MA 3021: Numerical Analysis I Syllabus and Introduction

Suh-Yuh Yang (楊肅煜)

Department of Mathematics, National Central University Jhongli District, Taoyuan City 32001, Taiwan

E-mail: syyang@math.ncu.edu.tw

Website: http://www.math.ncu.edu.tw/~syyang/

Syllabus

- Instructor: Prof. Suh-Yuh Yang (楊肅煜)
 - Office: M315, Hong-Jing Hall
 Phone: 03-4227151 ext. 65130
- Office hours: Tuesday $10:00 \sim 11:50$ am or by appointment.
- Teaching assistant: Cheng-Shu You (游承書), M303, Tel: ext. 65138.
- Prerequisites: Calculus, Linear Algebra and some knowledge of a high level programming language Fortran/C/C++, or software package MATLAB: http://matlab.math.ncu.edu.tw/
- Assignments:
 - Approximately every two weeks, will consist of theoretical problems or computer projects.
 - The students are encouraged to discuss homework with other classmates.
 - Direct copying is absolutely not allowed.
- Examinations: there will be a midterm and a final (presentation/report).
- Grading policy: assignments 40%, midterm 30% and final 30%.

Textbook

Richard L. Burden and J. Douglas Faires, Numerical Analysis, 8th Edition, Thomson Brooks/Cole, 2005. (歐亞書局有限公司代理)

Important dates

- \bullet The period for adding and dropping a course: 02/03-02/25, 2016.
- The period for withdrawing a course: 03/28-05/13, 2016.
- Spring break: 04/05, 2016 (recess, no class).
- Midterm week: 04/11-04/15, 2016.
- Final week: 06/13-06/17, 2016.

Scientific computing (科學計算) vs. Numerical analysis

Problem modelling

- physical phenomena: too expensive to perform all tests with prototypes.
- mathematical model: (differential or integral equations) too complex or very difficult for paper/pencil solution.
- computational model: (numerical methods) approximation of mathematical model.
- Scientific computing: solving mathematical problems numerically on the computer (methods/constructive proofs → algorithms → codes → display).
- Numerical analysis mathematics of scientific computing: it
 involves the study, development and analysis of algorithms (procedures) for
 obtaining numerical solutions to various mathematical problems.
- Scientific computing: interdisciplinary (跨學科)
 - science/engineering
 - numerical analysis
 - computer science
 - software engineering

This course will cover the following topics

- Mathematical preliminaries
- Solutions of nonlinear equations
- Interpolation and polynomial approximation
- Numerical differentiation and integration
- Direct and iterative methods for solving linear systems
- Numerical ordinary differential equations*
- Numerical partial differential equations*

Topic 1: Mathematical preliminaries

- Review of calculus.
- Taylor's Theorem: for functions in single or several variables.
- Rate of convergence: big O notation.

Topic 2: Solutions of nonlinear equations

• Question: given a function $f: \mathbb{R} \to \mathbb{R}$. Find a point $x^* \in \mathbb{R}$ such that

$$f(x^*) = 0.$$

- If f(x) is simple, such as f(x) = 3x + 1 or $f(x) = 3x^2 4x + 1$, then one can use the root formulas. In general, one has to find the root(s) numerically.
- We will study
 - iterative methods for finding the root (bisection method, secant method, Newton type methods);
 - convergence of the methods;
 - extension to systems of nonlinear equations.

Topic 3: Interpolation and polynomial approximation

- Polynomial interpolation (多項式插值)
 We are given n+1 data points (x_i, y_i) , $i=0,1,\dots,n$, and we seek a polynomial p such that $p(x_i)=y_i, 0 \le i \le n$, where $y_i=f(x_i)$ for some function f.
- Hermite interpolation: the interpolation of a function and some of its derivatives at a set of nodes. e.g., find a polynomial p such that $p(x_i) = f(x_i)$ and $p'(x_i) = f'(x_i)$, i = 0, 1.
- Spline ($\mbox{$\not{k}$}$) interpolation A spline function of degree k is a piecewise polynomial of degree at most k having continuous derivatives of all orders up to k-1.

Topic 4: Numerical differentiation and integration

- Numerical differentiation
 - Based on Taylor's theorem: $f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(\xi)$.
 - Based on polynomial interpolation: let p be the Lagrange interpolation of f. Then $f'(x) \approx p'(x)$.
- Numerical integration based on interpolation: let p be the Lagrange interpolation of f. Then $\int_a^b f(x)dx \approx \int_a^b p(x)dx$.
- Gaussian quadrature (高斯積分法): find A_i and x_i , $i = 0, 1, \dots, n$, such that $\int_a^b f(x)dx \approx \sum_{i=0}^n A_i f(x_i)$ and it will be exact for polynomials of degree $\leq 2n+1$.

Topic 5: Direct and iterative methods for solving Ax = b

Linear system: find the vector $(x_1, x_2)^{\top}$ such that

$$\left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right]_{2\times 2} \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 5 \\ 6 \end{array}\right].$$

The size of the problem is n=2. For small n, the system can be solved by hand, but for large n (could be as large as $n=10^6$), one has to use computers. We will study

- vector, matrix, norm
- Gaussian elimination and matrix factorizations
- iterative methods
- error analysis

Topic 6: Numerical ordinary differential equations*

• Existence and uniqueness theory of the initial value problem:

$$\begin{cases} x'(t) &= f(t,x), \\ x(t_0) &= x_0. \end{cases}$$

• Taylor-series method:

$$x(t+h) = x(t) + hx'(t) + \frac{h^2}{2!}x''(t) + \frac{h^3}{3!}x'''(t) + \cdots$$

- Runge-Kutta methods: in Taylor-series method, we have to determine $x'', x''', x^{(4)}, \cdots$. The Runge-Kutta methods avoid this difficulty.
- Multistep methods: e.g., the Adams-Bashforth-formula of order 5:

$$x_{n+1} = x_n + \frac{h}{720} \{ 1901f_n - 2774f_{n-1} + 2616f_{n-2} - 1274f_{n-3} + 251f_{n-4} \}.$$

- Convergence, stability and consistency: for multistep method, convergent ← stable + consistent.
- Boundary value problems: finite difference methods.

Topic 7: Numerical partial differential equations*

- Parabolic problems: finite difference method explicit, implicit.
- Elliptic problems: finite difference method, finite element method.
- Hyperbolic problems: characteristics.