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A system of linear equations

We are interested in solving systems of linear equations having the form:

a1y +ai2r2 + a13x3 + - + apTn = by,
a2171 + ag2x2 + a23x3 + - + aznTn = by,
a31x1 + azeT2 + az3x3 + - +azpnn = b3,
an1T1 + an2T2 + ap3x3 + -+ annTn = bn.
This is a system of n equations in the n unknowns, x1,x2, - ,Zn. The elements

a;; and b; are assumed to be prescribed real numbers.




Ax =D

We can rewrite this system of linear equations in a matrix form:

ail
a21
a3i

anl

‘We can denote these matrices by A, x, and b, giving the simpler equation:

a2
a22
as2

an2

a13
a23
a33

an3

ain
a2n
a3n

ann

=0b.

xr1

Tn

bn



Matrix

A matrix is a rectangular array of numbers such as

3.0 11 —-0.12

3.2
6.2 0.0 0.15 "
06 -40 13 |» [3 6 % —1T], 6?17
9.3 21 8.2 .
4 x 3 matrix 1 X 4 matrix 3 x 1 matrix

a row vector a column vector




Matrix properties

@ If A is a matrix, the notation a;;, (A);j, or A(i,7) is used to denote the
element at the intersection of the ith row and the jth column. For example,
let A be the first matrix on the previous slide. Then
azz = (A)sz2 = A(3,2) = —4.0.

@ The transpose of a matrix is denoted by AT and is the matrix defined by
(AT)i; = aj;. The transpose of the matrix A is:

3.0 6.2 06 93
AT = 1.1 0.0 —40 2.1
—0.12 0.15 1.3 8.2

@ If a matrix A has the property A = A" we say that A is symmetric.
@ The n X n matrix

1 0 O 0
0O 1 0 0
I:=1,:=Ihxn = 0 01 0
o o0 o0 --- 1

is called an identity matrix. Note that A = A = AI for any n X n matrix A.
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Algebraic operations

@ Scalar * Matriz: If A is a matrix and ) is a scalar, then AA is defined by
()\A)ij = /\aij.

@ Matriz + Matriz: If A= (a;;) and B = (b;j) are m X n matrices, then
A + B is defined by (A + B)ij = aij —+ bij.

@ Matriz * Matriz: If A is an m X p matrix and B is a p X n matrix, then AB
is an m X n matrix defined by:

P
(AB)ij = Y aimbej, 1<i<m, 1<j<n
k=1

What is the cost of AB?

Answer: mnp multiplications and mn(p — 1) additions.




Right inverse and left inverse

If A and B are two matrices such that AB = I, then we say that B is a right
inverse of A and that A is a left inverse of B. For example:

1 0
1 0 0 1 0
|:0 1 0:| 0 1 —|:0 1:|712><2, Va, 8 € R.
a B
1 0
1 0 « 1 0
{0 1 /3} 8 (1) _{O 1:|—I2><2; Va,B € R.

Notice that right inverse and left inverse may not unique.

@ Theorem on right inverse: A square matrix can possess at most one
right inverse.

n

Proof: Let AB = I. Then Z bj;cAO) = I(m, 1 < k < n. So, the columns of A form a
=1

basis for R™. Therefore, the coefficients bj) above are uniquely determined.

@ Theorem on matrix inverse: If A and B are square matrices such that
AB =1, then BA = I.
Proof: Let C = BA — 1+ B. Then AC = ABA — Al + AB=A— A+ 1 = 1. Since right
inverse for square matrix is at most one, B = C. Hence,
C=BA—-I1+B=BA—-1+C,ie., BA=1.
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Inverse

@ If a square matrix A has a right inverse B, then B is unique and
BA = AB = 1. We then call B the inverse of A and say that A is invertible

or nonsingular. We denote B = A~ L.

@ Example:
[72 1”1 2} [12H72 1} [1 0] I
3 1 = 3 1 = = 12x2-
O 3 4 3 4 3 -1 1

@ If A is invertible, then the system of equations Az = b has the solution
x = A~1b. If A1 is not available, then in general, A~! should not be

computed solely for the purpose of obtaining x.

@ How do we get this A—1?




Equivalent systems

@ Let two linear systems be given, each consisting of n equations with n
unknowns:
Axr=b and Bz =d.

