MA 3021: Numerical Analysis I Solutions of Nonlinear Equations

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 32001, Taiwan

E-mail: syyang@math.ncu.edu.tw

Website: http://www.math.ncu.edu.tw/~syyang/

Introduction

• A nonlinear equation:

Let $f: \varnothing \neq A \subseteq \mathbb{R} \to \mathbb{R}$ be a nonlinear real-valued function in a single variable x. We are interested in finding the roots (solutions) of the equation f(x) = 0, i.e., zeros of the function f(x).

• A system of nonlinear equations:

Let $F: \emptyset \neq A \subseteq \mathbb{R}^n \to \mathbb{R}^n$ be a nonlinear vector-valued function in a vector variable $X = (x_1, x_2, \dots, x_n)^{\top}$. We are interested in finding the roots (solutions) of the equation $F(X) = \mathbf{0}$, i.e., zeros of the function F(X).

Examples

- Let us look at three functions (polynomials):
 - $f(x) = x^4 12x^3 + 47x^2 60x$
 - $f(x) = x^4 12x^3 + 47x^2 60x + 24$
 - $f(x) = x^4 12x^3 + 47x^2 60x + 24.1$
- Find the zeros of these polynomials is not an easy task.
 - The first function has real zeros 0, 3, 4, and 5.
 - The real zeros of the second function are 1 and 0.888....
 - The third function has no real zeros at all.

Objectives

Consider the nonlinear equation f(x) = 0 or F(X) = 0.

- The basic questions:
 - Does the solution exist?
 - Is the solution unique?
 - How to find it?
- In this lecture, we will mainly focus on the third question and we always assume that the problem under considered has a solution x^* .
- We will study iterative methods for finding the solution: first find an initial guess x_0 , then a better guess x_1, \ldots , in the end we hope that $\lim_{n\to\infty} x_n = x^*$.
- Iterative methods:
 - bisection method;
 - fixed-point method;
 - Newton's method;
 - secant method.

Bisection method

- Bolzano's Theorem: $f \in C[a, b]$ and $f(a)f(b) < 0 \Longrightarrow \exists p \in (a, b)$ such that f(p) = 0.
- The basic idea: assume that f(a)f(b) < 0.
 - set $a_1 = a$ and $b_1 = b$, compute $p_1 = \frac{1}{2}(a_1 + b_1)$.
 - if $f(p_1)f(a_1) = 0$ then $f(p_1) = 0 \Longrightarrow \tilde{p} = p_1$; if $f(p_1)f(a_1) > 0$ then $p \in (p_1, b_1)$, set $a_2 = p_1$ and $b_2 = b_1$; if $f(p_1)f(a_1) < 0$ then $p \in (a_1, p_1)$, set $a_2 = a_1$ and $b_2 = p_1$;
 - $p_2 = \frac{1}{2}(a_2 + b_2).$
 - repeat the process until the interval is very small then any point in the interval can be used as approximations of the zero. In fact,

The bisection algorithm

Input a, b, tolerance TOL, max. no. of iteration N_0 .

Output approximate sol. of p or message of failure.

Step 1: i = 1, FA = f(a).

Step 2: while
$$i \le N_0$$
 do step 3-6.
Step 3: set $p = a + \frac{1}{2}(b - a)$; $FP = f(p)$.

Step 4: if
$$FP = 0$$
 or $\frac{1}{2}(b-a) < TOL$ then output(p); stop.

Step 5: i = i + 1.

Step 6: if $FA \times FP > 0$ then set a = p and FA = FP; else set b = p.

Step 7: output(method failed after N_0 iterations); stop.

Stopping criteria

Let $\varepsilon > 0$ be a given tolerance.

