MA 3021: Numerical Analysis I Numerical Ordinary Differential Equations

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 32001, Taiwan

E-mail: syyang@math.ncu.edu.tw

Website: $http://www.math.ncu.edu.tw/\sim syyang/$

Initial-value problems

• Initial-value problem (IVP): find x(t) such that

$$\begin{cases} x'(t) &= f(t,x), \\ x(t_0) &= x_0, \end{cases}$$

where $f(t, x), t_0, x_0 \in \mathbb{R}^1$ are given.

• Example 1:

$$\begin{cases} x'(t) = x \tan(t+3), \\ x(-3) = 1. \end{cases}$$

One can verify that the analytic solution of this IVP is $x(t) = \sec(t+3)$. Since $\sec t$ becomes ∞ at $t = \pm \frac{\pi}{2}$, the solution is valid only for $-\frac{\pi}{2} < t+3 < \frac{\pi}{2}$.

• Example 2:

$$\begin{cases} x'(t) = x, \\ x(0) = 1. \end{cases}$$

Try $x(t) = ce^{rt} \Rightarrow cre^{rt} = ce^{rt} \Rightarrow r = 1 \Rightarrow x = ce^t \Leftarrow general solution.$

Use $x(0) = 1 \Rightarrow x = e^t \Leftarrow \text{particular solution}$.

The existence and uniqueness of solutions

- Existence: do all IVPs has a solution? Answer: No! Some assumptions must be made about f, and even then we can expect the solution to exist only in a neighborhood of $t = t_0$.
- Example:

$$\begin{cases} x'(t) = 1 + x^2, \\ x(0) = 0. \end{cases}$$

Try $x(t) = \tan t$. x(0) = 0.

LHS:
$$(\tan t)' = \frac{\cos^2 t + \sin^2 t}{\cos^2 t}$$
;

RHS:
$$1 + \tan^2 t = 1 + \frac{\sin^2 t}{\cos^2 t}$$
.

Hence $x(t) = \tan t$ is a solution of the IVP.

• If $t \to \pi/2$ then $x \to \infty$. For the solution starting at t = 0, it has to "stop the clock" before $t = \pi/2$. Here we can only say that there exists a solution for a limited time.

Existence theorem

Consider the IVP:

$$\begin{cases} x'(t) &= f(t,x), \\ x(t_0) &= x_0, \end{cases}$$

If f is continuous in a rectangle R centered at (t_0, x_0) , say

$$R = \{(t, x) : |t - t_0| \le \alpha, |x - x_0| \le \beta\},\$$

then the IVP has a solution x(t) for

$$|t - t_0| \le \min\{\alpha, \beta/M\},\$$

where M is maximum of |f(t,x)| in the rectangular R.

Example

Prove that

$$\begin{cases} x'(t) = (t + \sin x)^2, \\ x(0) = 3 \end{cases}$$

has a solution on the interval $-1 \le t \le 1$.

- Consider $f(t,x) = (t + sinx)^2$, where $(t_0, x_0) = (0,3)$.
- Let $R = \{(t, x) : |t| \le \alpha, |x 3| \le \beta\}$. Then $|f(t, x)| \le (\alpha + 1)^2 := M$.
- We want $|t-0| \le 1 \le \min\{\alpha, \beta/M\}$.
- Let $\alpha = 1$ then $M = (1+1)^2 = 4$ and force $\beta \ge 4$. By the Existence Theorem, the IVP has a solution on $|t t_0| \le \min\{\alpha, \beta/M\} = 1$.

Uniqueness

ullet If f is continuous, we may still have more than one solution, e.g.,

$$\begin{cases} x'(t) = x^{2/3}, \\ x(0) = 0. \end{cases}$$

Note that x = 0 is a solution for all t. Another solution is $x(t) = t^3/27$.

 \bullet To have a unique solution, we need to assume somewhat more about f.

Uniqueness theorem

Consider the IVP:

$$\begin{cases} x'(t) &= f(t,x), \\ x(t_0) &= x_0, \end{cases}$$

If f and $\frac{\partial f}{\partial x}$ are continuous in the rectangle R centered at (t_0, x_0) ,

$$R = \{(t, x) : |t - t_0| \le \alpha, |x - x_0| \le \beta\},\$$

then the IVP has a unique solution x(t) for

$$|t - t_0| \le \min\{\alpha, \beta/M\},$$

where M is maximum of |f(t,x)| in the rectangular R.

Another uniqueness theorem

Consider the IVP:

$$\begin{cases} x'(t) &= f(t,x), \\ x(t_0) &= x_0, \end{cases}$$

If f is continuous in $a \le t \le b$, $-\infty < x < \infty$ and satisfies

$$|f(t,x_1) - f(t,x_2)| \le L|x_1 - x_2|, \tag{*}$$

then the IVP has a unique solution x(t) in the interval [a, b].

Note: Inequality (*) is called the Lipschitz condition in the 2nd variable.

Example

Prove that

$$\begin{cases} x'(t) &= 1 + t\sin(tx), \\ x(0) &= 0 \end{cases}$$

has a solution on the interval $0 \le t \le 2$.

