MA 3021: Numerical Analysis I Mathematical Preliminaries

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 32001, Taiwan

E-mail: syyang@math.ncu.edu.tw

Website: http://www.math.ncu.edu.tw/~syyang/

Review of calculus

• The ε - δ definition of limit: Let $\emptyset \neq X \subseteq \mathbb{R}$, x_0 be an accumulation point of X, and $f: X \to \mathbb{R}$ be a real-valued function. Then

$$\lim_{x\to x_0} f(x) = L \quad \Longleftrightarrow \quad \forall \; \varepsilon > 0 \; \exists \; \delta > 0 \; \text{s.t. if} \; x \in X \; \text{and} \; 0 < |x-x_0| < \delta$$
 then $|f(x) - L| < \varepsilon$.

- Definition (continuity): $\emptyset \neq X \subseteq \mathbb{R}, x_0 \in X$, and $f: X \to \mathbb{R}$.
 - f(x) is said to be continuous at $x = x_0$ if $\lim_{x \to x_0} f(x) = f(x_0)$.
 - f is continuous on X if f is continuous at each member in X.
- Notation: C(X): the set of all functions that are continuous on X.

e.g.,
$$C([a, b]) = C[a, b]$$
, $C((a, b]) = C(a, b]$, etc.

Sequences

• Definition: Let $\{x_n\}_{n=1}^{\infty}$ be an infinite sequence of real (or complex) numbers and $x \in \mathbb{R}$ (or \mathbb{C}).

$$\lim_{n\to\infty} x_n = x \Longleftrightarrow \forall \ \varepsilon > 0 \ \exists \ N \in \mathbb{N} \text{ s.t. if } n > N, \text{ then } |x_n - x| < \varepsilon.$$

• Theorem: $\emptyset \neq X \subseteq \mathbb{R}$, $x_0 \in X$, and $f: X \to \mathbb{R}$.

$$f$$
 is continuous at x_0 \iff if $\lim_{n\to\infty} x_n = x_0$ then $\lim_{n\to\infty} f(x_n) = f\left(\lim_{n\to\infty} x_n\right) = f(x_0)$.

Smoothness

- **Definition:** Let $\emptyset \neq I \subseteq \mathbb{R}$ be an open interval, $x_0 \in I$, and $f: I \to \mathbb{R}$.
 - If $\lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0}$ exists, then we say f is differentiable at x_0 and $f'(x_0) := \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0}$ is called the derivative of f at x_0 .
 - If f is differentiable at each number in I, then we say f is diff. on I.
- Alternative definition:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

- Theorem: f is differentiable at $x_0 \Longrightarrow f$ is continuous at x_0 .
- Notation:
 - $C^n(X)$: the set of all functions that have n cont. derivatives on X.
 - $C^{\infty}(X)$: the set of all functions that have derivatives of all orders on X, e.g., polynomials, exponential functions, etc., on $X = \mathbb{R}$.

Algorithm (pseudocode)

An algorithm to compute f'(x) at the point x = 0.5 with $f(x) = \sin(x)$:

```
program numerical differentiation
integer parameter n \leftarrow 10
integer i
real error, h, x, y
x \leftarrow 0.5
h \leftarrow 1
for i = 1 to n do
     h \leftarrow 0.25h
     y \leftarrow (\sin(x+h) - \sin(x))/h
     error \leftarrow |\cos(x) - y|
     output i, h, y, error
end for
end program numerical differentiation
```

Mean Value Theorem

- Rolle's Theorem: If f is continuous on [a, b], f' exists on (a, b), and f(a) = f(b), then $\exists c \in (a, b)$ s.t. f'(c) = 0.
- Mean Value Theorem: If $f \in C[a, b]$ and f' exists on (a, b), then for $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.
- Generalized Rolle's Theorem: $f \in C[a,b]$, f is n time differentiable on (a,b). If f is zero at n+1 distinct numbers $x_0, x_1, \dots, x_n \in [a,b]$, then $\exists c \in (a,b)$ such that $f^{(n)}(c) = 0$.
- Extreme Value Theorem: If $f \in C[a, b]$ then $\exists c_1, c_2 \in [a, b]$ such that $f(c_1) \leq f(x) \leq f(c_2), \forall x \in [a, b].$
- Note: Extreme Value Theorem + Fermat's Lemma ⇒ Rolle's Theorem
 ⇒ Mean Value Theorem.

Intermediate Value Theorem

- Bolzano's Theorem: If f is a continuous function on [a,b] and f(a)f(b) < 0, then $\exists c \in (a,b)$ s.t. f(c) = 0.
- Intermediate-Value Theorem: If f is a continuous function on [a, b] and K is any number between f(a) and f(b) (i.e., f(a) < K < f(b) or f(b) < K < f(a), then $\exists c \in (a, b) \text{ s.t. } f(c) = K$.
- Note: The Least-Upper-Bound Axiom + sign-preserving property ⇒ Bolzano's Theorem ⇒ Intermediate Value Theorem.