- $|p_N p_{N-1}| < \varepsilon$ (Note that $|p_N p_{N-1}| = \frac{1}{4} |b_{N-1} a_{N-1}|$);
- $\bullet \ \frac{|p_N p_{N-1}|}{|p_N|}, \text{ if } p_N \neq 0;$
- $\bullet \ |f(p_N)| < \varepsilon$

Example

Find a root of $f(x) = x^3 + 4x^2 - 10$. Note that f(1) = -5, f(2) = 14. $\therefore \exists \text{ root } p \in [1, 2]$. Using the bisection method, we get the table (actual root is p = 1.365230013...):

n	a_n	b_n	p_n	$f(p_n)$
1	1.0000000000000	2.0000000000000	1.5000000000000	2.3750000000000
2	1.0000000000000	1.5000000000000	1.2500000000000	-1.796875000000
3	1.2500000000000	1.5000000000000	1.3750000000000	0.162109375000
١.				
:	:	:	:	:
13	1.364990234375	1.365234375000	1.365112304687	-0.001943659010
14	1.365112304687	1.365234375000	1.365173339843	-0.000935847281
١.				
:	:	:	:	:
18	1.365226745605	1.365234375000	1.365230560302	0.000009030992

See the details of the M-file: bisection.m

Properties of the bisection method

- **Drawbacks:** often slow; a good intermediate approximation may be discarded; doesn't work for higher dimensional problems: F(X) = 0.
- Advantage: it always converges to a solution if a suitable initial interval can be chosen.
- Theorem: $f \in C[a, b]$, f(a)f(b) < 0, f(p) = 0. The bisection method generates a sequence $\{p_n\}$ with $|p_n p| \le \frac{1}{2^n}(b a)$, $\forall n \ge 1$. Proof. For $n \ge 1$, we have $b_n - a_n = \frac{1}{2^{n-1}}(b - a)$ and $p \in (a_n, b_n)$.

$$p_n = \frac{1}{2}(a_n + b_n), \forall n \ge 1.$$

$$\therefore p_n - p \le \frac{1}{2}(b_n - a_n) = \frac{1}{2} \frac{1}{2^{n-1}}(b - a) = \frac{1}{2^n}(b - a).$$

• Note: ::
$$|p_n - p| \le \frac{1}{2^n} (b - a)$$
 :: $p_n = p + O(\frac{1}{2^n})$.

Fixed points

- $X \subseteq \mathbb{R}, g: X \to \mathbb{R}$. If $p \in X$ and g(p) = p, then p is called a fixed point of g.
- Root-finding problem & fixed-point problem are equivalent in the following sense:
 - If p is a root of f(x) = 0, p is a fixed point of g(x) := x f(x), $h(x) := x \frac{f(x)}{f'(x)}$, etc.
 - If p is a fixed point of g(x), i.e., g(p) = p, then p is a root of f(x) := x g(x), h(x) := 3x 3g(x), etc.

 $({\rm root\text{-}finding\ problem}) \Longleftrightarrow ({\rm fixed\text{-}point\ problem}).$

• Example: $g(x) = x^2 - 2, x \in [-2, 3].$

$$g(-1) = (-1)^2 - 2 = -1$$
 and $g(2) = 2^2 - 2 = 2$.

 \therefore -1 and 2 are fixed points of g.

A fixed point theorem

- If $g \in C[a, b]$ and $g(x) \in [a, b]$, $\forall x \in [a, b]$, then g has a fixed point in [a, b], i.e., $\exists p \in [a, b]$ s.t. g(p) = p.
- If, in addition, g' exists on (a, b) and $\exists \ 0 < k < 1$ such that $|g'(x)| \le k$, $\forall \ x \in (a, b)$, then the fixed point is unique in [a, b].
- Then, for any $p_0 \in [a, b]$ and $p_n := g(p_{n-1}), n \ge 1$, the sequence $\{p_n\}$ converges to the unique fixed point $p \in [a, b]$ and
 - $|p_n p| \le k^n \max\{p_0 a, b p_0\}, \forall n \ge 1;$
 - $|p_n p| \le \frac{k^n}{1-k} |p_1 p_0|, \forall n \ge 1.$

Proof.

