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A system of linear equations

We are interested in solving systems of linear equations having the
form: 

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1
a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2
a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...
...

...
an1x1 + an2x2 + an3x3 + · · ·+ annxn = bn

This is a system of n equations in the n unknowns, x1, x2, · · · , xn. The
elements aij and bi are assumed to be prescribed real numbers.
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Ax = b

We can rewrite this system of linear equations in a matrix form:
a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n

...
...

...
. . .

...
an1 an2 an3 · · · ann




x1
x2
x3
...

xn

 =


b1
b2
b3
...

bn

 .

We can denote these matrices by A, x, and b, giving the simpler
equation:

Ax = b.
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Matrix

A matrix is a rectangular array of numbers such as
3.0 1.1 −0.12
6.2 0.0 0.15
0.6 −4.0 1.3
9.3 2.1 8.2

 ,
[

3 6 11
7 −17

]
,

 3.2
−4.7
0.11

 .

4× 3 matrix 1× 4 matrix 3× 1 matrix
a row vector a column vector
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Matrix properties

1 If A is a matrix, the notation aij, (A)ij, or A(i, j) is used to denote
the element at the intersection of the ith row and the jth column.
For example, let A be the first matrix on the previous slide. Then
a32 = A32 = A(3, 2) = −4.0.

2 The transpose of a matrix is denoted by A> and is the matrix
defined by (A>)ij = aji. If a matrix A has the property A = A>,
we say that A is symmetric.

3 The n× n matrix

I := In := In×n :=


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


is called an identity matrix. Note that IA = A = AI for any n× n
matrix A.
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Algebraic operations

1 Scalar * Matrix: If A is a matrix and λ is a scalar, then λA is
defined by (λA)ij = λaij.

2 Matrix + Matrix: If A = (aij) and B = (bij) are m× n matrices,
then A + B is defined by (A + B)ij = aij + bij.

3 Matrix * Matrix: If A is an m× p matrix and B is a p× n matrix,
then AB is an m× n matrix defined by:

(AB)ij =
p

∑
k=1

aikbkj, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

What is the cost of AB?

Answer: mnp multiplications and mn(p− 1) additions.
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Right inverse and left inverse

If A and B are two matrices such that AB = I, then we say that B is a
right inverse of A and that A is a left inverse of B. For example,[

1 0 0
0 1 0

]  1 0
0 1
α β

 =

[
1 0
0 1

]
= I2×2, ∀α, β ∈ R.

[
1 0 α
0 1 β

]  1 0
0 1
0 0

 =

[
1 0
0 1

]
= I2×2, ∀α, β ∈ R.

Notice that right inverse and left inverse may not unique.
1 Theorem: A square matrix can possess at most one right inverse.

Proof: Let AB = I. Then
n

∑
j=1

bjkA(j) = I(k), 1 ≤ k ≤ n. So, the columns of A form a

basis for Rn. Therefore, the coefficients bjk above are uniquely determined.

2 Theorem: If A and B are square matrices such that AB = I, then
BA = I.
Proof: Let C = BA− I + B. Then AC = ABA−AI + AB = A−A + I = I.
Since right inverse for square matrix is at most one, B = C.
Hence, C = BA− I + B = BA− I + C, i.e., BA = I.
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Inverse

1 If a square matrix A has a right inverse B, then B is unique and
BA = AB = I. We then call B the inverse of A and say that A is
invertible or nonsingular. We denote B = A−1.

2 Example:[
−2 1

3
2 − 1

2

] [
1 2
3 4

]
=

[
1 2
3 4

] [
−2 1

3
2 − 1

2

]
=

[
1 0
0 1

]
= I2×2.

3 If A is invertible, then the system of equations Ax = b has the
solution x = A−1b. If A−1 is not available, then in general, A−1

should not be computed solely for the purpose of obtaining x.
4 How do we get this A−1?
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Equivalent systems

1 Let two linear systems be given, each consisting of n equations
with n unknowns:

Ax = b and Bx = d.

If the two systems have precisely the same solutions, we call
them equivalent systems.

2 Note that A and B can be very different.
3 Thus, to solve a linear system of equations, we can instead solve

any equivalent system. This simple idea is at the heart of our
numerical procedures.
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Elementary operations

1 Let Ei denote the i-th equation in the system Ax = b. The
following are the elementary operations which can be
performed:

Interchanging two equations in the system: Ei ↔ Ej;
Multiplying an equation by a nonzero number: λEi → Ei;
Adding to an equation a multiple of some other equation:
Ei + λEj → Ei.

2 Theorem on equivalent systems: If one system of equations is
obtained from another by a finite sequence of elementary
operations, then the two systems are equivalent.
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Elementary operations (cont’d)

1 An elementary matrix is defined to be an n× n matrix that arises
when an elementary operation is applied to the n× n identity
matrix.

