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A system of linear equations

We are interested in solving systems of linear equations having the form:



a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1,
a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2,
a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3,

.

..
.
..

.

..
an1x1 + an2x2 + an3x3 + · · ·+ annxn = bn.

This is a system of n equations in the n unknowns, x1, x2, · · · , xn. The elements
aij and bi are assumed to be prescribed real numbers.
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Ax = b

We can rewrite this system of linear equations in a matrix form:


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
. . .

...
an1 an2 an3 · · · ann




x1

x2

x3

...
xn

 =


b1
b2
b3
...
bn

 .

We can denote these matrices by A, x, and b, giving the simpler equation:

Ax = b.

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Linear Systems – 3/62



Matrix

A matrix is a rectangular array of numbers such as
3.0 1.1 −0.12
6.2 0.0 0.15
0.6 −4.0 1.3
9.3 2.1 8.2

 , [
3 6 11

7
−17

]
,

 3.2
−4.7
0.11

 .
4× 3 matrix 1× 4 matrix 3× 1 matrix

a row vector a column vector
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Matrix properties

If A is a matrix, the notation aij , (A)ij , or A(i, j) is used to denote the
element at the intersection of the ith row and the jth column. For example,
let A be the first matrix on the previous slide. Then
a32 = (A)32 = A(3, 2) = −4.0.

The transpose of a matrix is denoted by A> and is the matrix defined by
(A>)ij = aji. The transpose of the matrix A is:

A> =

 3.0 6.2 0.6 9.3
1.1 0.0 −4.0 2.1
−0.12 0.15 1.3 8.2

 .
If a matrix A has the property A = A>, we say that A is symmetric.

The n× n matrix

I := In := In×n :=


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
..
.

...
...

. . .
...

0 0 0 · · · 1


is called an identity matrix. Note that IA = A = AI for any n×n matrix A.
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Algebraic operations

Scalar * Matrix: If A is a matrix and λ is a scalar, then λA is defined by
(λA)ij = λaij .

Matrix + Matrix: If A = (aij) and B = (bij) are m× n matrices, then
A+B is defined by (A+B)ij = aij + bij .

Matrix * Matrix: If A is an m× p matrix and B is a p× n matrix, then AB
is an m× n matrix defined by:

(AB)ij =

p∑
k=1

aikbkj , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

What is the cost of AB?

Answer: mnp multiplications and mn(p− 1) additions.
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Right inverse and left inverse

If A and B are two matrices such that AB = I, then we say that B is a right
inverse of A and that A is a left inverse of B. For example:

[
1 0 0
0 1 0

] 1 0
0 1
α β

 =

[
1 0
0 1

]
= I2×2, ∀α, β ∈ R.

[
1 0 α
0 1 β

] 1 0
0 1
0 0

 =

[
1 0
0 1

]
= I2×2, ∀α, β ∈ R.

Notice that right inverse and left inverse may not unique.

Theorem on right inverse: A square matrix can possess at most one
right inverse.

Proof: Let AB = I. Then
n∑

j=1

bjkA
(j)

= I
(k)

, 1 ≤ k ≤ n. So, the columns of A form a

basis for Rn. Therefore, the coefficients bjk above are uniquely determined.

Theorem on matrix inverse: If A and B are square matrices such that
AB = I, then BA = I.
Proof: Let C = BA− I + B. Then AC = ABA−AI + AB = A−A + I = I. Since right

inverse for square matrix is at most one, B = C. Hence,

C = BA− I + B = BA− I + C, i.e., BA = I.
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Inverse

If a square matrix A has a right inverse B, then B is unique and
BA = AB = I. We then call B the inverse of A and say that A is invertible
or nonsingular. We denote B = A−1.

Example:[
−2 1

3
2
− 1

2

] [
1 2
3 4

]
=

[
1 2
3 4

] [
−2 1

3
2
− 1

2

]
=

[
1 0
0 1

]
= I2×2.

If A is invertible, then the system of equations Ax = b has the solution
x = A−1b. If A−1 is not available, then in general, A−1 should not be
computed solely for the purpose of obtaining x.

How do we get this A−1?
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Equivalent systems

Let two linear systems be given, each consisting of n equations with n
unknowns:

Ax = b and Bx = d.