- If g(a) = a or g(b) = b then g has a fixed point in [a,b]. Suppose not, then $a < g(a) \le b$ and $a \le g(b) < b$. Define h(x) := g(x) x. Then h is continuous on [a,b] and h(a) > 0, h(b) < 0. By the Intermediate Value Theorem, $\exists \ p \in (a,b)$ such that h(p) = 0, i.e., g(p) = p.
- Suppose that $\exists \ p < q \in [a,b]$ are fixed points of g. Then g(p) = p and g(q) = q. By the Mean Value Theorem, $\exists \ \xi \in (p,q)$ such that $\frac{g(q) g(p)}{q p} = g'(\xi) \Longrightarrow \frac{|g(q) g(p)|}{|q p|} = |g'(\xi)| \le k < 1 \Longrightarrow 1 = \frac{|q p|}{|q p|} \le k < 1$. This is a contradiction. Therefore, the fixed point is unique.

Proof (continued)

- For $n \geq 1$, by the Mean Value Theorem, $\exists \xi \in (a, b)$ such that $0 \leq |p_n p| = |g(p_{n-1}) g(p)| = |g'(\xi)||p_{n-1} p| \leq k|p_{n-1} p|$. $\implies 0 \leq |p_n p| \leq k|p_{n-1} p| \leq k^2|p_{n-2} p| \leq \cdots \leq k^n|p_0 p|$. $\implies \lim_{n \to \infty} |p_n p| = 0 \Leftrightarrow \lim_{n \to \infty} p_n = p$.
 - : $|p_n p| \le k^n |p_0 p|$ and $p \in [a, b]$. : $|p_n - p| \le k^n \max\{p_0 - a, b - p_0\}, \forall n \ge 1$.
 - For $n \ge 1$, $|p_{n+1} - p_n| = |g(p_n) - g(p_{n-1})| \le k|p_n - p_{n-1}| \le \dots \le k^n|p_1 - p_0|$. \therefore For $m > n \ge 1$, we have

$$\begin{aligned} |p_m - p_n| &= |p_m - p_{m-1} + p_{m-1} - p_{m-2} + \dots + p_{n+1} - p_n| \\ &\leq |p_m - p_{m-1}| + |p_{m-1} - p_{m-2}| + \dots + |p_{n+1} - p_n| \\ &\leq k^{m-1} |p_1 - p_0| + k^{m-2} |p_1 - p_0| + \dots + k^n |p_1 - p_0| \\ &= k^n (1 + k + \dots + k^{m-n-1}) |p_1 - p_0|. \end{aligned}$$

 $\therefore \lim_{n\to\infty} p_n = p.$

$$\therefore |p - p_n| = \lim_{m \to \infty} |p_m - p_n| \le k^n |p_1 - p_0| \sum_{i=0}^{\infty} k^i = k^n |p_1 - p_0| \frac{1}{1 - k}.$$

(: geometric series with 0 < k < 1)

$$|p - p_n| \le \frac{k^n}{1-k} |p_1 - p_0|.$$

Fixed-point iterations

• Fixed point iterations:

$$p_n = g(p_{n-1}), \quad n = 1, 2, \cdots$$

Assume that g is continuous and $\lim_{n\to\infty} p_n = p$. Then

$$g(p) = g(\lim_{n \to \infty} p_n) = g(\lim_{n \to \infty} p_{n-1}) = \lim_{n \to \infty} g(p_{n-1}) = \lim_{n \to \infty} p_n = p.$$

Therefore, p is a fixed point of the function g.

• Example: $f(x) = x^3 + 4x^2 - 10 = 0$ has a unique root in [1, 2].

$$f(1) = -5 < 0$$
, $f(2) = 14 > 0$ and $f'(x) = 3x^2 + 8x > 0$, $\forall x \in (1, 2)$ (f is increasing on [1, 2]).