If the two systems have precisely the same solutions, we call them equivalent
systems.
@ Note that A and B can be very different.

@ Thus, to solve a linear system of equations, we can instead solve any
equivalent system. This simple idea is at the heart of our numerical
procedures.




Elementary operations

@ Let &; denote the i-th equation in the system Ax = b. The following are the
elementary operations which can be performed:
@ Interchanging two equations in the system: &; <+ &;;
o Multiplying an equation by a nonzero number: \&; — &;;

@ Adding to an equation a multiple of some other equation:
Ei + /\gj — &;.

@ Theorem on equivalent systems: If one system of equations is obtained
from another by a finite sequence of elementary operations, then the two
systems are equivalent.




Elementary operations (continued)

@ An elementary matrix is defined to be an n X n matrix that arises when an
elementary operation is applied to the n X n identity matrix.

@ Let A; be the i-th row of matrix A. The elementary operations expressed in

terms of the rows of matrix A are:
@ The interchange of two rows in A: A; < Aj;
@ Multiplying one row by a nonzero constant: \A; — A;;
o Adding to one row a multiple of another: A; + AA; — A;.

@ Each elementary row operation on A can be accomplished by multiplying A
on the left by an elementary matrix.




Examples

10 0 a1l aiz a3 a1l a2 a3
0 0 1 a1 a2 a23 = az1  as2 as3
0 1 0] | a1 a32 asz | | a21 a2z az23
(1 0 07 ain a2 ais ail a2 a3
0 X 0 a1 a2 a23 = Aa21  Aazz  Aaz23
L0 0 1 ][ a31 a3z ass | |l a31 a3z  ass
(1 0 07 ann a2 ais ail a12 ais
0 1 0 a1 a2 a3 = az1 a2z az3
0 X 1 az1  ag2 as3 | | Aa21 +az1  Aa2z +asz2  Aags +ass




Invertible matrix

@ If matrix A is invertible, then there exists a sequence of elementary row
operations can be applied to A, reducing it to I,

EmBEm—1- - EsE1A=1.
@ This gives us an equation for computing the inverse of a matrix:

A= EnEm_1- F3E = EyEpm—_1 - B2 E1 1.

Remark: This is not a practical method to compute A1,




Eigenvalue and eigenvector

Let A € C™"*™ be a square matrix. If there exists a nonzero vector z € C™ and a
scalar A € C such that

Az = Az,

then A is called an eigenvalue of A and x is called the corresponding eigenvector of
A.

Remark: Computing A and z is a major task in numerical linear algebra.
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Theorem on nonsingular matrix properties

For an n X n real matrix A, the following properties are equivalent:

The inverse of A exists; that is, A is nonsingular.

The determinant of A is nonzero.

The rows of A form a basis for R™.

The columns of A form a basis for R™.

As a map from R™ to R™, A is injective (one to one).

As a map from R™ to R™, A is surjective (onto).

The equation Az = 0 implies z = 0.

For each b € R™, there is exactly one x € R™ such that Az = b.

A is a product of elementary matrices.

0 is not an eigenvalue of A.




Some easy-to-solve systems:

1. Diagonal Structure

ail 0 0 S 0 T by
0 a2 0 s 0 T2 b2
0 0 ass 0 T3 _ bs
0 0 0 c Qnn Tn bn,

The solution is: (provided a;; # 0 for all s = 1,2,--+ |n)

( by b2 b3 bn, )T
- 7? 7? 7’ Tt 77 .
a1l a2z ass Gnn

@ If a;; = 0 for some index i, and if b; = 0 also, then z; can be any real
number. The number of solutions is infinity.

@ If a;; =0 and b; # 0, no solution of the system exists.

@ What is the complexity of the method? n divisions.




2. Lower Triangular Systems

ail 0 0 0 T b1
a21  a22 0 0 z2 b
a1 asz2 asz - 0 z3 | _ | b3
anl an?2 an3 T Ann Tn bn

Some simple observations:

If a11 # 0, then we have 1 = b1 /a11.

Once we have x1, we can simplify the second equation,
z2 = (b2 — a2121)/az22, provided that ase # 0.

Similarly, x3 = (b3 — agi1z1 — a32x2)/a3s3, provided that azz # 0.