2 Let Ai be the i-th row of matrix A. The elementary operations
expressed in terms of the rows of matrix A are:

The interchange of two rows in A: Ai ↔ Aj;
Multiplying one row by a nonzero constant: λAi → Ai;
Adding to one row a multiple of another: Ai + λAj → Ai.

3 Each elementary row operation on A can be accomplished by
multiplying A on the left by an elementary matrix.
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Examples

 1 0 0
0 0 1
0 1 0

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 a11 a12 a13
a31 a32 a33
a21 a22 a23

 .

 1 0 0
0 λ 0
0 0 1

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 a11 a12 a13
λa21 λa22 λa23
a31 a32 a33

 .

 1 0 0
0 1 0
0 λ 1

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 a11 a12 a13
a21 a22 a23

λa21 + a31 λa22 + a32 λa23 + a33

 .
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Invertible matrix

1 If matrix A is invertible, then there exists a sequence of
elementary row operations can be applied to A, reducing it to I,

EmEm−1 · · ·E2E1A = I.

2 This gives us an equation for computing the inverse of a matrix:

A−1 = EmEm−1 · · ·E2E1 = EmEm−1 · · ·E2E1I.

Remark: This is not a practical method to compute A−1.
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Eigenvalue and eigenvector

Let A ∈ Cn×n be a square matrix. If there exists a nonzero vector
x ∈ Cn and a scalar λ ∈ C such that

Ax = λx,
then λ is called an eigenvalue of A and x is called the corresponding
eigenvector of A.

Remark: Computing λ and x is a major task in numerical linear
algebra.
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Theorem on nonsingular matrix properties

For an n× n real matrix A, the following properties are equivalent:

1 The inverse of A exists; that is, A is nonsingular

2 The determinant of A is nonzero

3 The rows of A form a basis for Rn

4 The columns of A form a basis for Rn

5 As a map from Rn to Rn, A is injective (one to one)

6 As a map from Rn to Rn, A is surjective (onto)

7 The equation Ax = 0 implies x = 0

8 For each b ∈ Rn, there is exactly one x ∈ Rn such that Ax = b

9 A is a product of elementary matrices

10 0 is not an eigenvalue of A
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Some easy-to-solve systems:

1. Diagonal Structure
a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann




x1
x2
x3
...

xn

 =


b1
b2
b3
...

bn

 .

The solution is: (provided aii 6= 0 for all i = 1, 2, · · · , n)

x =
( b1

a11
,

b2

a22
,

b3

a33
, · · · ,

bn

ann

)>
.

If aii = 0 for some index i, and if bi = 0 also, then xi can be any
real number. The number of solutions is infinity.

If aii = 0 and bi 6= 0, no solution of the system exists.

What is the complexity of the method? n divisions.
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2. Lower Triangular Systems


a11 0 0 · · · 0
a21 a22 0 · · · 0
a31 a32 a33 · · · 0

...
...

...
. . .

...
an1 an2 an3 · · · ann




x1
x2
x3
...

xn

 =


b1
b2
b3
...

bn

 .

Some simple observations:

If a11 6= 0, then we have x1 = b1/a11.

Once we have x1, we can simplify the second equation,
x2 = (b2 − a21x1)/a22, provided that a22 6= 0.
Similarly, x3 = (b3 − a31x1 − a32x2)/a33, provided that a33 6= 0.
In general, to find the solution to this system, we use forward
substitution (assume that aii 6= 0 for all i).
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2. Lower Triangular Systems (cont’d)

Algorithm of forward substitution:

input n, (aij), b = (b1, b2, · · · , bn)>

for i = 1 to n do

xi ←
(

bi −
i−1

∑
j=1

aijxj

)
/aii

end do
output x = (x1, x2, · · · , xn)>

Complexity of forward substitution:
n divisions.
the number of multiplications: 0 for x1, 1 for x2, 2 for x3, · · ·
total = 0 + 1 + 2 + · · ·+ (n− 1) ≈ (n + 1)n/2 = O(n2).
the number of subtractions: same as the number of
multiplications = O(n2).

Forward substitution is an O(n2) algorithm.

Remark: forward substitution is a sequential algorithm (not
parallel at all).
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3. Upper Triangular Systems


a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann




x1
x2
x3
...

xn

 =


b1
b2
b3
...

bn

 .

The formal algorithm to solve for x is called backward substitution. It
is also an O(n2) algorithm. Assume that aii 6= 0 for all i:

input n, (aij), b = (b1, b2, · · · , bn)>

for i = n : −1 : 1 do

xi ←
(

bi −
n

∑
j=i+1

aijxj

)
/aii

end do
output x = (x1, x2, · · · , xn)>
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LU decomposition (factorization)

Suppose that A can be factored into the product of a lower triangular
matrix L and an upper triangular matrix U:

A = LU.

Then, Ax = LUx = L(Ux). Thus, to solve the system of equations
Ax = b, it is enough to solve this problem in two stages:

Lz = b solve for z,
Ux = z solve for x.