If the two systems have precisely the same solutions, we call them equivalent
systems.

Note that A and B can be very different.

Thus, to solve a linear system of equations, we can instead solve any
equivalent system. This simple idea is at the heart of our numerical
procedures.
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Elementary operations

Let Ei denote the i-th equation in the system Ax = b. The following are the

elementary operations which can be performed:

Interchanging two equations in the system: Ei ↔ Ej ;
Multiplying an equation by a nonzero number: λEi → Ei;
Adding to an equation a multiple of some other equation:
Ei + λEj → Ei.

Theorem on equivalent systems: If one system of equations is obtained
from another by a finite sequence of elementary operations, then the two
systems are equivalent.
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Elementary operations (continued)

An elementary matrix is defined to be an n× n matrix that arises when an
elementary operation is applied to the n× n identity matrix.

Let Ai be the i-th row of matrix A. The elementary operations expressed in

terms of the rows of matrix A are:

The interchange of two rows in A: Ai ↔ Aj ;
Multiplying one row by a nonzero constant: λAi → Ai;
Adding to one row a multiple of another: Ai + λAj → Ai.

Each elementary row operation on A can be accomplished by multiplying A
on the left by an elementary matrix.
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Examples

 1 0 0
0 0 1
0 1 0

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 a11 a12 a13

a31 a32 a33

a21 a22 a23

 .
 1 0 0

0 λ 0
0 0 1

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 a11 a12 a13

λa21 λa22 λa23

a31 a32 a33

 .
 1 0 0

0 1 0
0 λ 1

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 a11 a12 a13

a21 a22 a23

λa21 + a31 λa22 + a32 λa23 + a33

 .
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Invertible matrix

If matrix A is invertible, then there exists a sequence of elementary row
operations can be applied to A, reducing it to I,

EmEm−1 · · ·E2E1A = I.

This gives us an equation for computing the inverse of a matrix:

A−1 = EmEm−1 · · ·E2E1 = EmEm−1 · · ·E2E1I.

Remark: This is not a practical method to compute A−1.
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Eigenvalue and eigenvector

Let A ∈ Cn×n be a square matrix. If there exists a nonzero vector x ∈ Cn and a
scalar λ ∈ C such that

Ax = λx,

then λ is called an eigenvalue of A and x is called the corresponding eigenvector of
A.

Remark: Computing λ and x is a major task in numerical linear algebra.
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Theorem on nonsingular matrix properties

For an n× n real matrix A, the following properties are equivalent:

The inverse of A exists; that is, A is nonsingular.

The determinant of A is nonzero.

The rows of A form a basis for Rn.

The columns of A form a basis for Rn.

As a map from Rn to Rn, A is injective (one to one).

As a map from Rn to Rn, A is surjective (onto).

The equation Ax = 0 implies x = 0.

For each b ∈ Rn, there is exactly one x ∈ Rn such that Ax = b.

A is a product of elementary matrices.

0 is not an eigenvalue of A.
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Some easy-to-solve systems:

1. Diagonal Structure


a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann




x1

x2

x3

...
xn

 =


b1
b2
b3
...
bn

 .

The solution is: (provided aii 6= 0 for all i = 1, 2, · · · , n)

x =
( b1
a11

,
b2

a22
,
b3

a33
, · · · ,

bn

ann

)>
.

If aii = 0 for some index i, and if bi = 0 also, then xi can be any real
number. The number of solutions is infinity.

If aii = 0 and bi 6= 0, no solution of the system exists.

What is the complexity of the method? n divisions.
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2. Lower Triangular Systems


a11 0 0 · · · 0
a21 a22 0 · · · 0
a31 a32 a33 · · · 0

...
...

...
. . .

...
an1 an2 an3 · · · ann




x1

x2

x3

...
xn

 =


b1
b2
b3
...
bn

 .

Some simple observations:

If a11 6= 0, then we have x1 = b1/a11.

Once we have x1, we can simplify the second equation,
x2 = (b2 − a21x1)/a22, provided that a22 6= 0.

Similarly, x3 = (b3 − a31x1 − a32x2)/a33, provided that a33 6= 0.

