

x un
i,j +∇−

x un
i,j

)
(central difference in x)

∂u
∂y

(tn, xi, yj) ≈ ∇+
y un

i,j :=
un

i,j+1 − un
i,j

h
(forward difference in y)

∂u
∂y

(tn, xi, yj) ≈ ∇−
y un

i,j :=
un

i,j − un
i,j−1

h
(backward difference in y)

∂u
∂y

(tn, xi, yj) ≈ ∇yun
i,j :=

un
i,j+1 − un

i,j−1

2h
=

1
2

(
∇+

y un
i,j +∇−

y un
i,j

)
(central difference in y)
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Central differences for second derivative

Central difference for second derivative in x:

∇−
x (∇+

x un
i,j) = ∇−

x

(un
i+1,j − un

i,j

h

)
=

1
h

(
∇−

x un
i+1,j −∇−

x un
i,j

)
=

1
h

(un
i+1,j − un

i,j

h
−

un
i,j − un

i−1,j

h

)
=

1
h2

(
un

i+1,j − 2un
i,j + un

i−1,j

)
≈ ∂2u

∂x2 (tn, xi, yj).

Central difference for second derivative in y:

∇−
y (∇+

y un
i,j) =

1
h2

(
un

i,j+1 − 2un
i,j + un

i,j−1

)
≈ ∂2u

∂y2 (tn, xi, yj).

∇+
x (∇−

x un
i,j) = ∇−

x (∇+
x un

i,j), will also be denoted as ∇2
xun

i,j.

∇+
y (∇−

y un
i,j) = ∇−

y (∇+
y un

i,j), will also be denoted as ∇2
yun

i,j.
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Forward Euler in time t

We will consider a finite difference scheme for approximating the
solution of the IBVP for the Euler-Lagrange equation:

∂u
∂t

−∇ ·
( ∇u
|∇u|

)
+ λu = λf for (t, x) ∈ (0, T)× Ω,

u(0, x) = f (x) for x ∈ Ω,

∇u · n = 0 for t ∈ [0, T] and x ∈ ∂Ω.

Suppose that the image domain is given by Ω = [0, 1]× [0, 1]. Let
xi = ih and yj = jh, i, j = 0, 1, · · · , N, with h = 1/N, and tn = n∆t. Let
fi,j := f (xi, yj) and un

i,j be the difference approximation to u(tn, xi, yj).

Forward Euler in time t:

∂u
∂t

(tn, xi, yj) =
1

∆t
(
u(tn+1, xi, yj)− u(tn, xi, yj)

)
− 1

2
∂2u
∂t2 (τi, xi, yj)∆t

≈ 1
∆t
(
un+1

i,j − un
i,j
)
.
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The forward Euler finite difference scheme

The proposed explicit finite difference scheme is given by:

un+1
i,j − un

i,j

∆t
= λ(fi,j − un

i,j) +∇−
x

(
∇+

x un
i,j√(

∇+
x un

i,j
)2

+
(
m(∇+

y un
i,j,∇

−
y un

i,j)
)2

)

+∇−
y

(
∇+

y un
i,j√(

∇+
y un

i,j)
2 +

(
m(∇+

x un
i,j,∇

−
x un

i,j)
)2

)
, 1 ≤ i, j ≤ N − 1,

un
0,j = un

1,j, un
N,j = un

N−1,j, un
i,0 = un

i,1, un
i,N = un

i,N−1, 0 ≤ i, j ≤ N.

where m(a, b) =
( sign a + sign b

2
)

min{|a|, |b|} is the minmod operator;
see [ROF 1992] for more details.

The forward Euler scheme is conditionally stable, we need ∆t/h2 ≤ c.

Numerous other algorithms have been proposed to solve the TV
denoising minimization problem, e.g., the split Bregman iterations.
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Rescaling the finite difference scheme

Let δ+x un
i,j := un

i+1,j − un
i,j, δ−x un

i,j := un
i,j − un

i−1,j, δ+y un
i,j := un

i,j+1 − un
i,j,

δ−y un
i,j := un

i,j − un
i,j−1. Then the proposed finite difference scheme can

be rewritten as

un+1
i,j − un

i,j

∆t
= λ(fi,j − un

i,j) +
1
h

δ−x

(
δ+x un

i,j√(
δ+x un

i,j
)2

+
(
m(δ+y un

i,j, δ−y un
i,j)
)2

)

+
1
h

δ−y

(
δ+y un

i,j√(
δ+y un

i,j)
2 +

(
m(δ+x un

i,j, δ−x un
i,j)
)2

)
, 1 ≤ i, j ≤ N − 1,

un
0,j = un

1,j, un
N,j = un

N−1,j, un
i,0 = un

i,1, un
i,N = un

i,N−1, 0 ≤ i, j ≤ N.

