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Initial-value problems

Initial-value problem (IVP): find x(t) such that{
x′(t) = f(t, x),
x(t0) = x0,

where f(t, x), t0, x0 ∈ R1 are given.

Example 1: {
x′(t) = x tan(t+ 3),
x(−3) = 1.

One can verify that the analytic solution of this IVP is x(t) = sec(t+ 3).
Since sec t becomes ∞ at t = ±π

2
, the solution is valid only for

−π
2
< t+ 3 < π

2
.

Example 2: {
x′(t) = x,
x(0) = 1.

Try x(t) = cert ⇒ crert = cert ⇒ r = 1 ⇒ x = cet ⇐ general solution.

Use x(0) = 1⇒ x = et ⇐ particular solution.

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Numerical ODEs – 2/52



The existence and uniqueness of solutions

Existence: do all IVPs has a solution? Answer: No! Some assumptions
must be made about f , and even then we can expect the solution to exist
only in a neighborhood of t = t0.

Example: {
x′(t) = 1 + x2,
x(0) = 0.

Try x(t) = tan t. x(0) = 0.

LHS: (tan t)′ =
cos2 t+ sin2 t

cos2 t
;

RHS: 1 + tan2 t = 1 +
sin2 t

cos2 t
.

Hence x(t) = tan t is a solution of the IVP.

If t→ π/2 then x→∞. For the solution starting at t = 0, it has to “stop
the clock” before t = π/2. Here we can only say that there exists a solution
for a limited time.
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Existence theorem

Consider the IVP: {
x′(t) = f(t, x),
x(t0) = x0,

If f is continuous in a rectangle R centered at (t0, x0), say

R = {(t, x) : |t− t0| ≤ α, |x− x0| ≤ β},

then the IVP has a solution x(t) for

|t− t0| ≤ min{α, β/M},

where M is maximum of |f(t, x)| in the rectangular R.
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Example

Prove that {
x′(t) = (t+ sinx)2,
x(0) = 3

has a solution on the interval −1 ≤ t ≤ 1.

Consider f(t, x) = (t+ sinx)2, where (t0, x0) = (0, 3).

Let R = {(t, x) : |t| ≤ α, |x− 3| ≤ β}. Then |f(t, x)| ≤ (α+ 1)2 := M .

We want |t− 0| ≤ 1 ≤ min{α, β/M}.
Let α = 1 then M = (1 + 1)2 = 4 and force β ≥ 4. By the Existence
Theorem, the IVP has a solution on |t− t0| ≤ min{α, β/M} = 1.
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Uniqueness

If f is continuous, we may still have more than one solution, e.g.,{
x′(t) = x2/3,
x(0) = 0.

Note that x = 0 is a solution for all t. Another solution is x(t) = t3/27.

To have a unique solution, we need to assume somewhat more about f .
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Uniqueness theorem

Consider the IVP: {
x′(t) = f(t, x),
x(t0) = x0,

If f and ∂f
∂x

are continuous in the rectangle R centered at (t0, x0),

R = {(t, x) : |t− t0| ≤ α, |x− x0| ≤ β},

then the IVP has a unique solution x(t) for

|t− t0| ≤ min{α, β/M},

where M is maximum of |f(t, x)| in the rectangular R.
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Another uniqueness theorem

Consider the IVP: {
x′(t) = f(t, x),
x(t0) = x0,

If f is continuous in a ≤ t ≤ b, −∞ < x <∞ and satisfies

|f(t, x1)− f(t, x2)| ≤ L|x1 − x2|, (∗)

then the IVP has a unique solution x(t) in the interval [a, b].

Note: Inequality (*) is called the Lipschitz condition in the 2nd variable.
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Example

Prove that {
x′(t) = 1 + t sin(tx),
x(0) = 0

has a solution on the interval 0 ≤ t ≤ 2.

Since f(t, x) = 1 + t sin(tx), we have | ∂f
∂x

(t, x)| = |t2 cos(tx)| ≤ 4 for
0 ≤ t ≤ 2 and −∞ < x <∞.

By the MVT, ∃ ξ between x1 and x2 s.t.

f(t, x2)− f(t, x1) =
∂f(t,ξ)
∂x

(x2 − x1).

=⇒ |f(t, x2)− f(t, x1)| ≤ 4|x2 − x1|.