In general, to find the solution to this system, we use forward substitution
(assume that aii 6= 0 for all i):

input n, (aij), b = (b1, b2, · · · , bn)>

for i = 1 to n do

xi ←
(
bi −

i−1∑
j=1

aijxj

)
/aii

end do
output x = (x1, x2, · · · , xn)>
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2. Lower Triangular Systems (continued)

Complexity of forward substitution:

n divisions.
the number of multiplications: 0 for x1, 1 for x2, 2 for x3, · · ·
total = 0 + 1 + 2 + · · ·+ (n− 1) ≈ 1 + 2 + · · ·+ n = (n+ 1)n/2,
∴ total = O(n2).
the number of subtractions: same as the number of multiplications
= O(n2).

Forward substitution is an O(n2) algorithm.

Remark: forward substitution is a sequential algorithm (not parallel at all).
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3. Upper Triangular Systems


a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n

...
...

...
. . .

...
0 0 0 · · · ann




x1

x2

x3

...
xn

 =


b1
b2
b3
...
bn

 .

The formal algorithm to solve for x is called backward substitution. It is also an
O(n2) algorithm. Assume that aii 6= 0 for all i:

input n, (aij), b = (b1, b2, · · · , bn)>

for i = n : −1 : 1 do

xi ←
(
bi −

n∑
j=i+1

aijxj

)
/aii

end do
output x = (x1, x2, · · · , xn)>
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LU decomposition (factorization)

Suppose that A can be factored into the product of a lower triangular
matrix L and an upper triangular matrix U :

A = LU.

Then, Ax = LUx = L(Ux). Thus, to solve the system of equations Ax = b,
it is enough to solve this problem in two stages:

Lz = b solve for z,

Ux = z solve for x.

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Linear Systems – 20/62



Basic Gaussian elimination

Let A(1) = (a
(1)
ij ) = A = (aij) and b(1) = b. Consider the following linear system

Ax = b: 
6 −2 2 4

12 −8 6 10
3 −13 9 3
−6 4 1 −18



x1

x2

x3

x4

 =


12
34
27
−38

 .
pivot row = row1.

pivot element: a
(1)
11 = 6.

row2 - (12/6)*row1 → row2.
row3 - (3/6)*row1 → row3.
row4 - (-6/6)*row1 → row4.

=⇒


6 −2 2 4
0 −4 2 2
0 −12 8 1
0 2 3 −14



x1

x2

x3

x4

 =


12
10
21
−26

 .
multipliers: 12/6, 3/6,−6/6.
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Basic Gaussian elimination (continued)

We have the following equivalent system A(2)x = b(2):
6 −2 2 4
0 −4 2 2
0 −12 8 1
0 2 3 −14



x1

x2

x3

x4

 =


12
10
21
−26

 .
pivot row = row2.

pivot element a
(2)
22 = −4.

row3 - (-12/-4)*row2 → row3.
row4 - (2/-4)*row2 → row4.

=⇒


6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 4 −13



x1

x2

x3

x4

 =


12
10
−9
−21

 .
multiplier: −12/− 4, 2/− 4.
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Basic Gaussian elimination (continued)

We have the following equivalent system A(3)x = b(3):
6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 4 −13



x1

x2

x3

x4

 =


12
10
−9
−21

 .
pivot row = row3.

pivot element a
(3)
33 = 2.

row4 - (4/2)*row3 → row4.

=⇒


6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3



x1

x2

x3

x4

 =


12
10
−9
−3

 .
multiplier: 4/2.
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Basic Gaussian elimination (continued)

Finally, we have the following equivalent upper triangular system A(4)x = b(4):
6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3



x1

x2

x3

x4

 =


12
10
−9
−3

 .
Using the backward substitution, we have

x1

x2

x3

x4

 =


1
−3
−2

1

 .

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Linear Systems – 24/62



The LU decomposition

Display the multipliers in an unit lower triangular matrix L = (`ij):

L =


1 0 0 0
2 1 0 0
1
2

3 1 0

−1 − 1
2

2 1

 .
Let U = (uij) be the final upper triangular matrix A(4). Then we have

U =


6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3


and one can check that A = LU (the Doolittle Decomposition).
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Some remarks

The entire elimination process will break down if any of the pivot elements
are 0.