- Since $f(t,x) = 1 + t\sin(tx)$, we have $\left|\frac{\partial f}{\partial x}(t,x)\right| = |t^2\cos(tx)| \le 4$ for $0 \le t \le 2$ and $-\infty < x < \infty$.
- By the MVT, $\exists \xi$ between x_1 and x_2 s.t.

$$f(t,x_2) - f(t,x_1) = \frac{\partial f(t,\xi)}{\partial x}(x_2 - x_1).$$

$$\Longrightarrow |f(t,x_2) - f(t,x_1)| \le 4|x_2 - x_1|.$$

$$\implies$$
 f satisfies (*) with $L=4$ and f is continuous in $0 \le t \le 2$, $-\infty < x < \infty$.

$$\implies$$
 the IVP has a unique solution $x(t)$ for $a \le t \le b$.

Numerical methods

• Consider the IVP:

$$\begin{cases} x'(t) &= f(t,x), \\ x(t_0) &= x_0. \end{cases}$$

• Strategy: Instead of finding x(t) for all t in some interval containing t_0 , we find x(t) at some fixed points.

Taylor-series method

- ullet For the Taylor-series method, it is necessary to assume that various partial derivatives of f exist.
- We use a concrete example to illustrate the method. Consider an IVP as

$$\begin{cases} x'(t) = \cos t - \sin x + t^2, \\ x(-1) = 3. \end{cases}$$

• Assume that we know x(t) and we wish to compute x(t+h). By the Taylor series for x, we have

$$x(t+h) = x(t) + hx'(t) + \frac{h^2}{2!}x''(t) + \frac{h^3}{3!}x'''(t) + \frac{h^4}{4!}x^{(4)}(t) + O(h^5).$$

Taylor-series method (continued)

• How to compute x'(t), x'''(t), x'''(t) and $x^{(4)}(t)$ in the last equation?

```
 \left\{ \begin{array}{lll} x'(t) & = & \cos t - \sin x + t^2, \\ x''(t) & = & -\sin t - (\cos x)x' + 2t, \\ x'''(t) & = & -\cos t + \sin x(x')^2 - (\cos x)x'' + 2, \\ x^{(4)}(t) & = & \sin t + (\cos x)(x')^3 + 3(\sin x)x'x'' - (\cos x)x'''. \end{array} \right.
```

- If we truncate at h^4 then the local truncation error for obtaining x(t+h) is $O(h^5)$. We say the method is of order 4.
- **Definition:** The order of the Taylor-series method is n if terms up to and include $h^n x^{(n)}(t)/n!$ are used.

Algorithm

Starting t = -1 with h = 0.01, we can compute the solution in [-1, 1] with 200 steps:

$$\begin{array}{rcl} \textbf{output} \ 0,t,x \\ \textbf{for} \ k=1 \ \textbf{to} \ M \ \textbf{do} \\ & x' & \leftarrow & \cos t - \sin x + t^2 \\ & x'' & \leftarrow & -\sin t - (\cos x)x' + 2t \\ & x''' & \leftarrow & -\cos t + \sin x(x')^2 - (\cos x)x'' + 2 \\ & x^{(4)} & \leftarrow & \sin t + (\cos x)(x')^3 + 3(\sin x)x'x'' - (\cos x)x''' \\ & x & \leftarrow & x + h(x' + \frac{h}{2}(x'' + \frac{h}{3!}(x''' + \frac{h}{4!}x^{(4)})))) \\ & t & \leftarrow & t + h \end{array}$$

input $M \leftarrow 200, h \leftarrow 0.01, t \leftarrow -1, x \leftarrow 3$

output k, t, x end do

Error estimate

• The estimate of the local truncation error can be done by looking at

$$E_n = \frac{1}{(n+1)!} h^{n+1} x^{(n+1)} (t+\theta h) \quad \text{for some } \theta \in (0,1).$$

Hence

$$E_4 = \frac{1}{5!} h^5 x^{(5)} (t + \theta h) \quad \theta \in (0, 1).$$

• We can replace $x^{(5)}(t+\theta h)$ by a simple finite-difference approximation

$$E_4 \approx \frac{1}{5!} h^5 \left(\frac{x^{(4)}(t+h) - x^{(4)}(t)}{h} \right) = \frac{h^4}{120} \left(x^{(4)}(t+h) - x^{(4)}(t) \right).$$

• Suppose that the local truncation error (LTE) is $O(h^{n+1})$. An error of this sort is present in each step of the numerical solution. The accumulation of all many LTEs gives rise the global truncation error (GTE).

$$GTE \approx \frac{T - t_0}{h} O(h^{n+1}) = O(h^n).$$

And we say the numerical method is of $O(h^n)$.

Advantages and disadvantages of the Taylor-series method

Disadvantages:

- The method depends on repeated differentiation of the differential equation, unless we intend to use only the method of order 1.

 ⇒ f(t,x) must have partial derivatives of sufficient high order in the region where are solving the problem. Such an assumption is not necessary for the existence of a solution.
- The various derivatives formula need to be programmed.

• Advantages:

- Conceptual simplicity.
- Potential for high precision. If we get e.g. 20 derivatives of x(t), then the method is order 20 (i.e. terms up to and including the one involving h^{20}).

Euler's method

- If n = 1, the Taylor series method reduces to Euler's method.
- Advantage of the method is not to require any differentiation of f.
- Disadvantage of the method is that the necessity of taking small value for h
 to gain acceptable precision.
- Consider the following IVP:

$$\begin{cases} x'(t) = \cos t - \sin x + t^2, \\ x(0) = 3. \end{cases}$$

Derive Euler's method based on the Taylor series and compute x(0.1) when h = 0.1.