Fixed-point problem

root-finding problem \iff fixed-point problem.

(a)
$$x = g_1(x) := x - x^3 - 4x^2 + 10$$
.

(b)
$$x = g_2(x) := \left(\frac{10}{x} - 4x\right)^{1/2}$$
.

(c)
$$x = g_3(x) := \frac{1}{2} (10 - x^3)^{1/2}$$
.

(d)
$$x = g_4(x) := \left(\frac{10}{4+x}\right)^{1/2}$$
.

(e)
$$x = g_5(x) := x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$
.

Numerical results

Using the fixed-point iterations, we have (the actual root is p = 1.365230013...):

n	(a)	(b)	(c)	(d)	(e)
0	1.5	1.5	1.5	1.5	1.5
3	: -469.7	$(-8.65)^{1/2}$:	:	:
4	1.03×10^{8}	(0.00)			1.365230013
15			: 1.365223680	: 1.365230013	
30			: 1.365230013		

Computer project 1: write the Matlab files for the cases (c), (d), and (e).

Newton's method

- Motivation: we know how to solve f(x) = 0 if f is linear. For nonlinear f, we can always approximate it with a linear function.
- Suppose that $f \in C^2[a, b]$ and f(p) = 0. Let $p_0 \in [a, b]$ be an approximation to $p, f'(p_0) \neq 0$ and $|p p_0|$ is "small". Using Taylor Theorem, we have

$$0 = f(p) = f(p_0) + (p - p_0)f'(p_0) + \frac{(p - p_0)^2}{2}f''(\xi(p)).$$

If $|p - p_0|$ is small, then we can drop the $(p - p_0)^2$ term,

$$0 \approx f(p_0) + (p - p_0)f'(p_0).$$

Solving for p gives

$$p \approx p_1 := p_0 - \frac{f(p_0)}{f'(p_0)}, \text{ provided } f'(p_0) \neq 0.$$

• Newton's method can be defined as follows: for $n = 1, 2, \cdots$

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}, \text{ provided } f'(p_{n-1}) \neq 0.$$

Geometrical interpretation

- An illustration of one iteration of Newton's method. The function f is shown in blue and the tangent line is in red. We see that p_n is a better approximation than p_{n-1} for the root p of the function f.
- What is the geometrical meaning of $f'(p_{n-1}) = 0$?

Example

• Consider the function $f(x) = \cos(x) - x$.

$$f(\pi/2) = -\pi/2 < 0$$
 and $f(0) = 1 > 0$. $\exists p \in (0, \pi/2)$ such that $f(p) = 0$. $f'(x) = -\sin(x) - 1$.

Newton's method: choose $p_0 \in [0, \pi/2]$ and

$$p_n := p_{n-1} - \frac{\cos(p_{n-1}) - p_{n-1}}{-\sin(p_{n-1}) - 1}, \quad n \ge 1.$$

• Numerical results: $p_0 = \pi/4$.

n	p_n	$f(p_n)$
0	0.78539816339745	-0.07829138221090
1	0.73953613351524	-0.00075487468250
2	0.73908517810601	-0.00000007512987
3	0.73908513321516	-0.000000000000000

See the details of the M-file: newton.m

Convergence Theorem

Theorem: Assume that $f \in C^2[a, b]$, $p \in (a, b)$ such that f(p) = 0 and $f'(p) \neq 0$. Then $\exists \delta > 0$ such that if $p_0 \in [p - \delta, p + \delta]$ then Newton's method generates $\{p_n\}$ converging to p.

Proof: Define
$$g(x) = x - \frac{f(x)}{f'(x)}$$
. Then $g(p) = p$.

Let $k \in (0,1)$. We want to find $\delta > 0$ s.t. $g([p-\delta, p+\delta]) \subseteq [p-\delta, p+\delta]$ and $|g'(x)| \le k, \ \forall \ x \in (p-\delta, p+\delta)$.