The total number of arithmetic operations:

M/D =
n3

3
+ n2 −

n

3
;

A/S =
n3

3
+
n2

2
−

5n

6
.

∴ The GE is an O(n3) algorithm.
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Vector norm

A vector norm on Rn is a real-valued function ‖ · ‖ : Rn → R with the properties:

‖x‖ ≥ 0, ∀ x ∈ V , and ‖x‖ = 0 if and only if x = 0;

‖αx‖ = |α|‖x‖, ∀ x ∈ V and α ∈ R;

‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀ x, y ∈ V (triangle inequality).

Note: ‖x‖ is called the norm of x, the length or magnitude of x.
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Some vector norms on Rn and distance

Let x = (x1, x2, · · · , xn)> ∈ Rn:

The 2-norm (Euclidean norm, or `2 norm): ‖x‖2 =

√√√√ n∑
i=1

x2
i .

The infinity norm (`∞-norm): ‖x‖∞ = max
1≤i≤n

|xi|.

The 1-norm (`1-norm):‖x‖1 =
n∑

i=1

|xi|.

Let x = (x1, x2, · · · , xn)>, y = (y1, y2, · · · , yn)> ∈ Rn. Then

‖x− y‖2 =

√√√√ n∑
i=1

(xi − yi)2.

‖x− y‖∞ = max
1≤i≤n

|xi − yi|.

‖x− y‖1 =
n∑

i=1

|xi − yi|.
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The difference between the above norms

What is the unit ball {x ∈ R2 : ‖x‖ ≤ 1} for the three norms above?

2-norm: a circle;
∞-norm: a square;
1-norm: a diamond.

Example: Let x = (−1, 1,−2)> ∈ R3. Then

‖x‖2 =
√

(−1)2 + 12 + (−2)2 =
√

6,

‖x‖∞ = max
1≤i≤3

|xi| = max{| − 1|, |1|, | − 2|} = 2,

‖x‖1 =
3∑

i=1

|xi| = | − 1|+ |1|+ | − 2| = 6.

Cauchy-Buniakowsky-Schwarz inequality: For x = (x1, x2, · · · , xn)>,
y = (y1, y2, · · · , yn)> ∈ Rn, we have

n∑
i=1

|xiyi| ≤
(

n∑
i=1

x2
i

)1/2( n∑
i=1

y2
i

)1/2

= ‖x‖2‖y‖2.
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Convergence of sequences in Rn

Definition: Let x, x(k) ∈ Rn for k = 1, 2, · · · . Then
lim

k→∞
x(k) = x with respect to the norm ‖ · ‖ ⇐⇒

∀ ε > 0, ∃ an integer N(ε) > 0 such that if k ≥ N(ε) then ‖x(k) − x‖ < ε.

lim
k→∞

x(k) = x with respect to ‖ · ‖∞ ⇐⇒ lim
k→∞

x
(k)
i = xi for i = 1, 2, · · · , n.

Example: x(k) = (x
(k)
1 , x

(k)
2 , x

(k)
3 , x

(k)
4 )> = (1, 2 +

1

k
,

3

k2
, e−k sin(k))>.

∵ lim
k→∞

1 = 1, lim
k→∞

(2 +
1

k
) = 2, lim

k→∞

3

k2
= 0, and lim

k→∞
e−k sin(k) = 0.

∴ lim
k→∞

x(k) = x = (1, 2, 0, 0)> with respect to ‖ · ‖∞ norm.
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All vector norms on Rn are equivalent

For each x ∈ Rn, ‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞.

Proof: Let |xj | = ‖x‖∞. Then

‖x‖2∞ = |xj |2 = x2
j ≤

n∑
i=1

x2
i = ‖x‖22 ≤

n∑
i=1

x2
j = nx2

j = n‖x‖2∞.

In fact, all vector norms on Rn are equivalent!
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Matrix norm

Let A be an n× n real matrix. If ‖ · ‖ is any vector norm on Rn, then

‖A‖ := max{‖Ax‖ : x ∈ Rn, ‖x‖ = 1}
(
⇐⇒ ‖A‖ := max{

‖Ax‖
‖x‖

: x ∈ Rn, x 6= 0}
)

defines a norm on the vector space of all n× n real matrices.