Basic concepts of Runge-Kutta methods

We wish to approximate the following IVP:

$$\begin{cases} x'(t) = f(t,x), \\ x(t_0) = x_0. \end{cases}$$

• From the Taylor theorem, we have

$$x(t+h) = x(t) + hx'(t) + \frac{h^2}{2!}x''(t) + O(h^3).$$

• By the chain rule, we obtain

$$\begin{cases} x''(t) &= f_t + f_x x' = f_t + f_x f, \\ x'''(t) &= f_{tt} + f_{tx} f + (f_t + f_x f) f_x + f(f_{xt} + f_{xx} f). \end{cases}$$

Basic concepts of Runge-Kutta methods (continued)

In the Taylor expansion, we have

$$x(t+h) = x(t) + hf(t,x) + \frac{h^2}{2}(f_t(t,x) + f_x(t,x)f(t,x)) + O(h^3)$$

$$= x(t) + \frac{h}{2}f(t,x) + \frac{h}{2}[f(t,x) + hf_t(t,x) + hf_x(t,x)f(t,x))] + O(h^3)$$

$$= x(t) + \frac{h}{2}f(t,x) + \frac{h}{2}f(t+h,x+hf(t,x)) + O(h^3).$$

Note that the term in the square blankets above can be obtained by the Taylor expansion in two variables

$$f(t+h, x+hf(t, x)) = f(t, x) + hf_t(t, x) + hf(t, x)f_x(t, x) + O(h^2).$$

A second-order Runge-Kutta method

• Then a 2nd-order Runge-Kutta (RK) method is given by

$$x(t+h) \approx x(t) + \frac{h}{2}f(t,x) + \frac{h}{2}f(t+h,x+hf(t,x)),$$

or alternating

$$x(t+h) \approx x(t) + \frac{1}{2}(F_1 + F_2),$$

where

$$F_1 = hf(t,x),$$

 $F_2 = hf(t+h,x+F_1).$

• It is also known as Heun's method.

The general second-order Runge-Kutta method

• In general, the 2nd order RK method needs

$$x(t+h) = x(t) + \omega_1 h f + \omega_2 h f(t+\alpha h, x+\beta h f) + O(h^3),$$

= $x(t) + \omega_1 h f + \omega_2 h [f+\alpha h f_t + \beta h f f_x] + O(h^3).$

Compare with

$$x(t+h) = x(t) + hf + \frac{h^2}{2}(f_t + f_x f) + O(h^3),$$

we have

$$\omega_1 + \omega_2 = 1,$$

$$\omega_2 \alpha = 1/2,$$

$$\omega_2 \beta = 1/2.$$

The modified Euler method

The previous method (Heun's method) is obtained by setting

$$\begin{cases} \omega_1 = \omega_2 = 1/2, \\ \alpha = \beta = 1. \end{cases}$$

Setting

$$\begin{cases} \omega_1 = 0, \\ \omega_2 = 1, \\ \alpha = \beta = 1/2, \end{cases}$$

we obtain the following modified Euler method:

$$x(t+h) \approx x(t) + F_2$$
,

where $F_1 = hf(t, x)$ and $F_2 = hf(t + \frac{1}{2}h, x + \frac{1}{2}F_1)$.

Fourth-order RK methods

- The derivations of higher order RK methods are tedious. However, the formulas are rather elegant and easily programmed once they have been derived.
- The most popular 4th order RK is:

$$x(t+h) \approx x(t) + \frac{1}{6}(F_1 + 2F_2 + 2F_3 + F_4),$$

where

$$\begin{cases}
F_1 &= hf(t,x), \\
F_2 &= hf(t+\frac{h}{2},x+\frac{1}{2}F_1), \\
F_3 &= hf(t+\frac{h}{2},x+\frac{1}{2}F_2), \\
F_4 &= hf(t+h,x+F_3).
\end{cases}$$

Computer project

• Use the most popular 4th order RK with h=1/128 to solve the following IVP for $t \in [1,3]$ and then plot the piecewise linear approximate solution:

$$\begin{cases} x'(t) = t^{-2}(tx - x^2), \\ x(1) = 2. \end{cases}$$

• Also plot the exact solution:

$$x(t) = (1/2 + \ln t)^{-1}t.$$

Algorithm

$$\begin{array}{lll} \text{input } M \leftarrow 256, \, t \leftarrow 1.0, \, h \leftarrow 0.0078125, \, x \leftarrow 2.0 \\ \text{define } f(t,x) = (tx-x^2)/t^2 \\ \text{define } u(t) = t/(1/2 + \ln t) \\ e \leftarrow |u(t) - x| \\ \text{output } 0, t, x, e \\ \text{for } k = 1 \text{ to } M \text{ do} \\ & F_1 \leftarrow hf(t,x) \\ & F_2 \leftarrow hf(t + \frac{h}{2}, x + \frac{1}{2}F_1) \\ & F_3 \leftarrow hf(t + \frac{h}{2}, x + \frac{1}{2}F_2) \\ & F_4 \leftarrow hf(t + h, x + F_3) \\ & x \leftarrow x + \frac{1}{6}(F_1 + 2F_2 + 2F_3 + F_4) \\ & t \leftarrow t + h \\ & e \leftarrow |u(t) - x| \end{array}$$

output k, t, x, e end do

A system of first-order differential equations

The standard form for a system of first-order ODEs is given by

$$\begin{cases}
 x'_1(t) &= f_1(t, x_1, x_2, \dots, x_n), \\
 x'_2(t) &= f_2(t, x_1, x_2, \dots, x_n), \\
 &\vdots \\
 x'_n(t) &= f_n(t, x_1, x_2, \dots, x_n).
\end{cases} (*)$$

There are n unknown functions, x_1, x_2, \cdots, x_n to be determined. Here $x_i'(t) := \frac{dx_i}{dt}$.