In general, to find the solution to this system, we use forward substitution
(assume that a;; # 0 for all 4):

)T

input n, (a;;), b= (b1,b2, -+ ,bn
for i =1 ton do

i—1
Ti < (bl — Zaijxj>/aii
j=1

end do
output @ = (z1,a2, - ,an)

T




2. Lower Triangular Systems (continued)

@ Complexity of forward substitution:
@ n divisions.
@ the number of multiplications: 0 for x1, 1 for za, 2 for 3, - -
total =0+1+2+---+(n—1)=1+2+---4+n=(n+1)n/2,
. total = O(n?).
@ the number of subtractions: same as the number of multiplications
= 0(n?).

@ Forward substitution is an O(n?) algorithm.

@ Remark: forward substitution is a sequential algorithm (not parallel at all).




3. Upper Triangular Systems

ai1 a2 a3 -+ Aip 1 b1
0 a2 a2z - azn T2 b
0 0 ass e asn T3 _ b3
0 0 0 coo Qnn Tn bn,

The formal algorithm to solve for x is called backward substitution. It is also an
O(n?) algorithm. Assume that a;; # 0 for all i:

input n, (a;;), b= (b1, b2, -- o) T
fori=n:—1:1do
n

Tj < (bi — Z aijxj>/aii

j=it1

end do
output = = (z1,x2, - ,Tn)

T




LU decomposition (factorization)

@ Suppose that A can be factored into the product of a lower triangular
matrix L and an upper triangular matrix U:

A=LU.

@ Then, Az = LUz = L(Ux). Thus, to solve the system of equations Az = b,
it is enough to solve this problem in two stages:

Lz = b solve for z,

Ux = 2z solve for x.




Basic Gaussian elimination

Let A = (agjl.)) = A = (a;;) and b)) = b. Consider the following linear system

Az =b:
6 -2 2 4 T 12
12 -8 6 10 x| | 34
3 —-13 9 3 T3 B 27
—6 4 1 -—18 T4 —-38
pivot row = rowl.
pivot element: agll) = 6.
row2 - (12/6)*rowl — row2.
row3 - (3/6)*rowl — row3.
row4 - (-6/6)*rowl — row4.
6 -2 2 4 1 12
|0 a2 o2 zo | | 10
0 —-12 8 1 T3 21
0 2 3 14 T4 —26

multipliers: 12/6,3/6, —6/6.
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Basic Gaussian elimination (continued)

We have the following equivalent system A2z = b(2):

6 -2 2 4 1 12
0 -4 2 2 x| | 10
0 —-12 8 1 3 - 21
0 2 3 -14 T4 —26
pivot row = row2.
pivot element ag) = —4.
row3 - (-12/-4)*row2 — row3.
row4 - (2/-4)*row2 — row4.
6 -2 2 4 1 12
|0 42 2 x| | 10
0 0 2 -5 z3 | -9
0 0 4 -—13 T4 —21

multiplier: —12/ — 4,2/ — 4.
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Basic Gaussian elimination (continued)

We have the following equivalent system A3z = b(3):

6 -2 2 4 x1 12
0 —4 2 2 x| 10
0 0 2 -5 z3 | -9
0 0 4 -13 T4 —21
pivot row = row3.
pivot element aé‘g’) = 2.
row4 - (4/2)*row3 — row4.
6 -2 2 4 1 12
0 —4 2 2 x| | 10
— 1o 02 -5 zz | | -9
0 0 0 -3 T4 -3

multiplier: 4/2.
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Basic Gaussian elimination (continued)

Finally, we have the following equivalent upper triangular system A(Yz = b(4:

6 —2 2 4 1 12
0 —4 2 2 z | | 10
0 0 2 -5 x| | -9
0 0 0 =3 || 24 -3

Using the backward substitution, we have

x 1
X9 _ -3
z3 | | =2

x4 1
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The LU decomposition

Display the multipliers in an unit lower triangular matrix L = (¢;;):

N = OO
= O OO

1
2
L= 1
2
-1

V=W = o

Let U = (u;;) be the final upper triangular matrix A4). Then we have

6 -2 2 4
0 -4 2 2
U= 0 0 2 -5
0 0o 0 -3

and one can check that A = LU (the Doolittle Decomposition).
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Some remarks

@ The entire elimination process will break down if any of the pivot elements
are 0.