=⇒ f satisfies (*) with L = 4 and f is continuous in 0 ≤ t ≤ 2,
−∞ < x <∞.

=⇒ the IVP has a unique solution x(t) for a ≤ t ≤ b.
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Numerical methods

Consider the IVP: {
x′(t) = f(t, x),
x(t0) = x0.

Strategy: Instead of finding x(t) for all t in some interval containing t0, we
find x(t) at some fixed points.
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Taylor-series method

For the Taylor-series method, it is necessary to assume that various partial
derivatives of f exist.

We use a concrete example to illustrate the method. Consider an IVP as{
x′(t) = cos t− sinx+ t2,
x(−1) = 3.

Assume that we know x(t) and we wish to compute x(t+ h). By the Taylor
series for x, we have

x(t+ h) = x(t) + hx′(t) +
h2

2!
x′′(t) +

h3

3!
x′′′(t) +

h4

4!
x(4)(t) +O(h5).
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Taylor-series method (continued)

How to compute x′(t), x′′(t), x′′′(t) and x(4)(t) in the last equation?
x′(t) = cos t− sinx+ t2,
x′′(t) = − sin t− (cosx)x′ + 2t,
x′′′(t) = − cos t+ sinx(x′)2 − (cosx)x′′ + 2,

x(4)(t) = sin t+ (cosx)(x′)3 + 3(sinx)x′x′′ − (cosx)x′′′.

If we truncate at h4 then the local truncation error for obtaining x(t+ h) is
O(h5). We say the method is of order 4.

Definition: The order of the Taylor-series method is n if terms up to and
include hnx(n)(t)/n! are used.
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Algorithm

Starting t = −1 with h = 0.01, we can compute the solution in [−1, 1] with 200
steps:

input M ← 200, h← 0.01, t← −1, x← 3
output 0, t, x
for k = 1 to M do

x′ ← cos t− sinx+ t2

x′′ ← − sin t− (cosx)x′ + 2t
x′′′ ← − cos t+ sinx(x′)2 − (cosx)x′′ + 2

x(4) ← sin t+ (cosx)(x′)3 + 3(sinx)x′x′′ − (cosx)x′′′

x ← x+ h(x′ + h
2

(x′′ + h
3!

(x′′′ + h
4!
x(4)))))

t ← t+ h

output k, t, x
end do
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Error estimate

The estimate of the local truncation error can be done by looking at

En =
1

(n+ 1)!
hn+1x(n+1)(t+ θh) for some θ ∈ (0, 1).

Hence

E4 =
1

5!
h5x(5)(t+ θh) θ ∈ (0, 1).

We can replace x(5)(t+ θh) by a simple finite-difference approximation

E4 ≈
1

5!
h5

(
x(4)(t+ h)− x(4)(t)

h

)
=

h4

120

(
x(4)(t+ h)− x(4)(t)

)
.

Suppose that the local truncation error (LTE) is O(hn+1). An error of this
sort is present in each step of the numerical solution. The accumulation of
all many LTEs gives rise the global truncation error (GTE).

GTE ≈
T − t0
h

O(hn+1) = O(hn).

And we say the numerical method is of O(hn).
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Advantages and disadvantages of the Taylor-series method

Disadvantages:

The method depends on repeated differentiation of the differential
equation, unless we intend to use only the method of order 1.
=⇒ f(t, x) must have partial derivatives of sufficient high order in the
region where are solving the problem. Such an assumption is not
necessary for the existence of a solution.
The various derivatives formula need to be programmed.

Advantages:

Conceptual simplicity.
Potential for high precision.
If we get e.g. 20 derivatives of x(t), then the method is order 20 (i.e.
terms up to and including the one involving h20).
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Euler’s method

If n = 1, the Taylor series method reduces to Euler’s method.

Advantage of the method is not to require any differentiation of f .

Disadvantage of the method is that the necessity of taking small value for h
to gain acceptable precision.

Consider the following IVP:{
x′(t) = cos t− sinx+ t2,
x(0) = 3.

Derive Euler’s method based on the Taylor series and compute x(0.1) when
h = 0.1.
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Basic concepts of Runge-Kutta methods

We wish to approximate the following IVP:{
x′(t) = f(t, x),
x(t0) = x0.