Riemann integral

- Definition: Let $\{x_0 = a, x_1, x_2, \dots, x_n = b\}$ be a partition of [a, b] with $\Delta x_i = x_i - x_{i-1}, i = 1, 2, \dots, n$ and $z_i \in [x_{i-1}, x_i]$ is arbitrary chosen. If $\lim_{\max \Delta x_i \to 0} \sum_{i=1}^n f(z_i) \Delta x_i \text{ exists, then } \int_a^b f(x) dx := \lim_{\max \Delta x_i \to 0} \sum_{i=1}^n f(z_i) \Delta x_i \text{ is}$ called the (Riemann) integral of f on [a, b].
- Lebesgue Theorem: Let $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$ be a bounded function on a bounded set A.

f is Riemann integrable \iff {discontinuous points of f } is measure zero.

• Note: $f \in C[a,b] \Longrightarrow f$ is integrable on [a,b].

equal spaced,
$$z_i = x_i$$
, $\Longrightarrow \int_a^b f(x)dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^n f(x_i)$.

Weighted Mean Value Theorem for integral

If $f \in C[a, b]$, g is Riemann integrable on [a, b] and does not change sign on [a, b]. Then $\exists c \in (a,b)$ such that

$$\int_{a}^{b} f(x)g(x)dx = f(c) \int_{a}^{b} g(x)dx.$$

Proof.

$$\therefore f \in C[a,b]. \qquad \therefore \exists \ m,M \in \mathbb{R} \text{ such that } m \leq f(x) \leq M \ \forall x \in [a,b].$$

$$g(x) \ge 0$$
 on $[a, b]$. Then $\int_a^b mg(x)dx \le \int_a^b f(x)g(x)dx \le \int_a^b Mg(x)dx$.

$$\int_a^b g(x)dx > 0$$
, otherwise OK. Then $m \le \frac{\int_a^b f(x)g(x)dx}{\int_a^b g(x)dx} \le M$.

Then the assertion holds by the Intermediate Value Theorem.

Note: $g(x) \equiv 1$ on $[a,b] \Longrightarrow \int_{-a}^{b} f(x)dx = f(c)(b-a) \Longrightarrow f(c) = \frac{1}{b-a} \int_{-a}^{b} f(x)dx$ is called the average value of f on [a, b].

Taylor's Theorem

Let $f \in C^{n+1}[a,b]$ and $x_0 \in [a,b]$. Then for every $x \in [a,b]$, $\exists \ \xi(x)$ between x and x_0 such that

$$f(x) = P_n(x) + R_n(x),$$

where the *n*-th Taylor polynomial $P_n(x)$ is given by

$$P_n(x) = \sum_{k=0}^n \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k$$

and the remainder (error) term $R_n(x)$ is given by

$$R_n(x) = \frac{1}{n!} \int_{x_0}^x (x-t)^n f^{(n+1)}(t) dt \quad \text{(integral form)}$$

$$= \frac{1}{(n+1)!} f^{(n+1)}(\xi(x)) (x-x_0)^{n+1} \quad \text{(Lagrange's form)}$$
(by the weighted MVT for integral)

Some remarks

Assume that $f \in C^{\infty}[a, b]$.

• $\sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(x_0)(x-x_0)^k$ is called the Taylor series of f at x_0 .

(when $x_0 = 0$, called the Maclaurin series)

• If $R_n(x) \to 0$ as $n \to \infty$, then $P_n(x) \to f(x)$ as $n \to \infty$, i.e.,

$$f(x) = \sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k.$$

Example

Find the Taylor polynomial and the remainder term of $f(x) = \cos(x)$ at $x_0 = 0$.

$$f'(x) = -\sin(x), \quad f''(x) = -\cos(x), \quad f'''(x) = \sin(x), \quad f^{(4)}(x) = \cos(x).$$

$$f(0) = 1$$
, $f'(0) = 0$, $f''(0) = -1$, $f'''(0) = 0$, $f^{(4)}(0) = 1$.

Case n=2:

$$\cos(x) = 1 - \frac{1}{2}x^2 + \frac{1}{6}x^3\sin(\xi(x))$$
, where $\xi(x)$ is between 0 and x.

$$\cos(0.01) = 0.99995 + 0.1\overline{6} \times 10^{-6} \sin(\xi(x)), \text{ where } 0 < \xi(x) < 0.01.$$

$$|\cos(0.01) - 0.99995| \leq 0.1\bar{6} \times 10^{-6} |\sin(\xi(x))| \leq 0.1\bar{6} \times 10^{-6} \times 0.01 = 0.1\bar{6} \times 10^{-8},$$

where we use the fact $|\sin(x)| < |x|, \ \forall \ x \in \mathbb{R}$.