Let An
i,j :=

δ+x un
i,j√(

δ+x un
i,j
)2

+
(
m(δ+y un

i,j, δ−y un
i,j)
)2

and

Bn
i,j :=

δ+y un
i,j√(

δ+y un
i,j)

2 +
(
m(δ+x un

i,j, δ−x un
i,j)
)2

.
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Rescaling the finite difference scheme (cont’d)

Then we have

un+1
i,j − un

i,j

∆t
= λ(fi,j − un

i,j) +
1
h δ−x An

i,j +
1
h δ−y Bn

i,j, 1 ≤ i, j ≤ N − 1,

un
0,j = un

1,j, un
N,j = un

N−1,j, un
i,0 = un

i,1, un
i,N = un

i,N−1, 0 ≤ i, j ≤ N.

Setting ∆̃t =
∆t
h

and λ̃ = hλ, the first equation becomes

un+1
i,j − un

i,j

∆̃t
= λ̃(fi,j − un

i,j) + δ−x An
i,j + δ−y Bn

i,j, 1 ≤ i, j ≤ N − 1.

Rearranging the equation, we finally obtain

un+1
i,j = un

i,j + ∆̃tλ̃(fi,j − un
i,j) + ∆̃tδ−x An

i,j + ∆̃tδ−y Bn
i,j, 1 ≤ i, j ≤ N − 1.
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A uniform partition of Ω = (0, 1)× (0, 1)

Let ” • ” denote an arbitrary point (x, y) in Ω.

(1) In usual finite differences, the grid points (xi, yj) locate at ” • ”.

(2) In image processing, however, a digital image is usually stored as a
matrix. Thus, it is more convenient to use the “cell-centered grids,”
i.e., grid points (xi, yj) located at ” × ” with the coordinates

xi =
h
2
+ (i − 1)h, yj =

h
2
+ (j − 1)h, i, j = (0), 1, · · ·N, (N + 1).

And the homogeneous Neumann BC implies

un
0,j = un

1,j, un
N+1,j = un

N,j, un
i,0 = un

i,1, un
i,N+1 = un

i,N, 1 ≤ i, j ≤ N.
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ROF model versus Tikhonov2 model

ROF: λ = 1, 100th step; Tikhonov2: λ = 1, 0.1, 0.01
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ROF finite difference solutions at different steps (cameraman)

Gaussian noise (0, 0.005), h = 1/256, λ̃ = hλ = 0.05,
∆̃t = ∆t/h = 0.01, at 500, 1000, 1500, 2000-th steps
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ROF finite difference solutions of different λ’s (cameraman)

Gaussian noise (0, 0.005), h = 1/256, λ̃ = hλ = 1/10, 1/20, 1/30, 1/40,
∆̃t = ∆t/h = 0.01, at 1000-th step

© Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Variational Image Denoising – 37/56



ROF finite difference solutions of different λ’s (Einstein)

Gaussian noise (0, 0.005), h = 1/340, λ̃ = hλ = 1/10, 1/20, 1/30, 1/40,
∆̃t = ∆t/h = 0.01, at 1000-th step
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An alternating direction approach: split Bregman method

Below, we introduce the split Bregman method which is an alternating
direction approach to solve the ROF model. First, using the cell-centered
grids of Ω, we approximate the total variation term by the Riemann sum:

∥u∥TV(Ω) =
∫

Ω
|∇u| dx :=

∫
Ω

√
u2

x + u2
y dx ≈ h2

N

∑
i=1

N

∑
j=1

|∇hui,j|.

Here we define the discrete gradient operator ∇h by

∇hui,j := [∇xui,j,∇yui,j]
⊤

and recall that

∇xui,j =
ui+1,j − ui−1,j

2h
, ∇yui,j =

ui,j+1 − ui,j−1

2h
, 1 ≤ i, j ≤ N,

u0,j = u1,j, uN+1,j = uN,j, ui,0 = ui,1, ui,N+1 = ui,N, 1 ≤ i, j ≤ N.
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The constrained minimization of the ROF model

Introducing the new unknown vector function d(x) = ∇u(x) for all
x ∈ Ω, we have the constrained minimization problem:

min
u,d

(∫
Ω
|d(x)| dx +

λ

2

∫
Ω

(
u(x)− f (x)