- $f'(p) \neq 0$ and f' is continuous on [a, b].
- \therefore By the sign-preserving property, $\exists \delta_1 > 0$ s.t. $f'(x) \neq 0 \ \forall \ x \in [p \delta_1, p + \delta_1]$.
- $\therefore g$ is continuous on $[p \delta_1, p + \delta_1]$ and

$$g'(x) = 1 - \left\{ \frac{f'(x)f'(x) - f(x)f''(x)}{(f'(x))^2} \right\} = \frac{f(x)f''(x)}{(f'(x))^2}, \ \forall \ x \in [p - \delta_1, p + \delta_1].$$

- $\therefore f \in C^2[a,b]. \qquad \therefore g \in C^1[p-\delta_1, p+\delta_1].$
- $\therefore f(p) = 0 \qquad \therefore g'(p) = 0.$
- g' is continuous on $[p \delta_1, p + \delta_1]$.
- $\therefore \exists \ \delta > 0 \text{ and } \delta < \delta_1 \text{ s.t. } |g'(x)| \le k, \ \forall \ x \in [p \delta, p + \delta].$

Convergence Theorem (continued)

Claim: $g([p - \delta, p + \delta]) \subseteq [p - \delta, p + \delta].$

Let $x \in [p - \delta, p + \delta]$.

By the MVT, $\exists \xi$ between x and p s.t. $|g(x) - g(p)| \le |g'(\xi)||x - p|$.

$$\therefore |g(x) - p| \le k|x - p| < |x - p| \le \delta.$$

That is, $g(x) \in [p - \delta, p + \delta]$.

Convergence order

- Definition: Suppose $\{p_n\}$ converges to p ($\lim_{n\to\infty} p_n = p$) with $p_n \neq p$, $\forall n$. If $\exists \ \lambda, \alpha > 0$ s.t. $\lim_{n\to\infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} = \lambda$, then we say that $\{p_n\}$ converges to p of order α with asymptotic error constant λ .
- Note: If $\alpha = 1$ (and $\lambda < 1$), then we say $\{p_n\}$ is linearly convergent. If $\alpha = 2$, then we say $\{p_n\}$ is quadratically convergent.

Newton's method is quadratically convergent when it converges

Sketch of the proof:

 $f \in C^2[a,b], f(p) = 0$. By Taylor's Theorem, we have

$$f(x) = f(p_n) + f'(p_n)(x - p_n) + \frac{f''(\xi)}{2!}(x - p_n)^2.$$

$$\implies 0 = f(p) = f(p_n) + f'(p_n)(p - p_n) + \frac{f''(\xi)}{2!}(p - p_n)^2.$$

$$\Rightarrow (p - p_n) + \frac{f(p_n)}{f'(p_n)} = -\frac{f''(\xi)}{2f'(p_n)}(p - p_n)^2.$$

$$\Rightarrow p - \left(p_n - \frac{f(p_n)}{f'(p_n)}\right) = -\frac{f''(\xi)}{2f'(p_n)}(p - p_n)^2.$$

$$\Rightarrow |p - p_{n+1}| \leq \frac{M}{2|f'(p_n)|}|p - p_n|^2, \quad n \geq 0.$$
(by the Extreme Value Theorem)

Some remarks on Newton's method

Advantages:

- The convergence is quadratic.
- Newton's method works for higher dimensional problems.

Disadvantages:

- Newton's method converges only locally; i.e., the initial guess p_0 has to be close enough to the solution p.
- It needs the first derivative of f(x).

