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What are PDEs?

@ Most physical phenomena in fluid dynamics, heat transfer, electricity,
magnetism, or mechanics can be described in general by partial differential
equations (PDEs).

@ A PDE is an equation that contains partial derivatives and can be written in

the form of F(z1,z2, ,Tn, Uz, Usg,s ** » Uzp s Uz 2y Usyze, ) = 0.
o u(xzi,z2, -+ ,xn) is a function of n variables
z = (z1,T2, " ,:cn)T € R", where u is called the dependent variable
and z; is called the independent variable.
ou
o Uy, = Fr is the partial derivative of u in the z; direction.
i
@ In general, a PDE may have one solution, many solutions, or no solution at

all.
@ Some constrains are often added to the PDE so that the solution is unique.
These are often called boundary conditions or initial conditions.




Kinds of PDEs

@ Linearity:
@ F(-++) = Uz, + T1Uzymz, IS linear.
o F(-++)=Ugyaz; + T1Usozs + u? is nonlinear.

@ Order of the PDEs: The order of the highest derivative that occurs in F’

is called the order of the PDE. For example,
@ Ut = Ugg, second order.
@ Ut = UUggy + sinzx, third order.




Second-order linear equations in two variables

Second-order linear equation in two variables takes a general form of

Augyzq + Bugyzs + Cuzgaes + Dugy + Eugy + Fu=G.

@ Parabolic: parabolic equations describe heat flow and diffusion processes
and satisfy B2 — 4AC = 0. For example,
heat equation: wu; = ugg.

@ Hyperbolic: hyperbolic equations describe vibrating system and wave
motion and satisfy B2 — 4AC > 0. For example,
wave equation: Uit = Ugg-

@ Elliptic: elliptic equations describe steady-state phenomena and satisfy
B? —4AC < 0. For example,
Poisson’s equation: —(uzz + uyy) = f(z, ).
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Application of Poisson’s equation in heat transfer

Let © be an open and bounded domain. Consider
—(Uei2y + Uagay) = f(@1,22) on Q

is used for describing steady state temperature distribution of some material.
Three types of boundary conditions (9€2: the boundary of Q):
@ Dirichlet condition: u = g(s) on 92 (temperature specified on the
boundary).
@ Neumann condition: % = h(s) on 012, where n is an outward unit
normal vector (heat flow across the boundary (flux) specified).
Note that % =Vu-n.

@ Mixed condition: g—ﬁ + Au = g(s) on 9Q (temperature of the surrounding
medium is specified).
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1-D heat equation

@ Initial-boundary value problem (IBVP): find u(z,t) such that

U = Uge t>0,0<z<1,
u(w,0) glz) 0<z<1,
w(0,) = a(t) >0,
uw(l,t) = bt) t>0.
@ Notations: u(z,t): unknown temperature in the rod. z is spatial coordinates
2
and t is time. uzy = ng and uy = %




Finite difference method

@ Let

I
=S,
S

tj
z;

Note that k # h in general.

@ Recall some finite difference approximations:

r@ o~ 2 (fe - 1@),
F@ o~ o (feh - g w),
@)~ (S =26+ - h).

Math. Dept., NCU an Numerical PDEs —



Finite difference method - explicit method

@ Let v = u. Then

S (U(:): + h,t) — 2v(z,t) + v(x — h,t)) =

W3 (v(m,tJrk) fv(x,t)).

ol

@ By defining v;; = v(w;,t;), we have

e

1
el (vi+1,j = 2v,5 + ”JFLj) =

@ Rewrite the above equation to obtain

k
Vij+l = 4y (vi+1,j — 2055+ vi—l,j) + iy

or
Vij4+1 = (Svi—l,j + (1 —25)vij + Svi+1,j):

with s = k/h?.




Algorithm

inputn,k, M

_1
n+1

w; = g(ih) (0<i<n+1)

h <+ and s %

t<0

output 0, ¢, (wo, w1, - , Wn+1)

for j =1to M do

vg < a(jk) and vpq1 < b(jk)
for i = 1 ton do

v; = (swi_l + (1 —2s)w; + sw,-_;,_l)

end do

t «+ jk

output j , t, (vo,v1, " ,Un+1)

(w1, w2, ,wn) < (vi,v2, -+ ,vpn)
end do

Numerical PDEs — 9/30



Stability analysis

@ Assume that a(t) = b(t) = 0. At t; = jk, define V; = (vi j,v2,4,  * ,Unj) -
Then the explicit difference equations becomes V1 = AV}, where

1—2s s
s 1—2s s
s 1—2s s

s 1—2s s
s 1—2s

@ Note that vo,; = vni1,; = 0. We know that exact solution approaches 0 as
t — oo and therefore the temperature will reduce to zero as t — co.