From the Taylor theorem, we have

x(t+ h) = x(t) + hx′(t) +
h2

2!
x′′(t) +O(h3).

By the chain rule, we obtain{
x′′(t) = ft + fxx′ = ft + fxf,
x′′′(t) = ftt + ftxf + (ft + fxf)fx + f(fxt + fxxf).
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Basic concepts of Runge-Kutta methods (continued)

In the Taylor expansion, we have

x(t+ h) = x(t) + hf(t, x) +
h2

2
(ft(t, x) + fx(t, x)f(t, x)) +O(h3)

= x(t) +
h

2
f(t, x) +

h

2
[f(t, x) + hft(t, x) + hfx(t, x)f(t, x))] +O(h3)

= x(t) +
h

2
f(t, x) +

h

2
f(t+ h, x+ hf(t, x)) +O(h3).

Note that the term in the square blankets above can be obtained by the
Taylor expansion in two variables

f(t+ h, x+ hf(t, x)) = f(t, x) + hft(t, x) + hf(t, x)fx(t, x) +O(h2).
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A second-order Runge-Kutta method

Then a 2nd-order Runge-Kutta (RK) method is given by

x(t+ h) ≈ x(t) +
h

2
f(t, x) +

h

2
f(t+ h, x+ hf(t, x)),

or alternating

x(t+ h) ≈ x(t) +
1

2
(F1 + F2),

where

F1 = hf(t, x),

F2 = hf(t+ h, x+ F1).

It is also known as Heun’s method.
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The general second-order Runge-Kutta method

In general, the 2nd order RK method needs

x(t+ h) = x(t) + ω1hf + ω2hf(t+ αh, x+ βhf) +O(h3),

= x(t) + ω1hf + ω2h [f + αhft + βhffx] +O(h3).

Compare with

x(t+ h) = x(t) + hf +
h2

2
(ft + fxf) +O(h3),

we have

ω1 + ω2 = 1,

ω2α = 1/2,

ω2β = 1/2.
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The modified Euler method

The previous method (Heun’s method) is obtained by setting{
ω1 = ω2 = 1/2,
α = β = 1.

Setting  ω1 = 0,
ω2 = 1,
α = β = 1/2,

we obtain the following modified Euler method:

x(t+ h) ≈ x(t) + F2,

where F1 = hf(t, x) and F2 = hf(t+ 1
2
h, x+ 1

2
F1).
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Fourth-order RK methods

The derivations of higher order RK methods are tedious. However, the
formulas are rather elegant and easily programmed once they have been
derived.

The most popular 4th order RK is:

x(t+ h) ≈ x(t) +
1

6
(F1 + 2F2 + 2F3 + F4),

where 

F1 = hf(t, x),

F2 = hf(t+ h
2
, x+ 1

2
F1),

F3 = hf(t+ h
2
, x+ 1

2
F2),

F4 = hf(t+ h, x+ F3).
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Computer project

Use the most popular 4th order RK with h = 1/128 to solve the following
IVP for t ∈ [1, 3] and then plot the piecewise linear approximate solution:{

x′(t) = t−2(tx− x2),
x(1) = 2.

Also plot the exact solution:

x(t) = (1/2 + ln t)−1t.
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Algorithm

input M ← 256, t← 1.0, h← 0.0078125, x← 2.0
define f(t, x) = (tx− x2)/t2

define u(t) = t/(1/2 + ln t)
e← |u(t)− x|
output 0, t, x, e
for k = 1 to M do

F1 ← hf(t, x)

F2 ← hf(t+ h
2
, x+ 1

2
F1)

F3 ← hf(t+ h
2
, x+ 1

2
F2)

F4 ← hf(t+ h, x+ F3)

x ← x+ 1
6

(F1 + 2F2 + 2F3 + F4)

t ← t+ h

e ← |u(t)− x|

output k, t, x, e
end do
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A system of first-order differential equations

The standard form for a system of first-order ODEs is given by


x′1(t) = f1(t, x1, x2, · · · , xn),
x′2(t) = f2(t, x1, x2, · · · , xn),

...
x′n(t) = fn(t, x1, x2, · · · , xn).

(∗)

There are n unknown functions, x1, x2, · · · , xn to be determined. Here

x′i(t) :=
dxi

dt
.
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Example

Consider the system of first-order differential equations:{
x′(t) = x+ 4y − et,
y′(t) = x+ y + 2et.