Secant method

- Secant method: given two initial approximations p_0 and p_1 with $p_0 \neq p_1$ and $f(p_0) \neq f(p_1)$. Then for n > 2,
 - $\begin{array}{l} \bullet \ \ \text{compute} \ a = \frac{f(p_{n-1}) f(p_{n-2})}{p_{n-1} p_{n-2}}, \ \text{if} \ p_{n-1} \neq p_{n-2}. \\ \bullet \ \ \text{compute} \ p_n = p_{n-1} \frac{f(p_{n-1})}{a}, \ \text{if} \ f(p_{n-1}) \neq f(p_{n-2}). \end{array}$
- Remarks:
 - we need only one function evaluation per iteration.
 - p_n depends on two previous iterations. For example, to compute p_2 , we need both p_1 and p_0 .
 - how do we obtain p_1 ? We need to use FD-Newton: pick a small parameter h, compute $a_0 = (f(p_0 + h) - f(p_0))/h$, then $p_1 = p_0 - f(p_0)/a_0$.
- The convergence of secant method is superlinear (i.e., better than linear). More precisely, we have

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{(1 + \sqrt{5})/2}} = C, \quad (1 + \sqrt{5})/2 \approx 1.62 < 2.$$

Geometrical interpretation of the secant method

The first two iterations of the secant method. The red curve shows the function f and the blue lines are the secants.

This picture is quoted from http://en.wikipedia.org/wiki/

Example

• Consider the function $f(x) = \cos(x) - x$. $\exists p \in (0, \pi/2)$ such that f(p) = 0. Let $p_0 = 0.5$ and $p_1 = \pi/4$.

The secant method:

$$p_n := p_{n-1} - \frac{(p_{n-1} - p_{n-2})(\cos(p_{n-1}) - p_{n-1})}{(\cos(p_{n-1}) - p_{n-1}) - (\cos(p_{n-2}) - p_{n-2})}, \quad n \ge 2.$$

• Numerical results:

n	p_n	$f(p_n)$
0	0.500000000000000	0.37758256189037
1	0.78539816339745	-0.07829138221090
2	0.73638413883658	0.00451771852217
3	0.73905813921389	0.00004517721596
4	0.73908514933728	-0.00000002698217
5	0.73908513321506	0.000000000000016

See the details of the M-file: secant.m

Newton's method for systems of nonlinear equations

We wish to solve

$$\begin{cases} f_1(x_1, x_2) &= 0, \\ f_2(x_1, x_2) &= 0, \end{cases}$$

where f_1 and f_2 are nonlinear functions of x_1 and x_2 .

• Applying Taylor's expansion in two variables around (x_1, x_2) to obtain:

$$\begin{cases} 0 = f_1(x_1 + h_1, x_2 + h_2) & \approx f_1(x_1, x_2) + h_1 \frac{\partial f_1(x_1, x_2)}{\partial x_1} + h_2 \frac{\partial f_1(x_1, x_2)}{\partial x_2}, \\ 0 = f_2(x_1 + h_1, x_2 + h_2) & \approx f_2(x_1, x_2) + h_1 \frac{\partial f_2(x_1, x_2)}{\partial x_1} + h_2 \frac{\partial f_2(x_1, x_2)}{\partial x_2}. \end{cases}$$

• Putting it into the matrix form, we have

$$\left[\begin{array}{c} 0 \\ 0 \end{array}\right] = \left[\begin{array}{c} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{array}\right] + \left[\begin{array}{cc} \frac{\partial f_1(x_1, x_2)}{\partial x_1} & \frac{\partial f_1(x_1, x_2)}{\partial x_2} \\ \frac{\partial f_2(x_1, x_2)}{\partial x_1} & \frac{\partial f_2(x_1, x_2)}{\partial x_2} \end{array}\right] \left[\begin{array}{c} h_1 \\ h_2 \end{array}\right].$$

Newton's method for systems of nonlinear equations (continued)

To simplify the notation we introduce the Jacobian matrix:

$$J(x_1, x_2) = \begin{bmatrix} \frac{\partial f_1(x_1, x_2)}{\partial x_1} & \frac{\partial f_1(x_1, x_2)}{\partial x_2} \\ \frac{\partial f_2(x_1, x_2)}{\partial x_1} & \frac{\partial f_2(x_1, x_2)}{\partial x_2} \end{bmatrix}.$$