Stability analysis (continued)

@ For the numerical approximation,

Vi1 = AV = A(AVj 1) = - = ATTW,.

@ Recall the following two statements are equivalent (see section 7.2, p. 435)
@ lim; o A7V =0 for all vectors V € R™.
@ r(A) < 1, where p(A) is the spectral radius of matrix A.

@ So s = k/h? should be chosen such that p(A4) < 1.

The eigenvalues of A are: \j =1 — 2s(1 — cosf;), where 0; = J—Il
1<j<n.
For p(A) < 1 we require —1 < 1 —2s(1 —cosf;) < 1.

This is true if and only if s < (1 — cos8;) .

, Math. De N Numerical PDEs — 11/30



Stability analysis (continued)

@ The worse case cosf; = —1, which does not happen since the largest
2
Oj=n = 255 So we have 0 < s < 1/2 or k/h? < 1/2 =k < 1.

@ For example, h = 0.01 = k < 5 x 1075 = For 0 < t < 10, the number of
time step: 0.5 x 106.

@ Open question: Find eigenvalue of A. Note A = I — sB, where

If ; is an eigenvector of B with eigenvalue p; then
(I —sB)z; = x; — spiz; = (1 — spi)x; = Az,

Hence \; = 1 — spu; is an eigenvalue of A.
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Lemma on tridiagonal matrix eigenvalues and eigenvectors

Let © = (sin6,sin 20, - - - ,sin nG)T. Ifo = nj—fl, then x is an eigenvector of B

corresponding to the eigenvalue 2 — 2 cos 6.

Proof: Please see page 621 in the textbook:

David Kincaid and Ward Cheney, Numerical Analysis: Mathematics of Scientific
Computing, Third Edition, 2002, Brooks/Cole.




Finite difference method - implicit method

@ We continue to study the initial-boundary value problem: find u(z,t) such
that

ur = Ugy t>0,0<z<1,
u(z,0) = gx) 0<z<1,
w(0,8) = 0 t>0,
wl,t) = 0 t>0

@ The finite-difference equation :

! (v(m+h t) — 2v(z, h) +v(z — h, t))

h2 (v(a:, t) —ov(z,t — k)),

1
k
1 1

= 2 (Uz+1,y 2vi,5 + vi—u) =% (Uz’,j - vm‘—l)-

@ Let s= h% and rearrange to obtain

—SVit1,5 + (1 + 28)1}2‘,]' — SV;i—1,5 = Vi j—1, for 1 <i<n.
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Stability analysis

® Let V; = (v1,j,v2,5, * sVn,;) | then the method can be written as
AV; = V;_1, where A is given by

1+ 2s —s
-5 14+2s —s
A=
—s 14 2s
@ Solve VJ = A_l‘/]',l = A_lA_lvj‘,g el = A_jVO.
@ V) is known (u(ih,0) initial condition). Here we need p(A~') < 1 for

stability.
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Stability analysis (continued)

@ Since A =1 + sB, where

and therefore the eigenvalues of A are given by
Ai =14 2sp; =1+ 2s(1 — cosb;) with 6; = nl—:l, 1<i<n.

@ Clearly, A; > 1, since \; =1+ 2s(1 — cos6;)
=N>1=p(A ) <1
= The method is stable for all h and k.

@ Note that we need to solve a tridiagonal system of linear equation to
advance each time step.
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Algorithm

input n, k, M
h +— %-H and s + %
v;i = g(th) (1 <i<n)
t<+0
output 0, t, (vi,v2, -+ ,vn)
fori=1ton—1do
ci=—sand a; = —s
end do
for j =1to M do
for i =1ton do
di =14 2s
end do
call tri(n, a, d, ¢, v;v)
t + jk

OUtPUt j7 t, ('Ul,’UQ,' o ,'Un)
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The Crank-Nicolson method