The general solution: {
x(t) = 2ae3t − 2be−t − 2et,
y(t) = ae3t + be−t + 1/4et,

where a, b ∈ R. If the system of differential equations with the initial conditions,
e.g., x(0) = 4 and y(0) = 5/4, then the solution is unique, and{

x(t) = 4e3t + 2e−t − 2et,
y(t) = 2e3t − e−t + 1/4et.
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Vector notation and higher-order ODEs

Vector notation: let X := [x1, x2, · · · , xn]> and F := [f1, f2, · · · , fn]>,
where X ∈ Rn and F : Rn+1 → Rn.

Then an IVP associated with the system of ODEs (∗) is given by{
X′(t) = F (t,X(t)),
X(t0) = X0 ∈ Rn.

A higher-order ODE can be converted to a first-order system.

Consider y(n)(t) = f(t, y, y′, · · · , y(n−1)) and introduce
x1 = y, x2 = y′, · · · , xn = y(n−1). Then we have



x′1(t) = x2,
x′2(t) = x3,

...
x′n−1(t) = xn,
x′n(t) = f(t, x1, x2, · · · , xn).
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Example 1

Convert the higher-order IVP

(sin t)y′′′ + cos(ty) + sin(y′′ + t2) + (y′)3 = log t

with y(2) = 7, y′(2) = 3, y′′(2) = −4 to a system of 1st-order equations with initial
values.

Solution: Let x1(t) = y(t), x2(t) = y′(t), x3(t) = y′′(t). Then, x′1(t) = x2,
x′2(t) = x3,
x′3(t) = {log t− x32 − sin(t2 + x3)− cos(tx1)}/ sin t,

with x1(2) = 7, x2(2) = 3, x3(2) = −4.
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Example 2

Convert the system{
(x′′)2 + tey + y′ = x′ − x,

y′y′′ − cos(xy) + sin(tx′y) = x

to a system of 1st-order equations.
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Taylor-series method for systems

For each variable, use the Taylor-series method

xi(t+ h) = xi(t) + hx′i(t) +
h2

2!
x′′i (t) +

h3

3!
x′′′i (t) + · · ·+

hn

n!
x
(n)
i (t),

or in the vector form

X(t+ h) = X(t) + hX′(t) +
h2

2!
X′′(t) +

h3

3!
X′′′(t) + · · ·+

hn

n!
X(n)(t).
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Autonomous systems

From the theoretical standpoint, there is no loss of generality in assuming
that the equations in system (∗) do not contain t explicitly. We can take
x0(t) = t, x′0(t) = 1. Then x′i = fi(x0, x1, · · · , xn), i = 0, 1, · · · , n, or

X′(t) = F (X), where X(t) = (x0(t), x1(t), · · · , xn(t))>.

Example: convert the following IVP to an autonomous system

(sin t)y′′′ + cos(ty) + sin(y′′ + t2) + (y′)3 = log t,

with y(2) = 7, y′(2) = 3, y′′(2) = −4.

Solution: Let x0(t) = t. Then x′0(t) = 1. Let x′1(t) = x2 and x′2(t) = x3.
Then we have

x′0(t) = 1,
x′1(t) = x2,
x′2(t) = x3,
x′3(t) = {log x0 − x32 − sin(x20 + x3)− cos(x0x1)}/ sinx0,

with the initial condition X(2) = (2, 7, 3,−4)>.
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RK4 method for X ′(t) = F (X)

For an autonomous system of equations, X′(t) = F (X), we have 4th-order
Runge-Kutta method:

X(t+ h) = X(t) +
1

6
(F1 + 2F2 + 2F3 + F4),

where

F1 = hF (X),

F2 = hF (X + 1/2F1),

F3 = hF (X + 1/2F2),

F4 = hF (X + F3).

Other methods, they are all similar to the single equation case.
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Collocation method

Suppose that we have a linear differential operator L and we wish to solve the
equation:

Lu(t) = f(t), a < t < b,

where f is given and u is sought.

Let {v1, v2, · · · , vn} be a set of functions that are linearly independent.
Suppose that u(t) ≈ c1v1(t) + c2v2(t) + · · ·+ cnvn(t), where ci ∈ R.

