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Introduction

@ A nonlinear equation:
Let f: @ # A CR — R be a nonlinear real-valued function in a single
variable . We are interested in finding the roots (solutions) of the equation
f(z) =0, i.e., zeros of the function f(z).

@ A system of nonlinear equations:
Let FF': @ # A CR"™ — R"™ be a nonlinear vector-valued function in a vector
variable X = (21,2, - ,:cn)T, We are interested in finding the roots
(solutions) of the equation F(X) = 0, i.e., zeros of the function F(X).
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Examples

@ Let us look at three functions (polynomials):
o f(z) =2* — 1223 + 4722 — 60z
o f(x) =a* — 1223 + 4722 — 60x + 24
o f(x) =a* — 1223 4 4722 — 60z + 24.1

@ Find the zeros of these polynomials is not an easy task.

@ The first function has real zeros 0, 3, 4, and 5.
@ The real zeros of the second function are 1 and 0.888....
@ The third function has no real zeros at all.
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Objectives

Consider the nonlinear equation f(z) =0 or F(X) = 0.

@ The basic questions:
@ Does the solution exist?

@ Is the solution unique?
@ How to find it?

@ In this lecture, we will mainly focus on the third question and we always
assume that the problem under considered has a solution z*.

@ We will study iterative methods for finding the solution: first find an initial
guess xo, then a better guess z1, ..., in the end we hope that lim z, = z*.
n— oo

@ Iterative methods:
@ bisection method;
@ fixed-point method;
@ Newton’s method;
@ secant method.
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Bisection method

@ Bolzano’s Theorem: f € C[a,b] and f(a)f(b) <0 = 3 p € (a,b) such
that f(p) = 0.

@ The basic idea: assume that f(a)f(b) < 0.
@ set a; = a and by = b, compute p; = %(al + b1).
o if f(p1)f(a1) =0 then f(p1) =0 = p = p1;
if f(p1)f(a1) > 0 then p € (p1,b1), set az = p1 and by = by;
if f(p1)f(a1) <0 then p € (a1,p1), set az = a1 and b2 = p1;
° po = %(az + b2).
@ repeat the process until the interval is very small then any point in the

interval can be used as approximations of the zero. In fact,
PL P2 NP3 Y YD
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The bisection algorithm

Input a, b, tolerance TOL, max. no. of iteration Ny.
Output approximate sol. of p or message of failure.
Step 1: i =1, FA = f(a).

Step 2: while i < Ny do step 3-6.

1
Step 3: set p=a + §(b—a); FP = f(p).

1
Step 4: if FP =0 or E(b — a) < TOL then output(p); stop.

Step 5: i =7+ 1.
Step 6: if FA X FFP > 0 then set a = p and FA = FP; else set b = p.
Step 7: output(method failed after Ny iterations); stop.
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Stopping criteria

Let € > 0 be a given tolerance.
1
© |py —pNn-1]l<e  (Notethat |py —pn—1] = 7 [by—1 —an-1l);

lpN — PN —1l
PN ]
@ |f(pn)l<e

, if py #0;
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Example

Find a root of f(z) = 3 + 422 — 10.

Note that f(1) = —5, f(2) = 14.

.3 root p € [1,2].

Using the bisection method, we get the table (actual root is p = 1.365230013...):

an

bn

Pn

f(pn)

W N =3

13
14

18

1.000000000000
1.000000000000
1.250000000000

1.364990234375
1.365112304687

1.365226745605

2.000000000000
1.500000000000
1.500000000000

1.365234375000
1.365234375000

1.365234375000

1.500000000000
1.250000000000
1.375000000000

1.365112304687
1.365173339843

1.365230560302

2.375000000000
-1.796875000000
0.162109375000

-0.001943659010
-0.000935847281

0.000009030992

See the details of the M-file: bisection.m

Suh-Yuh Yar
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Properties of the bisection method

@ Drawbacks: often slow; a good intermediate approximation may be
discarded; doesn’t work for higher dimensional problems: F(X) = 0.

@ Advantage: it always converges to a solution if a suitable initial interval
can be chosen.

@ Theorem: f € Cla,b], f(a)f(b) <0, f(p) = 0. The bisection method
generates a sequence {pn} with |p, — p| < —(b —a), Vn>1
Proof.
For n > 1, we have by, — ap = 2n#,l(b —a) and p € (an,by).

“pn—p< z(bn*an)—%

~—r(b—a)= %(bfa).

@ Note: " |pn —p| < ﬁ(b* a) SPn=pt 0(2%)




Fixed points

@ XCR,g: X —R. If pe X and g(p) = p, then p is called a fixed point of g.