(This is called the matrix norm associated with the given vector norm)

Proof:

∵ ‖Ax‖ ≥ 0 ∀ x ∈ Rn, ‖x‖ = 1. ∴ ‖A‖ ≥ 0.
Exercise: ‖A‖ = 0 if and only if A = 0.

‖λA‖ = max{‖λAx‖ : ‖x‖ = 1} = max{|λ|‖Ax‖ : ‖x‖ = 1}
= |λ|max{‖Ax‖ : ‖x‖ = 1} = |λ|‖A‖.
‖A+B‖ = max{‖(A+B)x‖ : ‖x‖ = 1} ≤ max{‖Ax‖+ ‖Bx‖ : ‖x‖ = 1}
≤ max{‖Ax‖ : ‖x‖ = 1}+ max{‖Bx‖ : ‖x‖ = 1} = ‖A‖+ ‖B‖.
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Some additional properties

‖Ax‖ ≤ ‖A‖‖x‖, ∀ x ∈ Rn.

Proof:

Let x 6= 0. Then v =
x

‖x‖
is of norm 1. ∴ ‖A‖ ≥ ‖Av‖ =

‖Ax‖
‖x‖

.

‖I‖ = 1.

‖AB‖ ≤ ‖A‖‖B‖.

Proof:

‖AB‖ := max{‖(AB)x‖ : x ∈ Rn, ‖x‖ = 1}
≤ max{‖A‖‖Bx‖ : x ∈ Rn, ‖x‖ = 1}
≤ max{‖A‖‖B‖‖x‖ : x ∈ Rn, ‖x‖ = 1} = ‖A‖‖B‖.
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Some matrix norms

Let An×n = (aij) be an n× n real matrix. Then

The ∞-matrix norm:

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |.

The 1-matrix norm:

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij |.

The 2-matrix norm (`2-matrix norm):

‖A‖2 = max
‖x‖2=1

‖Ax‖2.
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Example

A =

 1 0 2
0 1 −1
−1 1 1

 .
The characteristic polynomial p(λ) of A is given by

p(λ) = det(A− λI)
= (1− λ){(1− λ)2 + 1}+ (−1){−2(1− λ)}
= (1− λ){λ2 − 2λ+ 4}.

The eigenvalues of A are λ1 = 1, λ2 = 1 +
√

3i and λ3 = 1−
√

3i.

The spectral radius ρ(A) of matrix A is defined by

ρ(A) = max{|λ| : λ is an eigenvalue of A}.

For the above matrix A, we have ρ(A) = max{|1|, |1 +
√

3i|, |1−
√

3i|} = 2.
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The 2-matrix norm

‖A‖2 is not easy to compute.

Since A>A is symmetric, A>A has n real eigenvalues, λ1, λ2, · · · , λn ∈ R.
Moreover, one can prove that they are all nonnegative. Then

ρ(A>A) := max
1≤i≤n

{λi} ≥ 0.

is called the spectral radius of A>A.

Then the `2-matrix norm of A is given by

‖A‖2 =
√
ρ(A>A).

The `2-matrix norm is also called the spectral norm.
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Properties of matrix norm

Let A be an n× n real matrix. Then

Then the `2-matrix norm of A is given by ‖A‖2 =
√
ρ(A>A). The

`2-matrix norm is also called the spectral norm.

ρ(A) ≤ ‖A‖ for any matrix norm ‖ · ‖.

Proof: Suppose that λ is an eigenvalue of A with eigenvector x and
‖x‖ = 1.

=⇒ |λ| = |λ|‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖ = ‖A‖.

=⇒ ρ(A) = max |λ| ≤ ‖A‖.
For any n× n matrix A and any ε > 0, ∃ a matrix norm ‖ · ‖ such that
ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε.
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Example

A =

 1 1 0
1 2 1
−1 1 2

 .
A>A =

 1 1 −1
1 2 1
0 1 2

 1 1 0
1 2 1
−1 1 2

 =

 3 2 −1
2 6 4
−1 4 5


det(A>A− λI) = det

 3− λ 2 −1
2 6− λ 4
−1 4 5− λ

 = −λ(λ2 − 14λ+ 42).

=⇒ λ = 0, 7 +
√

7, 7−
√

7.