Example

Consider the system of first-order differential equations:

$$\begin{cases} x'(t) = x + 4y - e^t, \\ y'(t) = x + y + 2e^t. \end{cases}$$

The general solution:

$$\begin{cases} x(t) = 2ae^{3t} - 2be^{-t} - 2e^{t}, \\ y(t) = ae^{3t} + be^{-t} + 1/4e^{t}, \end{cases}$$

where $a, b \in \mathbb{R}$. If the system of differential equations with the initial conditions, e.g., x(0) = 4 and y(0) = 5/4, then the solution is unique, and

$$\begin{cases} x(t) = 4e^{3t} + 2e^{-t} - 2e^{t}, \\ y(t) = 2e^{3t} - e^{-t} + 1/4e^{t}. \end{cases}$$

Vector notation and higher-order ODEs

• Vector notation: let $X := [x_1, x_2, \cdots, x_n]^{\top}$ and $F := [f_1, f_2, \cdots, f_n]^{\top}$, where $X \in \mathbb{R}^n$ and $F : \mathbb{R}^{n+1} \to \mathbb{R}^n$.

Then an IVP associated with the system of ODEs (*) is given by

$$\begin{cases} X'(t) &= F(t, X(t)), \\ X(t_0) &= X_0 \in \mathbb{R}^n. \end{cases}$$

• A higher-order ODE can be converted to a first-order system.

Consider $y^{(n)}(t) = f(t, y, y', \dots, y^{(n-1)})$ and introduce $x_1 = y, x_2 = y', \dots, x_n = y^{(n-1)}$. Then we have

$$\begin{cases} x'_1(t) &= x_2, \\ x'_2(t) &= x_3, \\ \vdots \\ x'_{n-1}(t) &= x_n, \\ x'_n(t) &= f(t, x_1, x_2, \dots, x_n). \end{cases}$$

Example 1

Convert the higher-order IVP

$$(\sin t)y''' + \cos(ty) + \sin(y'' + t^2) + (y')^3 = \log t$$

with y(2) = 7, y'(2) = 3, y''(2) = -4 to a system of 1st-order equations with initial values.

Solution: Let $x_1(t) = y(t), x_2(t) = y'(t), x_3(t) = y''(t)$. Then,

$$\begin{cases} x'_1(t) &= x_2, \\ x'_2(t) &= x_3, \\ x'_3(t) &= \{\log t - x_2^3 - \sin(t^2 + x_3) - \cos(tx_1)\} / \sin t, \end{cases}$$

with
$$x_1(2) = 7$$
, $x_2(2) = 3$, $x_3(2) = -4$.

Example 2

Convert the system

$$\left\{ \begin{array}{rcl} (x^{\prime\prime})^2 + te^y + y^\prime & = & x^\prime - x, \\ y^\prime y^{\prime\prime} - \cos(xy) + \sin(tx^\prime y) & = & x \end{array} \right.$$

to a system of 1st-order equations.

Taylor-series method for systems

For each variable, use the Taylor-series method

$$x_i(t+h) = x_i(t) + hx_i'(t) + \frac{h^2}{2!}x_i''(t) + \frac{h^3}{3!}x_i'''(t) + \dots + \frac{h^n}{n!}x_i^{(n)}(t),$$

or in the vector form

$$X(t+h) = X(t) + hX'(t) + \frac{h^2}{2!}X''(t) + \frac{h^3}{3!}X'''(t) + \dots + \frac{h^n}{n!}X^{(n)}(t).$$

Autonomous systems

- From the theoretical standpoint, there is no loss of generality in assuming that the equations in system (*) do not contain t explicitly. We can take $x_0(t) = t$, $x_0'(t) = 1$. Then $x_i' = f_i(x_0, x_1, \dots, x_n)$, $i = 0, 1, \dots, n$, or X'(t) = F(X), where $X(t) = (x_0(t), x_1(t), \dots, x_n(t))^{\top}$.
- Example: convert the following IVP to an autonomous system

$$(\sin t)y''' + \cos(ty) + \sin(y'' + t^2) + (y')^3 = \log t,$$

with
$$y(2) = 7, y'(2) = 3, y''(2) = -4$$
.

Solution: Let $x_0(t) = t$. Then $x_0'(t) = 1$. Let $x_1'(t) = x_2$ and $x_2'(t) = x_3$. Then we have

$$\begin{cases} x_0'(t) &= 1, \\ x_1'(t) &= x_2, \\ x_2'(t) &= x_3, \\ x_3'(t) &= \{\log x_0 - x_2^3 - \sin(x_0^2 + x_3) - \cos(x_0 x_1)\} / \sin x_0, \end{cases}$$

with the initial condition $X(2) = (2, 7, 3, -4)^{\top}$.