• Then we have

$$\left[\begin{array}{c} 0 \\ 0 \end{array}\right] = \left[\begin{array}{c} f_1(x_1,x_2) \\ f_2(x_1,x_2) \end{array}\right] + J(x_1,x_2) \left[\begin{array}{c} h_1 \\ h_2 \end{array}\right].$$

• If $J(x_1, x_2)$ is nonsingular then we can solve for $[h_1, h_2]^{\top}$:

$$J(x_1, x_2) \left[\begin{array}{c} h_1 \\ h_2 \end{array} \right] = - \left[\begin{array}{c} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{array} \right].$$

Newton's method for systems of nonlinear equations (continued)

• Newton's method for the system of nonlinear equations is defined as follows: for $k = 0, 1, \dots$,

$$\left[\begin{array}{c}x_1^{(k+1)}\\x_2^{(k+1)}\end{array}\right]=\left[\begin{array}{c}x_1^{(k)}\\x_2^{(k)}\end{array}\right]+\left[\begin{array}{c}h_1^{(k)}\\h_2^{(k)}\end{array}\right]$$

with

$$J(x_1^{(k)}, x_2^{(k)}) \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix} = - \begin{bmatrix} f_1(x_1^{(k)}, x_2^{(k)}) \\ f_2(x_1^{(k)}, x_2^{(k)}) \end{bmatrix}.$$

• Example:

Use Newton's method with initial guess $\mathbf{x}^{(0)} = (x_1^{(0)}, x_2^{(0)})^{\top} = (0, 1)^{\top}$ to solve the following nonlinear system (perform two iterations):

$$\begin{cases} 4x_1^2 - x_2^2 = 0, \\ 4x_1x_2^2 - x_1 = 1. \end{cases}$$

Newton's method for higher dimensional problems

- In general, we can use Newton's method for $F(X) = \mathbf{0}$, where $X = (x_1, x_2, \dots, x_n)^{\top}$ and $F = (f_1, f_2, \dots, f_n)^{\top}$.
- For higher dimensional problem, the first derivative is defined as a matrix (the Jacobian matrix)

$$DF(X) := \begin{bmatrix} \frac{\partial f_1(X)}{\partial x_1} & \frac{\partial f_1(X)}{\partial x_2} & \dots & \frac{\partial f_1(X)}{\partial x_n} \\ \frac{\partial f_2(X)}{\partial x_1} & \frac{\partial f_2(X)}{\partial x_2} & \dots & \frac{\partial f_2(X)}{\partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_n(X)}{\partial x_1} & \frac{\partial f_n(X)}{\partial x_2} & \dots & \frac{\partial f_n(X)}{\partial x_n} \end{bmatrix}_{n \times n}.$$

• Newton's method in *n*-dimensional space: given $X^{(0)} = [x_1^{(0)}, \cdots, x_n^{(0)}]^{\top}$, define

$$X^{(k+1)} = X^{(k)} + H^{(k)},$$

where

$$DF(X^{(k)})H^{(k)} = -F(X^{(k)}),$$

which requires the solving of a large linear system of equations at every iteration.

Operations involved in Newton's method for higher dimensional problems

- vector operations: not expensive.
- function evaluations: can be expensive.
- compute the Jacobian: can be expensive.
- solving matrix equations (linear system): very expensive!

Computer project 2: write the computer code of Newton's method for solving the system of equations

$$\begin{cases} 3x - \cos(yz) - \frac{1}{2} &= 0, \\ x^2 - 81(y+0.1)^2 + \sin(z) + 1.06 &= 0, \\ e^{-xy} + 20z + \frac{10\pi - 3}{3} &= 0, \end{cases}$$

with initial guess $(x, y, z)^{\top} = (0.1, 0.1, -0.1)^{\top}$.