We can combine the previous two methods into a #-method

0
5l <Ui+1,j—2vi,j+”i—1,j)+ 3

(vi,j—vi,j—l)

i

(’Ui+1,j—1—2”Uz',j—1+vi—1,j—1) =

@ 0 =0 = explicit method.
@ 0 =1 = implicit method.
@ 0 =1/2 = Crank-Nicolson (CN).
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The Crank-Nicolson method (continued)

@ Taking s = h% and rewriting the CN method, we obtain

—svi—1,j + (24 28)vij — sviy1,; = svi—1,j—1 + (24 28)vi j—1 + svit1,5-1-

@ Again, let V; = (v1,5,v2,5, - ,vn,j)T and
2 -1
—1 2 -1
B =

-1 2
The method can be written in the matrix form

(21 + sB)V; = (21 — sB)Vj_;.
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Stability analysis

@ Tor stability, we need p((2I + sB)~1(2I — sB)) < 1.
@ Set A = (2 +sB)~1(2] — sB) with V; = AV,_1. If z; is an eigenvector of

B then
(2 — sB)z; = 2z; —sBux;
= 2z — spiT;
= (2= sp)z;.

— x; is also an eigenvector of A with eigenvalues g;jzl .
i

@ To have p((2+sB)~1(2 — sB)) < 1, we get it if |(2 + sp) "1 (2 — sp)| < 1.
@ Because p; = 2(1 — cos6;), we see that 0 < p; < 4.

Thus|2 S‘“|<1 Vs—hQ

So, the CN method is an unconditionally stable method.
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Error analysis

@ Recall the explicit method Vi1 = S(U,jfl_’j —2v; 5 + ’Ui+1,_7') + vij

Let u;,; be the exact solution at (z;,t;). Then the error e; j = u; j — v; ;.
@ We replace v by u — e to obtain

Uij+1 — €1 = S(Wimij — 2Uij + Uit1,5) + Uij
—s(ei—ij —2€ij +eit1,5) = €ij-
= eijr1 = (sei—1,j+ (1 —2s)e;j +seiy1;)

—s(uim1,j = 2ui5 + wig1,5) + (wij1 — wij).

@ Using these formulas

1 h?
@) = o5 (fat ) —20@) + fla—h) - D,
1 k
g0 = 3 (9t+R)-9®) - 2g" (),
we obtain (sh2 =k and ugs = ut)
4
eij41 = (sei—1;+ (1 —28)eij + seir1,j) — s(h?upa(wiytj) + %uzzm(éi,tj))

k2
+(kut (x4, t5) + ?utt(l’ivTj))v
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Error analysis (continued)

1 s
= eij+1 = (sei—15+ (1 —2s)e; j +seiq1,5) — kh2(ﬁuzzzz(§i7 tj)— §Utt($i,‘ri))
@ Let us confine (z,t) to the compact set S = {(z,t): 0 <z <1,0<¢t<T}.
1
@ Put M = 1z max [Uzzzz (2, t)| + g max |ugt (z, t)|,
EBj = (evgrezgorens) T | Bjllo = max lesjl.

@ We assume 1 — 2s > 0:

leijril < sleim1 |+ (1—2s)ei;| + slei, ;| + kh*M
< sllEjlloo + (1= 28)|Ejlloo + sl Ejlles + kh*M
< |Ejllos + khZ M.
@ Hence,
1£)+1lloc I1Bjlloo + kh*M < ||Ej_1|oc + 2kh* M

o < || Bolloo + (j + 1)kh* M
I1E)lloo < jkh®M
IEjlloc < Th*M = O(h?).

A VAV
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Numerical differentiation

Assume that u € C*[a,b] and a = zo < 1 < - <zp < Tpr41 = b is a uniform
partition of [a,b]. Then hj =h = M+1 forj=1,2,---,M + 1.
Fori=1,2,--- ,M, wehave

u(zi +h) = u(z;) + o' (z:)h + 1u”(azl)h2 + 2u® (@)h® + Fu® (&1)h4,
u(wi —h) = u(z;) — o' (@)h+ zu” (@)h? — Fu® (2:)h® + 57ul (E)n?,
for some £;1 € (i, i + h) and &2 € (x5 — h, x;).

u(z; + h) +u(z; — h) = 2u(z;) + v (x;)h% + 2%1{“(4)(5“) +u® (£:2) R4,

u(2:) = 5 {ul@i +h) — 2u(@:) + u(i — h)} — 51h2{u® (&) +u® (&i2)}-
o u € C4a,b] and ${u® (&1) + ul® (&2)} between u® (&) and u® (&2).
- By IVT, 3 & between &1 and & (= & € (z; — h,x; + h)) such that

u® (&) = ${u® (&) +u® (&i2)}.

w(x;) = Fz{u(@i + h) — 2u(z;) + u(z; — h)} — $5h2ulD (&),

for some &; € (z; — h,x; +h).  (2nd-order approximation)
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Numerical differentiation (continued)

@ Forward difference: Assume that u € C?[a,b]. Then
u(wi + h) = u(z;) + ' (z)h + 3u” (€)h?,

for some &; € (zi,z; + h).