RK4 method for X'(t) = F(X)

 \bullet For an autonomous system of equations, X'(t)=F(X), we have 4th-order Runge-Kutta method:

$$X(t+h) = X(t) + \frac{1}{6}(F_1 + 2F_2 + 2F_3 + F_4),$$

where

$$\begin{array}{rcl} F_1 & = & hF(X), \\ F_2 & = & hF(X+1/2F_1), \\ F_3 & = & hF(X+1/2F_2), \\ F_4 & = & hF(X+F_3). \end{array}$$

• Other methods, they are all similar to the single equation case.

Collocation method

Suppose that we have a linear differential operator L and we wish to solve the equation:

$$Lu(t) = f(t), \quad a < t < b,$$

where f is given and u is sought.

- Let $\{v_1, v_2, \dots, v_n\}$ be a set of functions that are linearly independent. Suppose that $u(t) \approx c_1 v_1(t) + c_2 v_2(t) + \dots + c_n v_n(t)$, where $c_i \in \mathbb{R}$.
- Then solve $L(\sum_{j=1} c_j v_j(t)) = f(t)$. How to determine c_j , $j = 1, 2, \dots, n$?
- Let t_i , $i = 1, 2, \dots, n$, be n prescribed points (collocation points) in the domain of u and f. Then we require the following equations to determine c_j , $j = 1, 2, \dots, n$:

$$\sum_{i=1}^{n} c_j(Lv_j)(t_i) = f(t_i), \quad i = 1, 2, \dots, n.$$

• This is a system of n linear equations in n unknowns c_j . The functions v_j and the points t_i should be chosen so that the matrix with entries $(Lv_j)(t_i)$ is nonsingular.

Collocation method for Sturm-Liouville BVPs

Consider a Sturm-Liouville two-point BVP:

$$\begin{cases} u''(t) + p(t)u'(t) + q(t)u(t) &= f(t), \quad 0 < t < 1, \\ u(0) &= 0, \\ u(1) &= 0, \end{cases}$$
(*)

where p, q, f are given continuous functions on [0, 1]

• Let Lu := u'' + pu' + qu. Define the vector space

$$V = \{ u \in C^2(0,1) \cap C[0,1] : u(0) = u(1) = 0 \}.$$

If u is an exact solution of (*), then $u \in V$.

One set of functions is given by

$$v_{jk}(t) = t^j (1-t)^k \in C^2[0,1], \quad 1 \le j \le m, 1 \le k \le n.$$

Variational formulation of a 1-dim model problem

Consider the following two-point boundary value problem (BVP):

$$\begin{cases} -u''(x) = f(x), & 0 < x < 1, \\ u(0) = u(1) = 0, \end{cases}$$
 (D)

where f is a given function in C[0, 1].

Remark: problem (D) has a unique classical solution $u \in C^2(0,1) \cap C[0,1]$.

Some notation and definitions

- $(v, w) := \int_0^1 v(x)w(x)dx$ for real-valued piecewise continuous and bounded functions v and w defined on [0, 1].
- $V := \{v | v \in C[0,1], v(0) = v(1) = 0, v' \text{ is piecewise continuous and bounded on } [0,1]\}.$
- $F: V \to \mathbb{R}, F(v) := \frac{1}{2}(v', v') (f, v) = \frac{1}{2} \int_0^1 (v'(x))^2 dx \int_0^1 f(x)v(x)dx$. (represents the total potential energy)
- Define the following minimization and variational problems:

Find
$$u \in V$$
 such that $F(u) \leq F(v)$, $\forall v \in V$. (M)

Find
$$u \in V$$
 such that $(u', v') = (f, v), \forall v \in V.$ (V)

$(D) \Rightarrow (V)$

The solution of problem (D) is also a solution of problem (V):

$$: -u''(x) = f(x), \quad 0 < x < 1.$$

$$\therefore \int_0^1 -u''(x)v(x)dx = \int_0^1 f(x)v(x)dx, \quad \forall \ v \in V.$$

$$\therefore (-u'', v) = (f, v), \quad \forall \ v \in V.$$

$$\therefore (u',v') - u'(x)v(x)\Big|_0^1 = (f,v), \quad \forall \ v \in V.$$
 (integration by parts)

$$\therefore (u', v') = (f, v), \quad \forall \ v \in V.$$

$$(V) \Leftrightarrow (M)$$

Problems (V) and (M) have the same solutions:

• (V) \Rightarrow (M): Let u be a solution of problem (V). Let $v \in V$ and $w = v - u \in V$. Then v = u + w and

$$F(v) = F(u+w) = \frac{1}{2}((u+w)', (u+w)') - (f, u+w)$$

$$= \frac{1}{2}(u', u') + (u', w') + \frac{1}{2}(w', w') - (f, u) - (f, w)$$

$$= \frac{1}{2}(u', u') + \frac{1}{2}(w', w') - (f, u)$$

$$\geq \frac{1}{2}(u', u') - (f, u) = F(u).$$

• (M) \Rightarrow (V): Let u be a solution of problem (M). Then for any $v \in V$, $\varepsilon \in \mathbb{R}$, we have $F(u) \leq F(u + \varepsilon v)$, since $u + \varepsilon v \in V$. Define

$$g(\varepsilon) := F(u+\varepsilon v) = \frac{1}{2}((u+\varepsilon v)', (u+\varepsilon v)') - (f, u+\varepsilon v)$$
$$= \frac{1}{2}(u', u') + \frac{1}{2}\varepsilon^2(v', v') + \varepsilon(u', v') - (f, u) - \varepsilon(f, v).$$