)2 dx
)

s.t. d(x) = ∇u(x),

where | · | := ∥ · ∥2 in R2. Therefore, the approximate constrained
minimization of the ROF model can be posed as follows:

min
u,d

(
̸ h2

N

∑
i,j=1

|di,j|+ ̸ h2 λ

2

N

∑
i,j=1

(fi,j − ui,j)
2
)

s.t. di,j = ∇hui,j =

[
∇xui,j
∇yui,j

]
,

where u and d denote the set of all ui,j and di,j. Introducing a penalty
parameter γ > 0, we obtain the unconstrained problem:

min
u,d,b

( N

∑
i,j=1

|di,j|+
λ

2

N

∑
i,j=1

(fi,j − ui,j)
2 +

γ

2

N

∑
i,j=1

|di,j −∇hui,j − bi,j|2
)

,

where b (denotes the set of all bi,j) is an auxiliary variable, which can be
expressed in terms of u and d, related to the Bregman iterations.
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An alternating direction approach: split Bregman method

Goldstein and Osher (2009) proposed to solve the above problem by
an alternating direction approach; see also Getreuer (2012):

u-subproblem: With d and b fixed, we solve

uk+1 = arg min
u

(λ

2 ∑
i,j
(fi,j − ui,j)

2 +
γ

2 ∑
i,j
|dk

i,j −∇hui,j − bk
i,j|2
)

,

where the superscript k denotes the values evaluated at k-iteration. It
can be viewed as the approximation of the minimization problem:

min
u

λ

2

∫
Ω
(f − u)2 dx +

γ

2

∫
Ω
|dk −∇u − bk|2 dx.

The associated Euler-Lagrange equation of the above minimization problem
(also called the screened Poisson equation) is given by

λu − γ∇ · ∇u = λf − γ∇ · (dk − bk),

where ∇u is the gradient of u, ∇ · v is the divergence of vector function v,
and ∆u := ∇2u := ∇ · ∇u is the Laplacian of u.
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The discrete screened Poisson equation

The discrete screened Poisson equation is given by

λui,j − γ∇2
hui,j = λfi,j − γ∇h · (dk

i,j − bk
i,j), 1 ≤ i, j ≤ N,

which should be supplemented with the homogeneous Neumann BC:

u0,j = u1,j, uN+1,j = uN,j, ui,0 = ui,1, ui,N+1 = ui,N, 1 ≤ i, j ≤ N.

The term ∆hui,j := ∇2
hui,j := ∇−

h · ∇+
h ui,j

∇−
h · ∇+

h ui,j = (∇−
x ,∇−

y )⊤ · (∇+
x ui,j,∇+

y ui,j)
⊤ = ∇−

x ∇+
x ui,j +∇−

y ∇+
y ui,j

=
1
h2

((
ui+1,j − 2ui,j + ui−1,j

)
+
(
ui,j+1 − 2ui,j + ui,j−1

))
=

1
h2

(
−4ui,j + ui−1,j + ui+1,j + ui,j−1 + ui,j+1

)
.

Let gk
i,j = (gk

1,i,j, gk
2,i,j)

⊤ := dk
i,j − bk

i,j. Then

∇h · gk
i,j = ∇xgk

1,i,j +∇ygk
2,i,j =

gk
1,i+1,j − gk

1,i−1,j

2h
+

gk
2,i,j+1 − gk

2,i,j−1

2h
.
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The resulting linear system: Au = r

Finally, the resulting linear system Au = r will be given by(
λ + 4

γ

h2

)
ui,j −

γ

h2

(
ui−1,j + ui+1,j + ui,j−1 + ui,j+1

)
= λfi,j −

γ

2h

(
gk

1,i+1,j − gk
1,i−1,j + gk

2,i,j+1 − gk
2,i,j−1

)
, 1 ≤ i, j ≤ N.

Since λ > 0 and γ > 0, Au = r will be symmetric and strictly
diagonally dominant. It can be solved by many different
methods such as the iterative techniques.
Since aii > 0, we can prove that A is SPD by Gershgorin’s Theorem!