@ The total number of arithmetic operations:

3

n n
M/D=—+4n?— =;
/ 3+n 3
n3  n? 5n
AlS = — 4+ — — —.
/ 3+2 6

. The GE is an O(n?) algorithm.




Vector norm

A vector norm on R™ is a real-valued function || - || : R"™ — R with the properties:
@ |z|| >0,V 2 €V, and ||z|| =0 if and only if z = 0;
@ |az|| = |a||z||, Vz € V and a € R;
Q@ |z +y| <zl +|lyll, ¥V z,y € V (triangle inequality).

Note: ||z|| is called the norm of z, the length or magnitude of x.




Some vector norms on R” and distance

@ Let z = (z1,22, - ,xn) | € R™:

@ The 2-norm (Euclidean norm, or £2 norm): ||z||2 =

@ The infinity norm (¢*°-norm): ||z|lcc = max |z;]|.
1<i<n
n
@ The 1-norm (£'-norm):||z||; = Z ;).
i=1

@ Let = (z1,22,-- ,%n) , ¥y = (y1,¥2, - ,¥n) € R™. Then

o [lz—yl2=

° — = i — Yil-
lz — ylloo @&Xn\xz il

n

o llz—ylh =) lzi —yil-

=1




The difference between the above norms

@ What is the unit ball {x € R? : ||z|| < 1} for the three norms above?

@ 2-norm: a circle;
@ oo-norm: a square;
@ l-norm: a diamond.

@ Example: Let z = (—1,1,—-2)T € R3. Then
lzll2 = /(=1)2 +12 + (~2)2 = VG,

leloe = pma, il = maxc{] ~ 11, 1],| - 21} =2,
3
el = |zl == 1+ 1]+ | -2 =6.
i=1
@ Cauchy-Buniakowsky-Schwarz inequality: For = = (z1, %2, - ,Zn) |,
y=(y1,92,-- ,yn) " €R", we have

2 2
S fouil < (z) (zyi) eyl
=1 =1 =1




Convergence of sequences in R”

@ Definition: Let z,2(*) € R” for k =1,2,---. Then
klim 2(®) = 2 with respect to the norm || - || <=
— 00

Ve >0,3 an integer N(g) > 0 such that if k > N(e) then [|z(®) — z|| < e.
(k)

@ lim z(® = z with respect to || - [0 <= 11m xz, =mx; fori=1,2,---,n.
k— oo
3
@ Example: z(F) = (xgk),xék),:cgk),z‘(lk)) =(1, 2+ P kz’e Fsin(k)) "

o . 1 3 ko
lim 1=1, khm (2—1—%):2 lim ?—0 and lim e %sin(k) = 0.

k—oc0 —00 k—oco
lim *) =2 = (1,2,0,0) " with respect to || - ||co nOrm.
k—oo
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All vector norms on R™ are equivalent

@ For each z € R", ||z||co < [|z]l2 < V72|00

Proof: Let |z;| = ||z]lco. Then

n n
lelZ = lasl? = 23 < 302 = |23 < 3 23 = na? = nlja]%.
i=1 i=1

@ In fact, all vector norms on R™ are equivalent!




Matrix norm

Let A be an n X n real matrix. If || - || is any vector norm on R", then
— . n _ _ | Azl n
[JA|l :== max{||Az|| : z € R", ||z|| = 1} (<= || A|| := max{ B z €R", z #0}
x

defines a norm on the vector space of all n x n real matrices.
(This is called the matrix norm associated with the given vector norm)

Proof:
@ - ||Az|| >0V z € R, |z]| = 1. - |A| > 0.
Exercise: ||A|| = 0 if and only if A =0.
@ M|l = max{[[AAz]| : [lz]| = 1} = max{|A|[|Az] : [|=]| = 1}
= [Amax{||Az| : [|z]| = 1} = |Al[|A].
@ ||A+ B|| = max{||(A + B)x|| : [lz]| = 1} < max{||Az|| + || Bx|| : [lz|| = 1}
< max{||Az|| : [|z]| = 1} + max{|| Bz|| : [lz|| = 1} = Al + | B]|.
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Some additional properties

o |[Az|| < [|A[llJx]l, V « € R™.