=⇒ ‖A‖2 =
√
ρ(A>A) =

√
7 +
√

7 ≈ 3.106.
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Convergence

Definition: An n× n matrix A is said to be convergent if lim
k→∞

(Ak)ij = 0

for i, j = 1, 2, · · · , n.

Example:

A =

[ 1
2

0
1
4

1
2

]
=⇒ A2 =

[ 1
4

0
1
4

1
4

]
=⇒ A3 =

[ 1
8

0
3
16

1
8

]
=⇒ · · ·

Ak =

[
( 1

2
)k 0
k

2k+1 ( 1
2

)k

]
, lim

k→∞
(
1

2
)k = 0, lim

k→∞

k

2k+1
= 0.

∴ A is a convergent matrix.
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Equivalent statements

The following statements are equivalent:

A is a convergent matrix.

lim
n→∞

‖An‖ = 0 for some natural matrix norm.

lim
n→∞

‖An‖ = 0 for all natural matrix norms.

ρ(A) < 1.

lim
n→∞

Anx = 0 for all x.
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Iterative methods

Basic idea: Ax = b =⇒ x = Tx+ c for some fixed matrix T and vector c.

Given x(0), x(k) := Tx(k−1) + c for k = 1, 2, · · ·
Consider a linear system:

10x1 − x2 + 2x3 + 0 = 6,
−x1 + 11x2 − x3 + 3x4 = 25,

2x1 − x2 + 10x3 − x4 = −11,
0 + 3x2 − x3 + 8x4 = 15.

Exact unique solution: x = (1, 2,−1, 1)>.
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The Jacobi iterative method

x1 = 0 +
1

10
x2 −

2

10
x3 + 0 +

6

10
,

x2 =
1

11
x1 + 0 +

1

11
x3 −

3

11
x4 +

25

11
,

x3 = −
2

10
x1 +

1

10
x2 + 0 +

1

10
x4 −

11

10
,

x4 = 0−
3

8
x2 +

1

8
x3 + 0 +

15

8
.

x =


x1

x2

x3

x4

 = Tx+ c =



0 1
10

− 2
10

0

1
11

0 1
11

− 3
11

− 2
10

1
10

0 1
10

0 − 3
8

1
8

0


x+



6
10

25
11

− 11
10

15
8


.
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The Jacobi iterative method (continued)

If x(0) = (0, 0, 0, 0)>, then

x(1) = Tx(0) + c =



6
10

25
11

− 11
10

15
8


=



0.6000

2.2727

−1.1000

1.8750


.

=⇒ x(2) = Tx(1) + c =⇒ · · ·

=⇒
‖x(10) − x(9)‖∞
‖x(10)‖∞

=
8.0× 10−4

1.9998
< 10−3 stop! x ≈ x(10).
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The Jacobi iterative method (continued)

Ax = b, aii 6= 0 for all i = 1, 2, · · · , n.

Given x(k−1), k ≥ 1.

For i = 1, 2, · · · , n,

x
(k)
i =

−
n∑

j=1,j 6=i

aijx
(k−1)
j + bi

aii
.
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Theoretical setting


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

 =


a11

a22

. . .

ann

−


0
−a21 0

...
. . .

. . .

−an1 · · · −ann−1 0



−


0 −a12 · · · −a1n

. . .
. . .

...
−an−1n

0


=⇒ A = D − L− U

D: diagonal matrix; L: lower triangular matrix; U : upper triangular matrix.
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Theoretical setting (continued)

Ax = b

=⇒ Dx = (L+ U)x+ b

=⇒ x = D−1(L+ U)x+D−1b

The Jacobi iterative method: x(k) = D−1(L+U)x(k−1) +D−1b, k = 1, 2, · · ·

Notation: x(k) = TJx
(k−1) + cJ , where TJ := D−1(L+ U) and cJ := D−1b.

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Linear Systems – 46/62



The Gauss-Seidel iterative method

Ax = b, aii 6= 0 for all i = 1, 2, · · · , n.

Given x(k−1), k ≥ 1.