@ Root-finding problem & fixed-point problem are equivalent in the following

sense:
o If pisarootof f(z) =0, pis a fixed point of g(z) := z — f(z),
h(z) :=o — f/(ac) , ete.
I ()

o If p is a fixed point of g(z), i.e., g(p) = p, then p is a root of
f(z) ==z — g(z), h(z) := 3z — 3g(x), etc.
(root-finding problem) <= (fixed-point problem).
@ Example: g(z) =22 — 2, x € [-2,3].
cg(-1)=(-1)2-2=-land g(2) =22 -2=2.

.. —1 and 2 are fixed points of g.
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A fixed point theorem

@ If g € Cla,b] and g(z) € [a,b], V z € [a,b], then g has a fixed point in [a, b],
ie,3p€lab]st. gp) =p.

@ If, in addition, g’ exists on (a,b) and 3 0 < k < 1 such that |¢’(x)| < k,
¥V z € (a,b), then the fixed point is unique in [a, b].

@ Then, for any po € [a,b] and py := g(pn—1), n > 1, the sequence {pn}
converges to the unique fixed point p € [a,b] and

® |pn —p| < k" max{po — a,b—po}, V n = 1;

o |pn —pl < £%Ip1 —pol, V> 1.

Proof.

@ If g(a) = a or g(b) = b then g has a fixed point in [a,b]. Suppose not, then
a < g(a) <band a < g(b) <b. Define h(z) := g(x) — x. Then h is
continuous on [a,b] and h(a) > 0, h(b) < 0. By the Intermediate Value
Theorem, 3 p € (a,b) such that h(p) =0, i.e., g(p) = p.

@ Suppose that 3 p < g € [a, b] are fixed points of g. Then g(p) = p and
g(q) = q. By the Mean Value Theorem, 3 £ € (p, q) such that

UD=90) = g (g) = LWD=9D] = () <k <1 = 1={2 <k <1
This is a contradiction. Therefore, the fixed point is unique.
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Proof (continued)

@ For n > 1, by the Mean Value Theorem, 3 £ € (a, b) such that
0 < lpn —pl = l9(Pn—1) — 9(p)| = |g'(O)llpn—1 — p| < klpn—1 — .
= 0 < |pn —p| < klpn—1 —p| <K |pn—2 —p[ < --- <K"|po —pl.
= nli)moo lpn —p| =0 < nl;mwpn -p=0 & nl;mwpn =p.
@ ' |pn —p| <Ek™|po —p| and p € [a,b].
2 — pl < k" max{po — a,b—po}, Vn > 1.
@ Forn>1,

[Pn+1 — pnl = |9(pn) — 9(Pn—1)| < klpn — pn—1] < --+ < k™|p1 — pol.
. For m >n > 1, we have

|pm —Pm—-1+DPm-1—Pm-2+- "+ DPnt1 *p’ﬂ|

< |pm*pm—1|+|pm—1 *pm—2‘+"'+|pn+1 *Pn|
< kK™ p1 — pol + k™2 |p1 — po| + - + k™ [p1 — pol
K" (14K 4+ k™" ) p1 — pol.

[Pm — pnl

o limp 00 pn = p.
1
11—k

[e o)
clp=pal = lim_|pm —pn| < K"|p1 —p0|;)k:7‘ = k" |p1 — pol
=

(" geometric series with 0 < k < 1)
s p=pnl < 511 — pol.




Fixed-point iterations

@ Fixed point iterations:

p’ﬂ:g(pn—l)v TL:1,2,"'

Assume that ¢ is continuous and lim p, = p. Then
n—o0
9(p) = g( lim pn) =g( lim pn—1) = lim g(pn—1) = lim pn =p.

Therefore, p is a fixed point of the function g.
@ Example: f(z) =z + 422 — 10 = 0 has a unique root in [1,2].
S f()=-5<0, f(2)=14>0and f'(z) =322 +8x >0,V z € (1,2)

(f is increasing on [1,2]).
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Fixed-point problem

root-finding problem <= fixed-point problem.
(a) x=g1(x):=x— a3 — 422 + 10.

(11—0 — 4:0)1/2.

(b) z=ga2(z):

(c) =z =gs(z):= %(10 - :03) 1/2.
(d) z=ga(x):= (4fm>1/2.

23 4 42 —
(e) z=gs5(x) =z — %
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Numerical results

Using the fixed-point iterations, we have (the actual root is p = 1.365230013...):

n | (a) (b) (c) (d) (e)

0] 15 5 5 5 5

3 | -469.7 (—8.65)1/2

4 | 1.03 x 108 1.365230013
15 1.365223680 | 1.365230013
30 1.365230013

Computer project 1: write the Matlab files for the cases (c), (d), and (e).
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Newton’s method

@ Motivation: we know how to solve f(z) =0 if f is linear. For nonlinear f,
we can always approximate it with a linear function.