Proof:
Let  #2 0. Then v = i of norm 1. SAN > A = ||Az||
ll=l [l
o 1j=1.
@ |lAB]| < [IA[lIBIl-
Proof:

[AB] := max{|[(AB)z| : « € R", ||z = 1}
< max{||All[|Bz|| : € R™, ||z]| = 1}
< max{[|A[|[|B[[[|z]| : = € R™, ||z]| = 1} = [|A[[|| B|-
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Some matrix norms

Let Anxn = (as;) be an n X n real matrix. Then

@ The oo-matrix norm:

n
[Alloo = pax. 221 ;|-
iz

@ The 1-matrix norm:

lAlIL = max Z|am|

@ The 2-matrix norm (¢£2-matrix norm):

142 = max [lAz]l2.




Example

@ The characteristic polynomial p(\) of A is given by

p(A) = det(A—XI)
1 =21 =N+ 1} + (-1){-2(1 = N)}
(1= A){A\2 —2)x +4}.

The eigenvalues of A are A\1 =1, Ao =1+ V3iand A3 = 1 — /3i.
@ The spectral radius p(A) of matrix A is defined by

p(A) = max{|\| : \is an eigenvalue of A}.

For the above matrix A, we have p(A) = max{|1], |1 + v/3i|,|1 — V/3i|} = 2.




The 2-matrix norm

@ ||Al|2 is not easy to compute.
@ Since AT A is symmetric, AT A has n real eigenvalues, A1, A2, -+, An € R.
Moreover, one can prove that they are all nonnegative. Then

TA) = i} > 0.
p(ATA) lréliaécn{kz}_O

is called the spectral radius of AT A.

@ Then the ¢2-matrix norm of A is given by

[[Allz = 1/p(AT A).

The ¢2-matrix norm is also called the spectral norm.




Properties of matrix norm

Let A be an n X n real matrix. Then

@ Then the £2-matrix norm of A is given by ||A]l2 = /p(AT A). The
£2-matrix norm is also called the spectral norm.

@ p(A) < ||A|l for any matrix norm || - ||.

Proof: Suppose that A is an eigenvalue of A with eigenvector x and
[zl =1.

— Al = Wizl = xell = | Azl < | Allle] = [1A]l
—> p(A) = max|A| < [IA].

@ For any n X n matrix A and any € > 0, 3 a matrix norm || - || such that
p(A) <A< p(A) +&.




Example

11 0
A = 12 1.
11 2
11 -1 11 0 3 2 -1
ATA = 12 1 12 1 |= 2 6 4
01 2 -1 1 2 -1 4 5
3—-2X 2 -1
det(ATA—XI) = det 2 6-2X 4 —A(A% — 14X + 42)
—1 45—

= A=0,7+V7,7- V7.
= ||All2 = V/p(ATA) = /7 + /7 = 3.106.

Math. Dept., NCU



Convergence

@ Definition: An n X n matrix A is said to be convergent if klim (Ak)l-j =0
—o0
fori,5=1,2,--- ,n.

@ Example:

1 1 1
A:[% ?}:Azz[f ?}:A3—[§ (1)}:
4 2 4 1 16 8
1\k
k (7) 0 1 k .
= - = 1 =
Rl ST } Jim (=00l o

. A is a convergent matrix.




Equivalent statements

The following statements are equivalent:
@ A is a convergent matrix.

lim ||A™|| = 0 for some natural matrix norm.
n— oo

[*]

@ lim ||A"|| = 0 for all natural matrix norms.
n—0o0

@ p(A) <1

o

lim A"z = 0 for all x.
n— oo




Iterative methods

@ Basic idea: Ax =b = x = Tz + ¢ for some fixed matrix 7" and vector c.
@ Given z(® | z(F) .= 7o~ L cfor k=1,2,---

@ Consider a linear system:

101 —x9 + 223 +0 = 6,
—x1 + 1lxg —x3 +3x4 = 25,
21 —x9 + 1023 — x4 = —11,
04 3x2 —x3 +8x4 = 15.

Exact unique solution: = = (1,2,—1,1)T.