Then solve L(
∑
j=1

cjvj(t)) = f(t). How to determine cj , j = 1, 2, · · · , n?

Let ti, i = 1, 2, · · · , n, be n prescribed points (collocation points) in the
domain of u and f . Then we require the following equations to determine cj ,
j = 1, 2, · · · , n:

n∑
j=1

cj(Lvj)(ti) = f(ti), i = 1, 2, · · · , n.

This is a system of n linear equations in n unknowns cj . The functions vj
and the points ti should be chosen so that the matrix with entries (Lvj)(ti)
is nonsingular.
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Collocation method for Sturm-Liouville BVPs

Consider a Sturm-Liouville two-point BVP: u′′(t) + p(t)u′(t) + q(t)u(t) = f(t), 0 < t < 1,
u(0) = 0,
u(1) = 0,

(∗)

where p, q, f are given continuous functions on [0, 1]

Let Lu := u′′ + pu′ + qu. Define the vector space

V = {u ∈ C2(0, 1) ∩ C[0, 1] : u(0) = u(1) = 0}.

If u is an exact solution of (∗), then u ∈ V .

One set of functions is given by

vjk(t) = tj(1− t)k ∈ C2[0, 1], 1 ≤ j ≤ m, 1 ≤ k ≤ n.
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Variational formulation of a 1-dim model problem

Consider the following two-point boundary value problem (BVP):{
−u′′(x) = f(x), 0 < x < 1,
u(0) = u(1) = 0,

(D)

where f is a given function in C[0, 1].

Remark: problem (D) has a unique classical solution u ∈ C2(0, 1) ∩ C[0, 1].
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Some notation and definitions

(v, w) :=
∫ 1
0 v(x)w(x)dx for real-valued piecewise continuous and bounded

functions v and w defined on [0, 1].

V := {v| v ∈ C[0, 1], v(0) = v(1) = 0, v′ is piecewise continuous and
bounded on [0, 1]}.
F : V → R, F (v) := 1

2
(v′, v′)− (f, v) = 1

2

∫ 1
0 (v′(x))2dx−

∫ 1
0 f(x)v(x)dx.

(represents the total potential energy)

Define the following minimization and variational problems:

Find u ∈ V such that F (u) ≤ F (v), ∀ v ∈ V. (M)

Find u ∈ V such that (u′, v′) = (f, v), ∀ v ∈ V. (V )
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(D) ⇒ (V)

The solution of problem (D) is also a solution of problem (V):

∵ −u′′(x) = f(x), 0 < x < 1.

∴
∫ 1
0 −u

′′(x)v(x)dx =
∫ 1
0 f(x)v(x)dx, ∀ v ∈ V .

∴ (−u′′, v) = (f, v), ∀ v ∈ V .

∴ (u′, v′)− u′(x)v(x)
∣∣∣1
0

= (f, v), ∀ v ∈ V . (integration by parts)

∴ (u′, v′) = (f, v), ∀ v ∈ V .
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(V) ⇔ (M)

Problems (V) and (M) have the same solutions:

(V) ⇒ (M): Let u be a solution of problem (V). Let v ∈ V and
w = v − u ∈ V . Then v = u+ w and

F (v) = F (u+ w) =
1

2
((u+ w)′, (u+ w)′)− (f, u+ w)

=
1

2
(u′, u′) + (u′, w′) +

1

2
(w′, w′)− (f, u)− (f, w)

=
1

2
(u′, u′) +

1

2
(w′, w′)− (f, u)

≥
1

2
(u′, u′)− (f, u) = F (u).

(M) ⇒ (V): Let u be a solution of problem (M). Then for any v ∈ V , ε ∈ R,
we have F (u) ≤ F (u+ εv), since u+ εv ∈ V . Define

g(ε) := F (u+ εv) =
1

2
((u+ εv)′, (u+ εv)′)− (f, u+ εv)

=
1

2
(u′, u′) +

1

2
ε2(v′, v′) + ε(u′, v′)− (f, u)− ε(f, v).

∵ g′(ε) = (u′, v′) + ε(v′, v′)− (f, v) and g′(0) = 0.
∴ 0 = g′(0) = (u′, v′)− (f, v).
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Both problems (V) & (M) have at most one solution

It suffices to prove that problem (V) has at most one solution. Suppose that u1
and u2 are solutions of problem (V). Then

(u′1, v
′) = (f, v) ∀ v ∈ V,

(u′2, v
′) = (f, v) ∀ v ∈ V.