For i = 1, 2, · · · , n,

x
(k)
i =

−
i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j + bi

aii
.
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Example

Letting x(0) = (0, 0, 0, 0)>, for k = 1, 2, · · ·

x
(k)
1 = 0 +

1

10
x

(k−1)
2 −

2

10
x

(k−1)
3 + 0 +

6

10
,

x
(k)
2 =

1

11
x

(k)
1 + 0 +

1

11
x

(k−1)
3 −

3

11
x

(k−1)
4 +

25

11
,

x
(k)
3 = −

2

10
x

(k)
1 +

1

10
x

(k)
2 + 0 +

1

10
x

(k−1)
4 −

11

10
,

x
(k)
4 = 0−

3

8
x

(k)
2 +

1

8
x

(k)
3 + 0 +

15

8
.

=⇒
‖x(5) − x(4)‖∞
‖x(5)‖∞

= 4.0× 10−4 < 10−3 stop! x ≈ x(5).
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Theoretical setting

Ax = b, A = D − L− U .

=⇒ (D − L)x(k) = Ux(k−1) + b

That is,

a11x
(k)
1 = −a12x

(k−1)
2 − · · · − a1nx

(k−1)
n + b1,

a21x
(k)
1 + a22x

(k)
2 = −a23x

(k−1)
3 − · · · − a2nx

(k−1)
n + b2,

... =
...

an1x
(k)
1 + an2x

(k)
2 + · · ·+ annx

(k)
n = bn.

=⇒ x(k) = (D − L)−1Ux(k−1) + (D − L)−1b for k = 1, 2, · · ·

The Gauss-Seidel iterative method: x(k) = TSx
(k−1) + cS ,

where TS := (D − L)−1U and cS := (D − L)−1b.

Note: aii 6= 0, i = 1, 2, · · · , n ⇐⇒ D − L is nonsingular!
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Theorem on convergence

If ρ(T ) < 1, then (I − T )−1 exists and

(I − T )−1 = I + T + T 2 + · · · (:=
∞∑

n=0

Tn).

For any x(0) ∈ Rn, the sequence {x(k)} defined by x(k) := Tx(k−1) + c,
k ≥ 1, converges to the unique solution of x = Tx+ c ⇐⇒ ρ(T ) < 1.
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Corollaries

x(0) ∈ Rn, x(k) := Tx(k−1) + c, k ≥ 1. If ‖T‖ < 1 for any natural matrix

norm then {x(k)} converges to the unique solution of x = Tx+ c and

‖x− x(k)‖ ≤ ‖T‖k‖x− x(0)‖.

‖x− x(k)‖ ≤
‖T‖k

1− ‖T‖
‖x(1) − x(0)‖.

If A is strictly diagonally dominant, then for any x(0) ∈ Rn, both the Jacobi
and Gauss-Seidel methods give sequences {x(k)} that converge to the unique
solution of Ax = b (x = Tx+ c).

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Linear Systems – 51/62



Successive Over-Relaxation (SOR)

The Gauss-Seidel method:

x
(k)
i =

1

aii

−
i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j + bi

 .

Successive over-relaxation:

x
(k)
i = (1− ω)x

(k−1)
i +

ω

aii

−
i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j + bi

 ,

where ω > 0. In general,

ω = 1: the Gauss-Seidel method;
0 < ω < 1: when G-S diverges;
ω > 1: when G-S converges!
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SOR (continued)

aiix
(k)
i + ω

i−1∑
j=1

aijx
(k)
j = (1− ω)aiix

(k−1)
i − ω

n∑
j=i+1

aijx
(k−1)
j + ωbi.

=⇒ (D − ωL)x(k) =
(

(1− ω)D + ωU
)
x(k−1) + ωb.

=⇒ x(k) = (D − ωL)−1
(

(1− ω)D + ωU
)
x(k−1) + ω(D − ωL)−1b.

=⇒ x(k) = Tωx
(k−1) + cω .
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Example

Consider a linear system: 4x1 + 3x2 + 0 = 24,
3x1 + 4x2 − x3 = 30,

0− x2 + 4x3 = −24.

Exact unique solution: x = (3, 4,−5)>.

Let x(0) = (1, 1, 1)>. The G-S method:
x

(k)
1 = −0.75x

(k−1)
2 + 6,

x
(k)
2 = −0.75x

(k)
1 + 0.25x

(k−1)
3 + 7.5,

x
(k)
3 = 0.25x

(k)
2 − 6.