Case
$$n = 3$$
: $\cos(x) = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4\cos(\widetilde{\xi}(x))$, where $\widetilde{\xi}(x)$ is between 0 and x .

$$|\cos(0.01) - 0.99995| \le \frac{1}{24}(0.01)^4 \times 1 \le 4.2 \times 10^{-10}.$$

Example (continued)

$$\int_0^{0.1} \cos(x) dx = \int_0^{0.1} (1 - \frac{1}{2}x^2) dx + \int_0^{0.1} \frac{1}{24} x^4 \cos(\widetilde{\xi}(x)) dx$$
$$= (x - \frac{1}{6}x^3) \Big|_0^{0.1} + \int_0^{0.1} \frac{1}{24} x^4 \cos(\widetilde{\xi}(x)) dx$$
$$= 0.0998\overline{3} + \int_0^{0.1} \frac{1}{24} x^4 \cos(\widetilde{\xi}(x)) dx.$$

$$\left| \int_0^{0.1} \cos(x) dx - 0.0998\overline{3} \right| \leq \frac{1}{24} \int_0^{0.1} x^4 |\cos(\widetilde{\xi}(x))| dx$$
$$\leq \frac{1}{24} \int_0^{0.1} x^4 dx = 8.\overline{3} \times 10^{-8}.$$

True value is 0.099833416647, actual error for this approximation is 8.3314×10^{-8} .

Partial sums of the Taylor series for $f(x) = \cos(x)$ at $x_0 = 0$

Note: A Taylor series converges rapidly near the point of expansion and slowly (or not at all) at more remote points.

Taylor's Theorem in two variables

If $f \in C^{n+1}([a,b] \times [c,d])$, then for any points $(x,y), (x+h,y+k) \in [a,b] \times [c,d]$ we have

$$f(x+h,y+k) = \sum_{i=0}^{n} \frac{1}{i!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right)^{i} f(x,y) + R_{n}(h,k),$$

where

$$R_n(h,k) = \frac{1}{(n+1)!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^{n+1} f(x + \theta h, y + \theta k)$$

for some $0 < \theta < 1$.

Example: What are the first few terms in the Taylor formula for $f(x, y) = \cos(xy)$?

Taylor's formula with n=1 is

$$\cos((x+h)(y+k)) = \cos(xy) - hy\sin(xy) - kx\sin(xy) + R_1(h,k),$$

$$R_1(h,k) = \cdots.$$

How about n = 2?

Big O notation for sequences

• **Definition:** Suppose that $\lim_{n\to\infty} \beta_n = 0$ and $\lim_{n\to\infty} \alpha_n = \alpha$. If $\exists K > 0$ and $n_0 \in \mathbb{N}$ such that $|\alpha_n - \alpha| \leq K|\beta_n - 0|$ for all $n \geq n_0$, then we say that $\{\alpha_n\}$ converges to α with rate of convergence $O(\beta_n)$ and write $\alpha_n = \alpha + O(\beta_n)$.

• Examples:

$$\alpha_n = 1 + \frac{n+1}{n^2} \Longrightarrow \lim_{n \to \infty} \alpha_n = \alpha = 1.$$

$$\widetilde{\alpha}_n = 2 + \frac{n+3}{n^3} \Longrightarrow \lim_{n \to \infty} \widetilde{\alpha}_n = \widetilde{\alpha} = 2.$$
Let $\beta_n = \frac{1}{n}$ and $\widetilde{\beta}_n = \frac{1}{n^2}$. Then $\lim_{n \to \infty} \beta_n = 0 = \lim_{n \to \infty} \widetilde{\beta}_n.$

$$\Longrightarrow |\alpha_n - 1| = \frac{n+1}{n^2} \le \frac{n+n}{n^2} = 2\frac{1}{n} = 2|\beta_n - 0|$$
and $|\widetilde{\alpha}_n - 2| = \frac{n+3}{n^3} \le \frac{n+3n}{n^3} = 4\frac{1}{n^2} = 4|\widetilde{\beta}_n - 0|.$

$$\Longrightarrow \alpha_n = 1 + O\left(\frac{1}{n}\right) \text{ and } \widetilde{\alpha}_n = 2 + O\left(\frac{1}{n^2}\right).$$

Big O notation for functions

• **Definition:** Suppose that $\lim_{h\to 0} G(h) = 0$ and $\lim_{h\to 0} F(h) = L$. If $\exists K > 0$ and small $h_0 > 0$ such that $|F(h) - L| \le K|G(h) - 0|$ for all $|h| \le h_0$, then we say that F(h) converges to L with rate of convergence O(G(h)) and write F(h) = L + O(G(h)).

Example:

$$\cos(h) = 1 - \frac{1}{2}h^2 + \frac{1}{24}h^4\cos(\xi(h)), \text{ where } \xi(h) \text{ is between 0 and } h.$$

$$\therefore \left| \cos(h) + \frac{1}{2}h^2 - 1 \right| = \left| \frac{1}{24}\cos(\xi(h)) \right| h^4 \le \frac{1}{24}h^4 \text{ for all } h.$$

$$\therefore \cos(h) + \frac{1}{2}h^2 = 1 + O(h^4).$$