∴ (u′1 − u′2, v′) = 0 ∀ v ∈ V .

Taking v = u1 − u2, we have (u′1 − u′2, u′1 − u′2) = 0.

∴
∫ 1
0 (u′1(x)− u′2(x))2dx = 0.

∴ u′1(x)− u′2(x) = 0, x ∈ [0, 1] a.e.

∴ u1 − u2 is a step function on [0, 1].

∵ u1 − u2 is continuous on [0, 1].

∴ u1 − u2 is a constant function on [0, 1].

∵ u1(0) = u1(1) = 0 and u2(0) = u2(1) = 0.

∴ u1 − u2 ≡ 0 on [0, 1].

That is, u1(x) = u2(x), ∀ x ∈ [0, 1].
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(V) + smoothness ⇒ (D)

Let u be a solution of problem (V). Then (u′, v′) = (f, v), ∀ v ∈ V .

∴
∫ 1
0 u
′(x)v′(x)dx−

∫ 1
0 f(x)v(x)dx = 0, ∀ v ∈ V .

Suppose that u′′ exists and continuous on [0, 1], i.e., u ∈ C2[0, 1].

Then −
∫ 1
0 u
′′(x)v(x)dx−

∫ 1
0 f(x)v(x)dx = 0, ∀ v ∈ V .

∴ −
∫ 1
0 (u′′(x) + f(x))v(x)dx = 0, ∀ v ∈ V .

By the sign-preserving property for continuous functions, we can conclude that
u′′(x) + f(x) = 0, ∀ x ∈ [0, 1].

∴ u is a solution of problem (D).
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FEM for the model problem with piecewise linear functions

Construct a finite-dimensional space Vh (finite element space)

Let 0 = x0 < x2 < · · · < xM < xM+1 = 1 be a partition of [0, 1].

[Insert partition figure here!]

Define

Ij := [xj−1, xj ], j = 1, 2, · · · ,M + 1.

hj := xj − xj−1, j = 1, 2, · · · ,M + 1.

h := max
j=1,2,··· ,M+1

hj , a measure of how fine the partition is.

Define

Vh := {vh ∈ V | vh is linear on each subinterval Ij , vh(0) = vh(1) = 0}.

Notice that Vh ⊆ V .
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Construct a basis of Vh

Here is a typical vh ∈ Vh:

[Insert vh figure here!]

For j = 1, 2, · · · ,M , we define ϕj ∈ Vh such that ϕj(xi) =

{
1 if i = j,
0 if i 6= j.

[Insert ϕj figure here!]

Then we have
{ϕj}Mj=1 is a basis of the finite-dimensional vector space Vh.
For each vh ∈ Vh, vh can be written as a unique linear combination of ϕj ’s:

vh(x) =

M∑
j=1

ηjϕj(x), where ηj = vh(xj).
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Numerical methods for solution of problem (D)

We now define the following two numerical methods for approximating the
solution of problem (D):

Ritz method:

Find uh ∈ Vh such that F (uh) ≤ F (vh), ∀ vh ∈ Vh. (Mh)

Galerkin method (finite element method):

Find uh ∈ Vh such that (u′h, v
′
h) = (f, vh), ∀ vh ∈ Vh. (Vh)

One can claim that (Mh)⇔ (Vh).
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(Vh)⇔ Find uh ∈ Vh s.t. (u′h, ϕ
′
i) = (f, ϕi), 1 ≤ i ≤M ⇔ Aξ = b

(Vh) ⇐⇒ Find uh ∈ Vh such that (u′h, ϕ
′
i) = (f, ϕi), 1 ≤ i ≤M .

Proof.
(⇒): trivial!

(⇐): For any vh ∈ Vh, we have vh =
∑M
i=1 ηiϕ, for some ηi ∈ R, 1 ≤ i ≤M .

∴ (u′h, v
′
h) = (u′h,

M∑
i=1

ηiϕ
′
i) =

M∑
i=1

ηi(u
′
h, ϕ
′
i)

=
M∑
i=1

ηi(f, ϕi) = (f,
M∑
i=1

ηiϕi) = (f, vh).