For example, the Gauss-Seidel iterative method gives(
λ + 4

γ

h2

)
uk+1

i,j = ck
i,j +

γ

h2

(
uk+1

i−1,j + uk
i+1,j + uk+1

i,j−1 + uk
i,j+1

)
, k ≥ 0,

where

ck
i,j := λfi,j −

γ

2h

(
gk

1,i+1,j − gk
1,i−1,j + gk

2,i,j+1 − gk
2,i,j−1

)
.
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d-subproblem

d-subproblem: With u and b fixed, we solve

dk+1 = arg min
d

( N

∑
i,j=1

|di,j|+
γ

2

N

∑
i,j=1

|di,j −∇huk+1
i,j − bk

i,j|2
)

,

which has a closed-form solution,

dk+1
i,j =

∇huk+1
i,j + bk

i,j

|∇huk+1
i,j + bk

i,j|
max

{
|∇huk+1

i,j + bk
i,j| −

1
γ

, 0
}

, 1 ≤ i, j ≤ N.

How to find the closed-form solution of d-subproblem?

The solution of d-subproblem can be found componentwisely. For
each (i, j), we consider the following minimization problem:

min
x=(x1,x2)⊤∈R2

{
|x|+ γ

2
|x − c|2

}
,

where γ > 0, c = (c1, c2)
⊤ ∈ R2 are given, and | · | := ∥ · ∥2 in R2.
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Solution of the d-subproblem

Suppose that c ̸= 0, i.e., |c| > 0; otherwise the minimizer is x = 0. We
consider the following minimization problem:

min
x1,x2

{√
x2

1 + x2
2 +

γ

2
(
(x1 − c1)

2 + (x2 − c2)
2)}.

With a careful inspection (by the triangle inequality), we can find that the
minimizer will occur at x = tc for some t ∈ [0, 1], i.e., x1 = tc1 and
x2 = tc2 for some t ∈ [0, 1]. Therefore, the minimization problem can
be rewritten as

min
t∈[0,1]

{
t
√

c2
1 + c2

2 +
γ

2

(
(t − 1)2c2

1 + (t − 1)2c2
2

)
︸ ︷︷ ︸

:=g(t)

}
.

We can rewrite function g as

g(t) = t|c|+ γ

2
(t− 1)2|c|2 =

γ

2
|c|2t2 +(|c|−γ|c|2)t+ γ

2
|c|2, t ∈ [0, 1].

By direct computations, we have g(0) = γ
2 |c|2, g(1) = |c|, and

g′(t) = γ|c|2t + (|c| − γ|c|2) for t ∈ (0, 1).
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Solution of the d-subproblem (cont’d)

If |c| > 1
γ > 0, we have a unique critical number of g(t) in (0, 1),

t0 =
γ|c|2 − |c|

γ|c|2 = 1 − 1
γ|c| ∈ (0, 1).

Then g(t0) = |c| − 1
2γ is the minimum value and the minimizer is

x = t0c =
(
1 − 1

γ|c|
)
c =

(
|c| − 1

γ

) c
|c| .

If 0 < |c| ≤ 1
γ , then g(t) has no critical number in (0, 1) and

g(0) = γ
2 |c|2 ≤ 1

2 |c| ≤ |c| = g(1). Therefore, g(0) is the
minimum of g(t) on [0, 1] and x = 0.

Combining these two cases, we have

arg min
x∈R2

{
|x|+ γ

2
|x − c|2

}
=


c
|c|
(
|c| − 1

γ

)
, if |c| > 1

γ

0, if |c| ≤ 1
γ

=
c
|c| max

{
|c| − 1

γ
, 0
}

.
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Updating b and selecting γ

Updating b: The auxiliary variable b is initialized to zero and
updated as

bk+1
i,j = bk

i,j +∇huk+1
i,j − dk+1

i,j , 1 ≤ i, j ≤ N.

Selecting γ: A good choice of γ is one for which both u and d
subproblems converge quickly and are numerically
well-conditioned.

− In the u subproblem, the effect of ∇ · ∇ and ∇· increase when γ
gets larger. It is ill-conditioned in the limit γ → ∞.

− In the d subproblem, the shrinking effect is more dramatic
when γ is small.

Therefore, γ should be neither extremely large nor small for
good convergence. In our simulations, we take γ/h = 0.1.
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The split Bregman algorithm

The split Bregman algorithm:
initialize u = f , d = b = 0
while ∥ucurrent − uprevious∥2 > tolerance do

solve the u-subproblem
solve the d-subproblem
b = b +∇u − d

Color images (RGB channels): The vectorial TV (VTV) is used in
place of TV,

∥u∥VTV(Ω) :=
∫

Ω

(
∑

i∈{R,G,B}
|∇ui(x)|2

)1/2
dx.