1 1
sl (x) = E(u(Lz +h) —u(z;)) — iu”(gi)h. (1st-order approximation)

@ Backward difference: Assume that u € C?[a,b]. Then
u(wi — h) = u(z;) — ' (z)h + 3u” (€)h?,

for some &; € (x; — h,x;).
1 1
ol (z) = E(u(mz) —u(x; —h)) + §u”(£i)h. (1st-order approximation)

@ Centered difference: Assume that u € C3[a, bL. Then
u(z; + h) = u(x;) + v/ (z)h + u” (z)h? + Ful® (&n)h3,
u(x; —h) = u(z;) — v/ (xi)h + %u”(wi)h2 — %u(3)(§¢2)h3,

for some &;1 € (zi,x; + h) and &2 € (x; — h, x;).

ol (xg) = %(u(aﬂl +h) —u(z; —h)) + éu”({i)hQ. (2nd-order

approximation)
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FDM for a two-point boundary value problem

@ Consider the 1-D two-point BVP:

{w"(x) = f(z) z€(0,1),
u(0) = wu(l)=0.

@ The interval [0,1] is discretized uniformly by taking the n + 2 points,
z; =ih, for i =0,1,--- ;n+ 1, where h =1/(n + 1).

@ Let v; = u(x;),i=1,2,---,n, and vo := u(xo) =0, vn+t1 := u(Tnt1) =0
are known due to the Dirichlet BC.

@ If the centered difference approximation is used for u’’, the above equation
can be expressed as

_ ('Ui—l —2v; + Vi1

B2 ):fh 1=1,2,--+,n,

where f; := f(z;).
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The resulting linear system

The linear system obtained is of the form

AV = F,
where
2 -1
-1 2 -1
A= s
-1 2 -1

V = (vi,va, - ,vn) | and F = (h2f1,h%fa, - W2 fa)".




Eigen properties of A

@ The matrix A has n eigenvalues, and since A is symmetric, all eigenvalues
must be real.
@ Note that the eigenvalues of A are given by
)\J = 272COS(J0) > 0’.] = 1727"' » 1y

and the eigenvector associated with each \; is given by

V; = (sin(j6),sin(246), - - -, sin(nj0)) ",

where 6 = HLH
@ Amax =2 —2cos(;75) and Amin = 2 — 2cos( 7).
@ What is the condition number of A?
a2 nm
sin® 5%y 1 5 1
K(A) = —5—= %( — )QzO(n)zO W)
SN 5o+ 2(n+1)
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FDM for a 2-D boundary value problem

@ Consider Poisson’s problem,

0%u  9%u

o470 = in Q:= (0,1) x (0,1),

o = me=0DxOD
u = 0 ondQ.

@ Define the mesh size h = ——
ntl’

(14, 225) = (ih, jh), the approximate solution at the mesh points
vij & u(z1j,%25), 4,5 = 0,1, ,n+ 1.

the collection of mesh points

1

77+ (in 3D, ~ leS number of points).

Note: There are n? interior points ~
@ The FD equations

= fij>

Vi—1j — 20i5 + Vit I il 20i5 + vij4+1
h? h?

Voj = VUnt1j = Vi0 = Vint+1 = 0.




For

example n = 3: natural ordering

We order the unknown quantities in the natural ordering

-
V = (v11,v21,v31, V12, V22, Un2, V13, V23, V33 )

Then the corresponding linear system can be written as (see Text, page 631)

B -1 4 -1 0
AV = | -1 B -1 |V=F with B=| -1 4 -1
-1 B 0 -1 4

block-tridiag matrix; symmetric a;; = aj;; sparse, number of nonzeros per
row = 5 (independent of the mesh size h) number of nonzeros ~ 5n (linear
in n).
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