Find uh ∈ Vh such that (u′h, ϕ
′
i) = (f, ϕi), 1 ≤ i ≤M ⇐⇒ Aξ = b.

Proof. Let uh(x) =
M∑
j=1

ξjϕj(x), where ξj = uh(xj), 1 ≤ j ≤M , are

unknown. Then

(u′h, ϕ
′
i) = (f, ϕi), 1 ≤ i ≤M ⇔ (

M∑
j=1

ξjϕ
′
j , ϕ
′
i) = (f, ϕi), 1 ≤ i ≤M

⇔
M∑
j=1

ξj(ϕ
′
j , ϕ
′
i) = (f, ϕi), 1 ≤ i ≤M ⇔ Aξ = b.
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Aξ = b

A = (aij)M×M : stiffness matrix; b = (bi)M×1: load vector; ξ = (ξi)M×1:
unknown vector.

(ϕ′1, ϕ
′
1) (ϕ′2, ϕ

′
1) · · · (ϕ′M , ϕ

′
1)

(ϕ′1, ϕ
′
2) (ϕ′2, ϕ

′
2) · · · (ϕ′M , ϕ

′
2)

..

.
..
.

...
...

(ϕ′1, ϕ
′
M ) (ϕ′2, ϕ

′
M ) · · · (ϕ′M , ϕ

′
M )




ξ1
ξ2
...
ξM

 =


(f, ϕ1)
(f, ϕ2)

...
(f, ϕM )

 .
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Some remarks

∵ (ϕ′j , ϕ
′
i) = 0 if |i− j| > 1 ∴ A is a tri-diagonal matrix.

∵ aij = (ϕ′j , ϕ
′
i) = (ϕ′i, ϕ

′
j) = aji ∴ A is symmetric!

Claim: A is positive definite.

For any given η = (η1, η2, · · · , ηM )> ∈ RM , define vh(x) :=
M∑
i=1

ηiϕi(x).

Then

0 ≤ (v′h, v
′
h) = (

M∑
i=1

ηiϕ
′
i,
M∑
j=1

ηjϕ
′
j) =

M∑
i,j=1

ηi(ϕ
′
i, ϕ
′
j)ηj = η ·Aη.

If (v′h, v
′
h) = 0, then

∫ 1
0 (v′h(x))2dx = 0, which implies that v′h(x) = 0 a.e.

∵ vh ∈ Vh, vh is continuous on [0, 1] and vh(0) = vh(1) = 0.

∴ vh ≡ 0 on [0, 1], i.e., η = 0.

∴ η ·Aη > 0, ∀ η ∈ RM , η 6= 0.

∵ A is SPD ∴ A is nonsingular ∴ Aξ = b has a unique solution!
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Evaluate ajj and aj−1,j

[Insert a figure of ϕj−1 and ϕj here!]

For j = 1, 2, · · · ,M , we have

(ϕ′j , ϕ
′
j) =

∫ xj

xj−1

(ϕ′j)
2dx+

∫ xj+1

xj

(ϕ′j)
2dx

=

∫ xj

xj−1

1

h2j
dx+

∫ xj+1

xj

1

h2j+1

dx =
1

hj
+

1

hj+1
,

(ϕ′j , ϕ
′
j−1) = (ϕ′j−1, ϕ

′
j) = −

∫ xj

xj−1

1

h2j
dx = −

1

hj
.

For uniform partition: hj = h = 1−0
M+1

. Then Aξ = b becomes

1

h


2 −1 0 · · · 0
−1 2 −1 · · · 0
...

...
...

...
...

0 · · · 0 −1 2




ξ1
ξ2
...
ξM

 =


(f, ϕ1)
(f, ϕ2)

...
(f, ϕM )

 .
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Taylor’s Theorem with Lagrange remainder

If f ∈ Cn[a, b] and f (n+1) exists on (a, b), then for any points c and x in [a, b] we
have

f(x) = Pn(x) + En(x),

where the n-th Taylor polynomial Pn(x) is given by

Pn(x) =
n∑
k=0

1

k!
f (k)(c)(x− c)k

and the remainder (error) term En(x) is given by

En(x) =
1

(n+ 1)!
f (n+1)(ξ)(x− c)n+1

for some point ξ between c and x (means that either c < ξ < x or x < ξ < c).
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Numerical differentiation

Assume that u ∈ C4[0, 1] and 0 = x0 < x2 < · · · < xM < xM+1 = 1 is a uniform
partition of [0, 1]. Then hj = h = 1−0

M+1
for j = 1, 2, · · · ,M + 1.