The grayscale algorithm can be extended directly to VTV-regularized
image denoising.
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Implementation details of split Bregman iterations

u-subproblem: We multiply the following identity (see p. 43) with h,(
λ + 4

γ

h2

)
ui,j −

γ

h2

(
ui−1,j + ui+1,j + ui,j−1 + ui,j+1

)
= λfi,j −

γ

2h

(
gk

1,i+1,j − gk
1,i−1,j + gk

2,i,j+1 − gk
2,i,j−1

)
, 1 ≤ i, j ≤ N.

Then we have(
λh + 4

γ

h
)
ui,j −

γ

h

(
ui−1,j + ui+1,j + ui,j−1 + ui,j+1

)
= λhfi,j −

γ

2h

(
hgk

1,i+1,j − hgk
1,i−1,j + hgk

2,i,j+1 − hgk
2,i,j−1

)
, 1 ≤ i, j ≤ N.

Notice that gk
i,j = (gk

1,i,j, gk
2,i,j)

⊤ := dk
i,j − bk

i,j. Define λ̃ = λh, γ̃ =
γ

h
,

g̃k
i,j = (g̃k

1,i,j, g̃k
2,i,j)

⊤ := hdk
i,j − hbk

i,j := d̃
k
i,j − b̃

k
i,j. Then we have(

λ̃ + 4γ̃
)
ui,j − γ̃

(
ui−1,j + ui+1,j + ui,j−1 + ui,j+1

)
= λ̃fi,j −

γ̃

2

(
g̃k

1,i+1,j − g̃k
1,i−1,j + g̃k

2,i,j+1 − g̃k
2,i,j−1

)
, 1 ≤ i, j ≤ N. (⋆1)
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Implementation details of split Bregman iterations (cont’d)

d-subproblem: If we define

∇̃ui,j := [δxui,j, δyui,j]
⊤ :=

[ui+1,j − ui−1,j

2
,

ui,j+1 − ui,j−1

2
]⊤,

then since (see page 44)

dk+1
i,j =

∇huk+1
i,j + bk

i,j

|∇huk+1
i,j + bk

i,j|
max

{
|∇huk+1

i,j + bk
i,j| −

1
γ

, 0
}

,

we have

d̃
k+1
i,j = hdk+1

i,j =
h∇huk+1

i,j + hbk
i,j

|h∇huk+1
i,j + hbk

i,j|
h max

{
|∇huk+1

i,j + bk
i,j| −

1
γ

, 0
}

=
∇̃uk+1

i,j + b̃
k
i,j

|∇̃uk+1
i,j + b̃

k
i,j|

max
{
|∇̃uk+1

i,j + b̃
k
i,j| −

1
γ̃

, 0
}

. (⋆2)
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Implementation details of split Bregman iterations (cont’d)

Updating b: First, we have (see page 47)

bk+1
i,j = bk

i,j +∇huk+1
i,j − dk+1

i,j .

By multiplying the identity with h, we obtain

hbk+1
i,j = hbk

i,j + h∇huk+1
i,j − hdk+1

i,j .

In other words,

b̃
k+1
i,j = b̃

k
i,j + ∇̃huk+1

i,j − d̃
k+1
i,j . (⋆3)
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Some remarks

To sum up, we have the following remarks:

By change of variables, the split Bregman iterations can be
reformulated as (⋆1), (⋆2), (⋆3), where the grid size h can be absorbed
by other variables!

Most engineering-oriented papers usually take the spatial grid
size h = 1 in the finite differences. It is irrational from the
approximation viewpoint because the error terms in Taylor’s
theorem may not be small if we take h = 1.

However, if the grid size h has been absorbed by other variables
as discussed above, then it is reasonable for us to say that, in
some sense, the grid size h = 1.
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Numerical experiments (Einstein)

Gaussian noise (0, 0.005), h = 1/340, λ̃ = hλ = 0.1, 0.05, 0.025, 0.01,
γ̃ = γ/h = 0.1

A smaller value of λ implies stronger denoising. When λ is very small, the
image becomes cartoon-like with sharp jumps between nearly flat regions.
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Numerical experiments (Cameraman)

Gaussian noise (0, 0.005), h = 1/256, λ̃ = hλ = 0.1, 0.05, 0.025, 0.01,
γ̃ = γ/h = 0.1
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Numerical experiments (Lena)

Gaussian noise (0, 0.005), h = 1/512, λ̃ = hλ = 0.1, 0.05, 0.025, 0.01,
γ̃ = γ/h = 0.1
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Numerical experiments (square)

Gaussian noise (0, 0.005), h = 1/256, λ̃ = hλ = 0.1, 0.05, 0.025, 0.01,
γ̃ = γ/h = 0.1
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