 $f(\varepsilon) = (u', v') + \varepsilon(v', v') - (f, v) \text{ and } g'(0) = 0.$ $f(\varepsilon) = 0 = 0$ $f(\varepsilon) = 0 = 0$

Both problems (V) & (M) have at most one solution

It suffices to prove that problem (V) has at most one solution. Suppose that u_1 and u_2 are solutions of problem (V). Then

$$(u'_1, v') = (f, v) \quad \forall \ v \in V,$$

$$(u'_2, v') = (f, v) \quad \forall \ v \in V.$$

$$\therefore (u_1' - u_2', v') = 0 \quad \forall \ v \in V.$$

Taking $v = u_1 - u_2$, we have $(u'_1 - u'_2, u'_1 - u'_2) = 0$.

$$\therefore \int_0^1 (u_1'(x) - u_2'(x))^2 dx = 0.$$

$$u_1'(x) - u_2'(x) = 0, x \in [0, 1]$$
 a.e.

$$\therefore u_1 - u_2$$
 is a step function on $[0, 1]$.

$$\therefore u_1 - u_2$$
 is continuous on $[0,1]$.

$$\therefore u_1 - u_2$$
 is a constant function on $[0, 1]$.

$$u_1(0) = u_1(1) = 0$$
 and $u_2(0) = u_2(1) = 0$.

$$u_1 - u_2 \equiv 0 \text{ on } [0, 1].$$

That is,
$$u_1(x) = u_2(x), \forall x \in [0, 1].$$

$(V) + smoothness \Rightarrow (D)$

Let u be a solution of problem (V). Then $(u', v') = (f, v), \forall v \in V$.

$$\therefore \int_0^1 u'(x)v'(x)dx - \int_0^1 f(x)v(x)dx = 0, \quad \forall \ v \in V.$$

Suppose that u'' exists and continuous on [0,1], i.e., $u \in C^2[0,1]$.

Then
$$-\int_0^1 u''(x)v(x)dx - \int_0^1 f(x)v(x)dx = 0, \quad \forall \ v \in V.$$

$$\therefore -\int_0^1 (u''(x) + f(x))v(x)dx = 0, \quad \forall \ v \in V.$$

By the sign-preserving property for continuous functions, we can conclude that $u''(x) + f(x) = 0, \forall x \in [0, 1].$

 $\therefore u$ is a solution of problem (D).

FEM for the model problem with piecewise linear functions

Construct a finite-dimensional space V_h (finite element space)

Let $0 = x_0 < x_2 < \dots < x_M < x_{M+1} = 1$ be a partition of [0, 1].

[Insert partition figure here!]

Define

- $I_i := [x_{i-1}, x_i], \quad i = 1, 2, \cdots, M+1.$
- $h_j := x_j x_{j-1}, \quad j = 1, 2, \cdots, M+1.$
- $h := \max_{j=1,2,\cdots,M+1} h_j$, a measure of how fine the partition is.

Define

$$V_h := \{v_h \in V | v_h \text{ is linear on each subinterval } I_j, v_h(0) = v_h(1) = 0\}.$$

Notice that $V_h \subseteq V$.

Construct a basis of V_h

Here is a typical $v_h \in V_h$:

[Insert v_h figure here!]

For
$$j = 1, 2, \dots, M$$
, we define $\varphi_j \in V_h$ such that $\varphi_j(x_i) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$
[Insert φ_j figure here!]

Then we have

- $\{\varphi_j\}_{j=1}^M$ is a basis of the finite-dimensional vector space V_h .
 For each $v_h \in V_h$, v_h can be written as a unique linear combination of φ_j 's:

$$v_h(x) = \sum_{j=1}^{M} \eta_j \varphi_j(x)$$
, where $\eta_j = v_h(x_j)$.

Numerical methods for solution of problem (D)

We now define the following two numerical methods for approximating the solution of problem (D):

• Ritz method:

Find
$$u_h \in V_h$$
 such that $F(u_h) \le F(v_h)$, $\forall v_h \in V_h$. (M_h)

• Galerkin method (finite element method):

Find
$$u_h \in V_h$$
 such that $(u'_h, v'_h) = (f, v_h), \quad \forall v_h \in V_h.$ (V_h)

One can claim that $(M_h) \Leftrightarrow (V_h)$.

$$(V_h) \Leftrightarrow Find\ u_h \in V_h\ s.t.\ (u_h', \varphi_i') = (f, \varphi_i),\ 1 \leq i \leq M \Leftrightarrow A\xi = b$$

- $(V_h) \iff Find \ u_h \in V_h \ such \ that \ (u'_h, \varphi'_i) = (f, \varphi_i), \ 1 \le i \le M.$ Proof.
 - (\Rightarrow) : trivial!