@ Suppose that f € C?[a,b] and f(p) = 0. Let po € [a, b] be an approximation
to p, f'(po) # 0 and |p — po| is “small”. Using Taylor Theorem, we have

2
0= 1) = J(p0) + (0~ po) " 0) + L2 ()

If |p — po| is small, then we can drop the (p — pg)? term,
0= f(po) + (p — o) f'(po)-

Solving for p gives

f(po)

Foo)’ provided f’(po) # 0.

PR p1:i=po—

@ Newton’s method can be defined as follows: forn =1,2,---

f(Pn—1)

Flony): Provided fi(pn-1) #0.

Pn = Pn—1 —
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Geometrical interpretation

@ An illustration of one iteration of Newton’s method. The function f is
shown in blue and the tangent line is in red. We see that p, is a better
approximation than p,_j for the root p of the function f.

@ What is the geometrical meaning of f/(p,—1) = 0?7
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Example

@ Consider the function f(z) = cos(z) — x.
v f(r/2)=—-w/2<0and f(0)=1>0. .3 pe (0,7/2) such that
flp) = 0.
f'(z) = —sin(z) — 1.
Newton’s method: choose pg € [0, 7/2] and

COS(pn_l) — Pn—1

=pn_1 — n > 1.
Pn Pn—1 7Sin(pn_1) 1 2

)

@ Numerical results: pg = 7/4.

Pn f(pn)

0.78539816339745 | -0.07829138221090
0.73953613351524 | -0.00075487468250
0.73908517810601 | -0.00000007512987
0.73908513321516 | -0.00000000000000

W= o3

See the details of the M-file: newton.m
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Convergence Theorem

Theorem: Assume that f € C?[a,b], p € (a,b) such that f(p) =0 and f’(p) # 0.
Then 3 § > 0 such that if po € [p — §,p + 0] then Newton’s method generates {py }
converging to p.

f(z
f’((ac)) . Then g(p) = p.

Let k € (0,1). We want to find 6 > 0s.t. g([p—6,p+6]) C [p—6,p+ ] and
19/(@)| < b,V 2 € (p— 6,p+ ).

- f'(p) # 0 and f’ is continuous on [a, b].

.. By the sign-preserving property, 3 §1 > 0s.t. f'(z) #0V z € [p— 61,p+ 1]
.. g is continuous on [p — d1,p + 01] and

Proof: Define g(z) =z —

o [P@F@ - (@@ @@
s =1- {(HEE I Lo e eb-supral
SFECabl.  geCip—bip+al.
wflp)=0  .g(p)=0.

‘- g’ is continuous on [p — &1,p + 1]
38>0and § < 01 s.t. |¢'(z)| <k, Vzep—6,p+4].
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Convergence Theorem (continued)

Claim: g([p —6,p+6]) C [p—5,p + 4].

Let ¢ € [p—6,p+ 4.

By the MVT, 3 £ between z and p s.t. |g(z) — g(p)| < |9’ (&)||z — p|-
s lg(@) —pl < klo —p| <|o—p[ < 6.

That is, g(z) € [p — 6,p + 6).
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Convergence order

@ Definition: Suppose {pn} converges to p ( ILm pn = p) with pn, # p, V n.
n (oo}

f3X\a>0st lim 2ori=?l
n—o00 Ipn — pla
of order o with asymptotic error constant .

= ), then we say that {p,} converges to p

@ Note: If a =1 (and A < 1), then we say {pn} is linearly convergent. If
o = 2, then we say {pn} is quadratically convergent.
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Newton’s method is quadratically convergent when it
converges

Sketch of the proof:
f € C?[a,b], f(p) = 0. By Taylor’s Theorem, we have

F@) = S+ o0 o)+ L @ pay,
—0 = @)= 1)+ -+ ey

_ f(pn) _ 1"(&) _ 2
= @)t 2oy P
A N L.
= (”” f’(Pn)) 2o PP

:>|p_Pn+l| < M ‘P_Pnlz n > 0.

S Al o

(by the Extreme Value Theorem)
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Some remarks on Newton’s method

Advantages:
@ The convergence is quadratic.

@ Newton’s method works for higher dimensional problems.

Disadvantages:

@ Newton’s method converges only locally; i.e., the initial guess po has to be
close enough to the solution p.

@ It needs the first derivative of f(x).




Secant method

@ Secant method: given two initial approximations pg and p1 with pg # p1
and f(po) # f(p1). Then for n > 2,
f(pnfl) - f(pn72)

@ computea = ——F——— "2 if pp_1 # pn—2.
Pn—1 — Pn-2
S(pn—1) .
@ compute pn = pn-1 — %, if f(pn-1) # f(pn—2)-
@ Remarks:

@ we need only one function evaluation per iteration.