The Jacobi iterative method

2 6
- 04— Sy 04 —,
x1 + 105132 10x3+ + 10
Lo ! 3,2
T2 = —z —x3— — —,
2 1t ne Tttt
PRSI 1
r3 = ——x1+ —x —x4 — —,
3 107 10" 107 10
0— 320+ toyv04 3
T4 = — -z —z —.
4 g2 g™ 8
1 2 6
0 % ~1o 0 10
1 i 9 i _3 25
To 11 11 11 11
T = =Tx+c= x +
x3 2 1 0 1 _ 11
x4 10 10 10 10
3 1 15
0 -3 8 0 s




The Jacobi iterative method (continued)

If (9 = (0,0,0,0) 7, then

Sle

=
o

M) =720 4 o=

-
—

[
(=}

=[5

— 2@ =) o

219 — 2|, 8.0x 1074 < 10-3
29|  1.9998

Math. Dept., NCU
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0.6000
2.2727
—1.1000

1.8750

z 219,




The Jacobi iterative method (continued)

Ax =b,a; #0foralli=1,2,--- n.
Given z(F=D k> 1.
Fori=1,2,---,m,

- > ay T b
(k) . J=1g#i
(Ei =

a5




Theoretical setting

a1 a2 .- Qin
a1 a2 - a2p
an1 an?2 ce Ann

= A=D-L-U

ail
a22

—ai2

—Qaln

—Qn—1n

—a21

—anl1

—Qnn-—1

D: diagonal matrix; L: lower triangular matrix; U: upper triangular matrix.




Theoretical setting (continued)

Az =b
= Dz=(L+U)x+b
= 2=D"YL+U)z+D"1b

The Jacobi iterative method: () = D=1 (L4 U)z* D 4 D=1p k=1,2,---
Notation: z(®) = T;2(~1) 4 ¢ where Ty := D~Y(L+U) and cy := D~ 1b.

Math. Dept., NCU



The Gauss-Seidel iterative method

Az =b,a; #0foralli=1,2,--- ,n.
Given z(*=D k> 1.
Fori=1,2,---,n,
i—1 n
— Zaijmgm _ Z aiﬂ;k&) s

(k) Jj=1 j=i+1
x, =
Qaqq
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Example

Letting (9 = (0,0,0,0)7, for k =1,2,---

xgk) _ 0+%xgk71) 2 ék 1)+0+1£0

= = ﬁx§k>+0+1 = - 11 e 1)+1i)
=) = g 5+ 1 10 A+ 04 55 10 S 1(1)
o = o0- Z (’“)+8 ¥ 1o+ 2 =

||m(5) _ x(4)||oo

= =40x107* <1073 stop! z &~ 25,
[l ||oo

Math. Dept., NCU



Theoretical setting

Az =b,A=D—-L-U.
= (D—-L)z® =yzk-1 4p

That is,
k
auxg )

a21$(1k) + a2233§k)

anlzgk) + aanék) + -+ annTn

(k)

(k—1) (k—
—Qa12%4 — T Q1nTn

(k—1) (k—
—a23%3 — T a2nTp
bn.

— 2 = (D - L) Uz* D 4 (D-L) bfork=1,2,---

The Gauss-Seidel iterative method: z(*) = Tgz(*—1) 4 ¢g,

where Ts := (D — L)~'U and cg := (D — L)~ 'b.

Note: a;; #0,i=1,2,--+- ;n <= D — L is nonsingular!

Math. Dept., NCU

R + b1,

R + be,




Theorem on convergence

@ If p(T) < 1, then (I — T)~! exists and

[eo]
I-T) ' =T+T+T?+---(=>_TM.
n=0

@ For any z(9) € R™, the sequence {z(®)} defined by z(*) := To(k—1) 4 ¢
k > 1, converges to the unique solution of z = Tz + ¢ <= p(T) < 1.
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Corollaries

@0 20 e R, &(F) .= Tx(k—1) £ ¢ k> 1. If |T|| < 1 for any natural matrix
norm then {z(%)} converges to the unique solution of z = Tz + ¢ and
o |lo— 2™ <7 [z — 2.
ﬂ”x(l) — 2.
L=

@ If A is strictly diagonally dominant, then for any #(°) € R™, both the Jacobi
and Gauss-Seidel methods give sequences {x(k)} that converge to the unique
solution of Az =b (x =Tz + ¢).

o |lz — 2™ <




Successive Over-Relaxation (SOR)

@ The Gauss-Seidel method:

1 - _
<k) Za”x(k) Z aija:;k 1>+bi

Jj=i+1

@ Successive over-relaxation:

n
xgk) =(1—-w)z, (k= 1)+ d Za”x(k) Z aijxgk_l)eri ,
j=it1

where w > 0. In general,
@ w = 1: the Gauss-Seidel method;
0 0 < w < 1: when G-S diverges;
@ w > 1: when G-S converges!