For i = 1, 2, · · · ,M , we have

u(xi + h) = u(xi) + u′(xi)h+ 1
2
u′′(xi)h2 + 1

6
u(3)(xi)h

3 + 1
24
u(4)(ξi1)h4,

u(xi − h) = u(xi)− u′(xi)h+ 1
2
u′′(xi)h2 − 1

6
u(3)(xi)h

3 + 1
24
u(4)(ξi2)h4,

for some ξi1 ∈ (xi, xi + h) and ξi2 ∈ (xi − h, xi).

∴ u(xi + h) + u(xi − h) = 2u(xi) + u′′(xi)h2 + 1
24
{u(4)(ξi1) + u(4)(ξi2)}h4.

∴ u′′(xi) = 1
h2 {u(xi + h)− 2u(xi) + u(xi − h)} − 1

24
h2{u(4)(ξi1) + u(4)(ξi2)}.

∵ u ∈ C4[0, 1] and 1
2
{u(4)(ξi1) + u(4)(ξi2)} between u(4)(ξi1) and u(4)(ξi2).

∴ By IVT, ∃ ξi between ξi1 and ξi2 (⇒ ξi ∈ (xi − h, xi + h)) such that

u(4)(ξi) = 1
2
{u(4)(ξi1) + u(4)(ξi2)}.

∴ u′′(xi) = 1
h2 {u(xi + h)− 2u(xi) + u(xi − h)} − 1

12
h2u(4)(ξi),

for some ξi ∈ (xi − h, xi + h).
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Finite difference method for problem (D)

{
−u′′(x) = f(x), 0 < x < 1,
u(0) = u(1) = 0.

(D)

For i = 1, 2, · · · ,M , we have

− 1
h2 {u(xi + h)− 2u(xi) + u(xi − h)}+ 1

12
h2u(4)(ξi) = f(xi).

⇒ − 1
h2 {u(xi+1)− 2u(xi) + u(xi−1)}+ 1

12
h2u(4)(ξi) = f(xi).

We wish to find Ui ' u(xi) for i = 1, 2, · · · ,M and U0 = UM+1 := 0 such that

−
1

h2
{U0 − 2U1 + U2)} = f(x1). (i = 1)

−
1

h2
{U1 − 2U2 + U3)} = f(x2). (i = 2)

...

−
1

h2
{UM−1 − 2UM + UM+1)} = f(xM ). (i = M)
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Finite difference method for problem (D) (continued)

Finally, we reach at the following linear system:

1

h2


2 −1 0 · · · 0
−1 2 −1 · · · 0
...

...
...

...
...

0 · · · 0 −1 2




U1

U2

...
UM

 =


f(x1)
f(x2)

...
f(xM )

 .
A comparison: what is the difference between FEM with piecewise linear basis
functions and FDM for problem (D)? Answer: They are essentially the same!

Consider the first component in the right hand side:

Finite difference method: hf(x1).

Finite element method:

(f, ϕ1) =

∫ x2

x0

f(x)ϕ1(x)dx ' f(x1)

∫ x2

x0

ϕ1(x)dx = hf(x1).
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Computer project

Consider the following one-dimensional convection-diffusion problem:{
−εu′′(x) + u′(x) = 0 for x ∈ (0, 1),
u(0) = 1, u(1) = 0.

(∗)

Write the computer codes for numerical solution of problem (∗) by using the finite
difference methods on the uniform mesh of [0, 1] with mesh size h:

Replace u′′(xi) ≈
Ui+1−2Ui+Ui−1

h2 and u′(xi) ≈
Ui+1−Ui−1

2h
and consider

(ε, h) = (0.01, 0.1), (ε, h) = (0.01, 0.01). Plot uh.

Replace u′′(xi) ≈
Ui+1−2Ui+Ui−1

h2 and u′(xi) ≈
Ui−Ui−1

h
(upwinding) and

consider (ε, h) = (0.01, 0.1), (ε, h) = (0.01, 0.01). Plot uh.
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