(\Leftarrow): For any $v_h \in V_h$, we have $v_h = \sum_{i=1}^M \eta_i \varphi$, for some $\eta_i \in \mathbb{R}, 1 \leq i \leq M$.

$$\therefore (u'_h, v'_h) = (u'_h, \sum_{i=1}^{M} \eta_i \varphi'_i) = \sum_{i=1}^{M} \eta_i (u'_h, \varphi'_i)$$

$$= \sum_{i=1}^{M} \eta_{i}(f, \varphi_{i}) = (f, \sum_{i=1}^{M} \eta_{i} \varphi_{i}) = (f, v_{h}).$$

• Find $u_h \in V_h$ such that $(u'_h, \varphi'_i) = (f, \varphi_i), \ 1 \le i \le M \iff A\xi = b.$

Proof. Let
$$u_h(x) = \sum_{j=1}^M \xi_j \varphi_j(x)$$
, where $\xi_j = u_h(x_j)$, $1 \le j \le M$, are

unknown. Then

$$(u'_h, \varphi'_i) = (f, \varphi_i), \ 1 \le i \le M \Leftrightarrow (\sum_{j=1}^M \xi_j \varphi'_j, \varphi'_i) = (f, \varphi_i), \ 1 \le i \le M$$

$$\Leftrightarrow \sum_{i=1}^{M} \xi_{j}(\varphi'_{j}, \varphi'_{i}) = (f, \varphi_{i}), \ 1 \le i \le M \Leftrightarrow A\xi = b.$$

$A\xi = b$

 $A = (a_{ij})_{M \times M}$: stiffness matrix; $b = (b_i)_{M \times 1}$: load vector; $\xi = (\xi_i)_{M \times 1}$: unknown vector.

$$\begin{bmatrix} (\varphi_1', \varphi_1') & (\varphi_2', \varphi_1') & \cdots & (\varphi_M', \varphi_1') \\ (\varphi_1', \varphi_2') & (\varphi_2', \varphi_2') & \cdots & (\varphi_M', \varphi_2') \\ \vdots & \vdots & \vdots & \vdots \\ (\varphi_1', \varphi_M') & (\varphi_2', \varphi_M') & \cdots & (\varphi_M', \varphi_M') \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_M \end{bmatrix} = \begin{bmatrix} (f, \varphi_1) \\ (f, \varphi_2) \\ \vdots \\ (f, \varphi_M) \end{bmatrix}.$$

Some remarks

- $(\varphi'_i, \varphi'_i) = 0$ if |i j| > 1 ... A is a tri-diagonal matrix.
- : $a_{ij} = (\varphi'_i, \varphi'_i) = (\varphi'_i, \varphi'_i) = a_{ji}$: A is symmetric!
- Claim: A is positive definite.

For any given
$$\eta = (\eta_1, \eta_2, \cdots, \eta_M)^{\top} \in \mathbb{R}^M$$
, define $v_h(x) := \sum_{i=1}^M \eta_i \varphi_i(x)$.

Then

$$0 \le (v'_h, v'_h) = (\sum_{i=1}^M \eta_i \varphi'_i, \sum_{j=1}^M \eta_j \varphi'_j) = \sum_{i,j=1}^M \eta_i (\varphi'_i, \varphi'_j) \eta_j = \eta \cdot A\eta.$$

If $(v_h', v_h') = 0$, then $\int_0^1 (v_h'(x))^2 dx = 0$, which implies that $v_h'(x) = 0$ a.e.

 $v_h \in V_h$, v_h is continuous on [0,1] and $v_h(0) = v_h(1) = 0$.

 $\therefore v_h \equiv 0 \text{ on } [0,1], \text{ i.e., } \eta = \mathbf{0}.$

 $\therefore \eta \cdot A\eta > 0, \forall \eta \in \mathbb{R}^M, \eta \neq \mathbf{0}.$

• \therefore A is SPD \therefore A is nonsingular \therefore $A\xi = b$ has a unique solution!

Evaluate a_{jj} and $a_{j-1,j}$

[Insert a figure of φ_{j-1} and φ_j here!]

For $j = 1, 2, \dots, M$, we have

$$\begin{split} (\varphi_j',\varphi_j') &=& \int_{x_{j-1}}^{x_j} (\varphi_j')^2 dx + \int_{x_j}^{x_{j+1}} (\varphi_j')^2 dx \\ &=& \int_{x_{j-1}}^{x_j} \frac{1}{h_j^2} dx + \int_{x_j}^{x_{j+1}} \frac{1}{h_{j+1}^2} dx = \frac{1}{h_j} + \frac{1}{h_{j+1}}, \\ (\varphi_j',\varphi_{j-1}') &=& (\varphi_{j-1}',\varphi_j') = -\int_{x_{j-1}}^{x_j} \frac{1}{h_j^2} dx = -\frac{1}{h_j}. \end{split}$$

For uniform partition: $h_j = h = \frac{1-0}{M+1}$. Then $A\xi = b$ becomes

$$\frac{1}{h} \left[\begin{array}{cccc} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & -1 & 2 \end{array} \right] \left[\begin{array}{c} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_M \end{array} \right] = \left[\begin{array}{c} (f, \varphi_1) \\ (f, \varphi_2) \\ \vdots \\ (f, \varphi_M) \end{array} \right].$$

Taylor's Theorem with Lagrange remainder

If $f \in C^n[a,b]$ and $f^{(n+1)}$ exists on (a,b), then for any points c and x in [a,b] we have

$$f(x) = P_n(x) + E_n(x),$$

where the *n*-th Taylor polynomial $P_n(x)$ is given by

$$P_n(x) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(c) (x - c)^k$$

and the remainder (error) term $E_n(x)$ is given by

$$E_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi)(x-c)^{n+1}$$

for some point ξ between c and x (means that either $c < \xi < x$ or $x < \xi < c$).