Let x(0) = (1, 1, 1)>. The SOR with ω = 1.25:
x

(k)
1 = −0.25x

(k−1)
1 − 0.9375x

(k−1)
2 + 7.5,

x
(k)
2 = −0.9375x

(k)
1 − 0.25x

(k−1)
2 + 0.3125x

(k−1)
3 + 9.375,

x
(k)
3 = 0.3125x

(k)
2 − 0.25x

(k−1)
3 − 7.5.
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Theorems on convergence

If aii 6= 0, i = 1, 2, · · · , n, then ρ(Tω) ≥ |ω − 1|. This implies the SOR
method can converge only if 0 < ω < 2.

If A is SPD, 0 < ω < 2, then the SOR method converges for any x(0).
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Some error analysis

Suppose that we want to solve the linear system Ax = b, but b is somehow
perturbed to b̃ (this may happen when we convert a real b to a floating-point
b).

Then actual solution would satisfy a slightly different linear system

Ax̃ = b̃.

Question: Is x̃ very different from the desired solution x of the original
system?

Of course, the answer should depend on how good the matrix A is.

Let ‖ · ‖ be a vector norm, we consider two types of errors:

absolute error: ‖x− x̃‖?
relative error: ‖x− x̃‖/‖x‖?
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The absolute error

For the absolute error, we have

‖x− x̃‖ = ‖A−1b−A−1b̃‖ = ‖A−1(b− b̃)‖ ≤ ‖A−1‖‖b− b̃‖.

Therefore, the absolute error of x depends on two factors: the absolute error of b
and the matrix norm of A−1.
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The relative error

For the relative error, we have

‖x− x̃‖ = ‖A−1b−A−1b̃‖ = ‖A−1(b− b̃)‖

≤ ‖A−1‖‖b− b̃‖ = ‖A−1‖‖Ax‖
‖b− b̃‖
‖b‖

≤ ‖A−1‖‖A‖‖x‖
‖b− b̃‖
‖b‖

.

That is
‖x− x̃‖
‖x‖

≤ ‖A−1‖‖A‖
‖b− b̃‖
‖b‖

.

Therefore, the relative error of x depends on two factors: the relative error of b
and ‖A‖‖A−1‖.
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Condition number

Therefore, we define a condition number of the matrix A as

κ(A) := ‖A‖‖A−1‖.

κ(A) measures how good the matrix A is.

Example: Let ε > 0 and

A =

[
1 1 + ε

1− ε 1

]
=⇒ A−1 = ε−2

[
1 −1− ε

−1 + ε 1

]
.

Then ‖A‖∞ = 2 + ε, ‖A−1‖∞ = ε−2(2 + ε), and κ(A) =
(2 + ε

ε

)2
≥

4

ε2
.
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Condition number (continued)

For example, if ε = 0.01, then κ(A) ≥ 40000.

What does this mean?
It means that the relative error in x can be 40000 times greater than the
relative error in b.

If κ(A) is large, we say that A is ill-conditioned, otherwise A is
well-conditioned.

In the ill-conditioned case, the solution is very sensitive to the small changes
in the right-hand vector b (higher precision in b may be needed).
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Another way to measure the error

Consider the linear system Ax = b. Let x̃ be a computed solution (an
approximation to x).

Residual vector:
r = b−Ax̃.

Error vector:
e = x− x̃.

They satisfy
Ae = r.

(Proof: Ae = Ax−Ax̃ = b−Ax̃ = r)

Moreover, we have

1

κ(A)

‖r‖
‖b‖
≤
‖e‖
‖x‖
≤ κ(A)

‖r‖
‖b‖

.

(Theorem on bounds involving condition number)

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Linear Systems – 61/62



Proof of the Theorem

∵ Ae = r.

∴ e = A−1r.

∴ ‖e‖‖b‖ = ‖A−1r‖‖Ax‖ ≤ ‖A−1‖‖r‖‖A‖‖x‖.

∴
‖e‖
‖x‖
≤ κ(A)

‖r‖
‖b‖

.

On the other hand, we have ‖r‖‖x‖ = ‖Ae‖‖A−1b‖ ≤ ‖A‖‖e‖‖A−1‖‖b‖.

∴
1

κ(A)

‖r‖
‖b‖
≤
‖e‖
‖x‖

.
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