SOR (continued)

1—1 n
aiixgk) +w Z aijz§k) =(1- w)aiixgk_l) —w Z aijx§k_l) + wb;.
j=1 j=it1

= (D-wL)z® = ((1 —w)D + wU)m(k_l) + wb.
= ™ =(D-wL) ! ((1 —w)D + wU)ac(kfl) +w(D —wL)" .
= 2" = wa(k—l) + cw.-

Math. Dept., NCU



Example

@ Consider a linear system:

4dr1 +3x2+0 = 24,
3ry +4x9 —x3 = 30,
0—x9 +4axs = —24.

Exact unique solution: x = (3,4, —5)7.
@ Let (9 =(1,1,1)T. The G-S method:

$<12> - _0.75755:*1) 6
2 = 0752 402508 7.5,
2 = 02528 —6.

@ Let 29 =(1,1,1)7. The SOR with w = 1.25:

M = —0.252 Y — 093752 4 7.5,
e = 093750 — 0,252 4 0.312525" ) 4 9.375,
o = 031252 — 0252 — 75,

Dept., NCU



Theorems on convergence

@ Ifa;; #0,i=1,2,--- ,n, then p(T,,) > |w — 1|. This implies the SOR
method can converge only if 0 < w < 2.

@ If Ais SPD, 0 < w < 2, then the SOR method converges for any z(9).




Some error analysis

@ Suppose that we want to solve the linear system Ax = b, but b is somehow
perturbed to b (this may happen when we convert a real b to a floating-point
b).

@ Then actual solution would satisfy a slightly different linear system
AT =b.

@ Question: Is z very different from the desired solution = of the original
system?

@ Of course, the answer should depend on how good the matrix A is.

@ Let || - || be a vector norm, we consider two types of errors:

@ absolute error: ||z — Z||?
o relative error: ||z — Z||/||=||?




The absolute error

For the absolute error, we have

lz =&l = |A~"0 — A~ 18]l = A~ (b = B)[| < AT [I[]b— bl

Therefore, the absolute error of  depends on two factors: the absolute error of b
and the matrix norm of A~1.




The relative error

For the relative error, we have

e~ = 47— AT = A7 0 D)
< AT Bl = e
ar a2 =0
< e B
That is B .
= < a2

Therefore, the relative error of x depends on two factors: the relative error of b
and | A[|[[A~1].

, Math. De



Condition number

@ Therefore, we define a condition number of the matrix A as
r(A) = [l A A7

k(A) measures how good the matrix A is.

@ Example: Let € > 0 and

_ 1 1+e -1 _ =2 1 —1—¢
A_[l—g 1 }:}A =c |:—1+a 1 ]
2+e\2_ 4
Then [|Alloo = 2+¢, [[A~ oo = e 2(2+¢), and k(A) = ( +5) g
€ &€

, Math. De



Condition number (continued)

@ For example, if e = 0.01, then x(A) > 40000.

@ What does this mean?
It means that the relative error in  can be 40000 times greater than the
relative error in b.

@ If k(A) is large, we say that A is ill-conditioned, otherwise A is
well-conditioned.

@ In the ill-conditioned case, the solution is very sensitive to the small changes
in the right-hand vector b (higher precision in b may be needed).




Another way to measure the error

Consider the linear system Az =b. Let Z be a computed solution (an
approximation to x).

@ Residual vector:
r=b— AZ.

@ Error vector:

@ They satisfy
Ae=r.

(Proof: Ae=Az—AT=b—AZ=r)

@ Moreover, we have

1 el _ el I
< Jl < a0
w(A) Toll = Tl o]

(Theorem on bounds involving condition number)




Proof of the Theorem

cAe=r.
e=A"lr

~lelllioll = A= il Az] < A=A

[lell [~
o < K(A) T
[l llol]

On the other hand, we have ||r||[|z[| = [|Ae[||A="b]| < [IA[[[le]l[[A=][[]b]]-

Sl el
w(A) ol — =l
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