Numerical differentiation

Assume that $u \in C^4[0,1]$ and $0=x_0 < x_2 < \cdots < x_M < x_{M+1}=1$ is a uniform partition of [0,1]. Then $h_j=h=\frac{1-0}{M+1}$ for $j=1,2,\cdots,M+1$.

For $i = 1, 2, \dots, M$, we have

$$u(x_i + h) = u(x_i) + u'(x_i)h + \frac{1}{2}u''(x_i)h^2 + \frac{1}{6}u^{(3)}(x_i)h^3 + \frac{1}{24}u^{(4)}(\xi_{i1})h^4,$$

$$u(x_i - h) = u(x_i) - u'(x_i)h + \frac{1}{2}u''(x_i)h^2 - \frac{1}{6}u^{(3)}(x_i)h^3 + \frac{1}{24}u^{(4)}(\xi_{i2})h^4,$$

for some $\xi_{i1} \in (x_i, x_i + h)$ and $\xi_{i2} \in (x_i - h, x_i)$.

$$\therefore u(x_i + h) + u(x_i - h) = 2u(x_i) + u''(x_i)h^2 + \frac{1}{24}\{u^{(4)}(\xi_{i1}) + u^{(4)}(\xi_{i2})\}h^4.$$

$$\therefore u''(x_i) = \frac{1}{h^2} \{ u(x_i + h) - 2u(x_i) + u(x_i - h) \} - \frac{1}{24} h^2 \{ u^{(4)}(\xi_{i1}) + u^{(4)}(\xi_{i2}) \}.$$

$$u \in C^4[0,1]$$
 and $\frac{1}{2}\{u^{(4)}(\xi_{i1}) + u^{(4)}(\xi_{i2})\}$ between $u^{(4)}(\xi_{i1})$ and $u^{(4)}(\xi_{i2})$.

:. By IVT,
$$\exists \xi_i$$
 between ξ_{i1} and ξ_{i2} ($\Rightarrow \xi_i \in (x_i - h, x_i + h)$) such that $u^{(4)}(\xi_i) = \frac{1}{2} \{u^{(4)}(\xi_{i1}) + u^{(4)}(\xi_{i2})\}.$

$$\therefore u''(x_i) = \frac{1}{h^2} \{ u(x_i + h) - 2u(x_i) + u(x_i - h) \} - \frac{1}{12} h^2 u^{(4)}(\xi_i),$$
 for some $\xi_i \in (x_i - h, x_i + h).$

Finite difference method for problem (D)

$$\begin{cases} -u''(x) = f(x), & 0 < x < 1, \\ u(0) = u(1) = 0. \end{cases}$$
 (D)

For $i = 1, 2, \dots, M$, we have

$$-\frac{1}{h^2}\{u(x_i+h)-2u(x_i)+u(x_i-h)\}+\frac{1}{12}h^2u^{(4)}(\xi_i)=f(x_i).$$

$$\Rightarrow -\frac{1}{h^2} \{ u(x_{i+1}) - 2u(x_i) + u(x_{i-1}) \} + \frac{1}{12} h^2 u^{(4)}(\xi_i) = f(x_i).$$

We wish to find $U_i \simeq u(x_i)$ for $i = 1, 2, \dots, M$ and $U_0 = U_{M+1} := 0$ such that

$$-\frac{1}{h^2}\{U_0 - 2U_1 + U_2\} = f(x_1). \quad (i = 1)$$

$$-\frac{1}{h^2}\{U_1 - 2U_2 + U_3\} = f(x_2). \quad (i=2)$$

:

$$-\frac{1}{h^2}\{U_{M-1} - 2U_M + U_{M+1})\} = f(x_M). \qquad (i = M)$$

Finite difference method for problem (D) (continued)

Finally, we reach at the following linear system:

$$\frac{1}{h^2} \begin{bmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_M \end{bmatrix} = \begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_M) \end{bmatrix}.$$

A comparison: what is the difference between FEM with piecewise linear basis functions and FDM for problem (D)? **Answer:** They are essentially the same!

Consider the first component in the right hand side:

- Finite difference method: $hf(x_1)$.
- Finite element method:

$$(f, \varphi_1) = \int_{x_0}^{x_2} f(x)\varphi_1(x)dx \simeq f(x_1) \int_{x_0}^{x_2} \varphi_1(x)dx = hf(x_1).$$

Computer project

Consider the following one-dimensional convection-diffusion problem:

$$\left\{ \begin{array}{ll} -\varepsilon u^{\prime\prime}(x)+u^{\prime}(x)=0 & \text{for } x\in(0,1),\\ u(0)=1,\ u(1)=0. \end{array} \right.$$

Write the computer codes for numerical solution of problem (*) by using the finite difference methods on the uniform mesh of [0,1] with mesh size h:

- Replace $u''(x_i) \approx \frac{U_{i+1} 2U_i + U_{i-1}}{h^2}$ and $u'(x_i) \approx \frac{U_{i+1} U_{i-1}}{2h}$ and consider $(\varepsilon, h) = (0.01, 0.1), (\varepsilon, h) = (0.01, 0.01)$. Plot u_h .
- Replace $u''(x_i) \approx \frac{U_{i+1} 2U_i + U_{i-1}}{h^2}$ and $u'(x_i) \approx \frac{U_i U_{i-1}}{h}$ (upwinding) and consider $(\varepsilon, h) = (0.01, 0.1), \ (\varepsilon, h) = (0.01, 0.01).$ Plot u_h .