@ py, depends on two previous iterations. For example, to compute p2,
we need both p; and pg.

@ how do we obtain p;? We need to use FD-Newton: pick a small
parameter h, compute ap = (f(po + h) — f(po))/h, then
p1 =po — f(po)/ao.

@ The convergence of secant method is superlinear (i.e., better than linear).
More precisely, we have

. [pnt1—pl N
lim ol O, (1++V5)/2~1.62<2.

Nonlinear Equations — 24/31



Geometrical interpretation of the secant method

The first two iterations of the secant method. The red curve shows the function f
and the blue lines are the secants.

)

This picture is quoted from http://en.wikipedia.org/wiki/
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Example

@ Consider the function f(z) = cos(z) —z. 3 p € (0,7/2) such that f(p) = 0.
Let po = 0.5 and p; = 7/4.

The secant method:

_ (pnfl - Pnfz)(COS(Pnfl) _ pnfl)
Pn = Pn—-1— , n>2.
(COS(pnil) - pnfl) - (Cos(pn72) - pn72)

@ Numerical results:

Pn f(pn)

0.50000000000000 0.37758256189037
0.78539816339745 | -0.07829138221090
0.73638413883658 0.00451771852217
0.73905813921389 0.00004517721596
0.73908514933728 | -0.00000002698217
0.73908513321506 0.00000000000016

U N~ O3

See the details of the M-file: secant.m
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Newton’s method for systems of nonlinear equations

@ We wish to solve
fi(z1,z2) =0,
fa(z1,22) =0,
where f1 and fs are nonlinear functions of x1 and x2.

@ Applying Taylor’s expansion in two variables around (z1,2) to obtain:

0:f2($1+h1,1‘2+h2) ~f2($1’$2)+h16f2(9317932) —‘rh sz(wlﬂxz)

{ 0= fi(z1 + hi,22 + h2) ~f1(11,$2)+h18f1(111’12) + hp 201 (oL2a)

@ Putting it into the matrix form, we have

HE SR

df1(z1,x2)  Of1(z1,m2) h
ox ox 1
)

1 2
Of2(z1,22)  Of2(z1,22)
Oxq

Oxo




Newton’s method for systems of nonlinear equations
(continued)

@ To simplify the notation we introduce the Jacobian matrix:

Ofi(z1,x2)  Of1(x1,22) :l

_ oz ox
J(z1,22) = |: 3f2(93117932) 6f2(112,z2)
oxq dxo

@ Then we have

0 fi(z1, z2) h1
= J(z1, .
{ 0 ] [ Paler,an) | T @1,22) |
@ If J(x1,x2) is nonsingular then we can solve for [h1, hQ]T:

J(m,m)[ Z; } =—{ i(@1,22) }

fa(z1,x2)




Newton’s method for systems of nonlinear equations
(continued)

@ Newton’s method for the system of nonlinear equations is defined as follows:
for k=0,1,---,
(k+1) (k) h(k)
(k+1) = (k) h(k)
CINE h( ) A, 2)
J(xi, ) = 1 )
2 f2 (xl Ty )

Use Newton’s method with initial guess x(0) = (xgo),xgo))T =(0,1)T to
solve the following nonlinear system (perform two iterations):

+

with
@ Example:

4712 — 92 =0,
dzi20%2 — 21 = 1.
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Newton’s method for higher dimensional problems

@ In general, we can use Newton’s method for F'(X) = 0, where
X = (z1,22,...,2n) | and F = (f1, fo,..., fa) .

@ For higher dimensional problem, the first derivative is defined as a matrix

(the Jacobian matrix)

ofi(XxX)  ohAX) ... 9fa(X)
oxq Oxo Oxp
0f2(X) 9f2(X) .. 0f2(X)
DF(X) _ oxq Oxo Oxp
Ofn(X)  0fn(X) | Ofn(X)
oxq Oxzo Oxp nxn

@ Newton’s method in n-dimensional space: given X(0) = ks

define

O, aT,

x+1) — x (k) 4 gk)

where

DF(XMNHF) — _p(x (k)

which requires the solving of a large linear system of equations at every

iteration.
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Operations involved in Newton’s method for higher

dimensional problems

vector operations: not expensive.

function evaluations: can be expensive.

compute the Jacobian: can be expensive.

solving matrix equations (linear system): very expensive!

Computer project 2: write the computer code of Newton’s method for solving
the system of equations

1

3z — cos(yz) — 5 = 0,

22 —81(y +0.1)2 +sin(z) + 1.06 = 0,
10m -3

e 4202 + ”T = 0,

with initial guess (x,7,2)" = (0.1,0.1, —0.1) .
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