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Numerical Methods for Linear Systems – 20/62



Basic Gaussian elimination

Let A(1) = (a(1)ij ) = A = (aij) and b(1) = b. Consider the following
linear system Ax = b:

6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18




x1
x2
x3
x4

 =


12
34
27
−38

 .

pivot row = row1.
pivot element: a(1)11 = 6.
row2 - (12/6)*row1→ row2.
row3 - (3/6)*row1→ row3.
row4 - (-6/6)*row1→ row4.

=⇒


6 −2 2 4
0 −4 2 2
0 −12 8 1
0 2 3 −14




x1
x2
x3
x4

 =


12
10
21
−26

 .

multipliers: 12/6, 3/6, (−6)/6
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Basic Gaussian elimination (cont’d)

We have the following equivalent system A(2)x = b(2):
6 −2 2 4
0 −4 2 2
0 −12 8 1
0 2 3 −14




x1
x2
x3
x4

 =


12
10
21
−26

 .

pivot row = row2.
pivot element a(2)22 = −4.
row3 - (-12/-4)*row2→ row3.
row4 - (2/-4)*row2→ row4.

=⇒


6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 4 −13




x1
x2
x3
x4

 =


12
10
−9
−21

 .

multiplier: (−12)/(−4), 2/(−4)
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Basic Gaussian elimination (cont’d)

We have the following equivalent system A(3)x = b(3):
6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 4 −13




x1
x2
x3
x4

 =


12
10
−9
−21

 .

pivot row = row3.
pivot element a(3)33 = 2.
row4 - (4/2)*row3→ row4.

=⇒


6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3




x1
x2
x3
x4

 =


12
10
−9
−3

 .

multiplier: 4/2
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Basic Gaussian elimination (cont’d)

Finally, we have the following equivalent upper triangular system
A(4)x = b(4): 

6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3




x1
x2
x3
x4

 =


12
10
−9
−3

 .

Using the backward substitution, we have
x1
x2
x3
x4

 =


1
−3
−2

1

 .
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The LU decomposition

Display the multipliers in an unit lower triangular matrix L = (`ij):

L =


1 0 0 0
2 1 0 0
1
2 3 1 0
−1 − 1

2 2 1

 .

Let U = (uij) be the final upper triangular matrix A(4). Then we have

U =


6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3


and one can check that A = LU (the Doolittle Decomposition).
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Some remarks

1 The entire elimination process will break down if any of the
pivot elements are 0.

2 The total number of arithmetic operations:

M/D =
n3

3
+ n2 − n

3

A/S =
n3

3
+

n2

2
− 5n

6

∴ The GE is an O(n3) algorithm.
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Vector norm

A vector norm on Rn is a real-valued function ‖ · ‖ : Rn → R with the
properties:

1 ‖x‖ ≥ 0, ∀ x ∈ Rn, and ‖x‖ = 0 if and only if x = 0;
2 ‖αx‖ = |α|‖x‖, ∀ x ∈ Rn and α ∈ R;
3 ‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀ x, y ∈ Rn (the triangle inequality).

Note: ‖x‖ is called the norm of x, the length or magnitude of x.
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Some vector norms on Rn and distance

1 Let x = (x1, x2, · · · , xn)> ∈ Rn:

The 2-norm (Euclidean norm, or `2 norm): ‖x‖2 =

√
n

∑
i=1

x2
i

The infinity norm (`∞-norm): ‖x‖∞ = max
1≤i≤n

|xi|

The 1-norm (`1-norm):‖x‖1 =
n

∑
i=1
|xi|

2 Let x = (x1, x2, · · · , xn)>, y = (y1, y2, · · · , yn)> ∈ Rn. Then

‖x− y‖2 =

√
n

∑
i=1

(xi − yi)2

‖x− y‖∞ = max
1≤i≤n

|xi − yi|

‖x− y‖1 =
n

∑
i=1
|xi − yi|
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The difference between the above norms

1 What is the unit ball {x ∈ R2 : ‖x‖ ≤ 1} for the three norms
above?

2-norm: a circle
∞-norm: a square
1-norm: a diamond

2 Example: Let x = (−1, 1,−2)> ∈ R3. Then

‖x‖2 =
√
(−1)2 + 12 + (−2)2 =

√
6,

‖x‖∞ = max
1≤i≤3

|xi| = max{| − 1|, |1|, | − 2|} = 2,

‖x‖1 =
3

∑
i=1
|xi| = | − 1|+ |1|+ | − 2| = 4.

3 Cauchy-Buniakowsky-Schwarz inequality: For
x = (x1, x2, · · · , xn)>, y = (y1, y2, · · · , yn)> ∈ Rn, we have

n

∑
i=1
|xiyi| ≤

(
n

∑
i=1

x2
i

)1/2( n

∑
i=1

y2
i

)1/2

= ‖x‖2‖y‖2.
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Convergence of sequences in Rn

1 Definition: Let x, x(k) ∈ Rn for k = 1, 2, · · · . Then
lim
k→∞

x(k) = x with respect to the norm ‖ · ‖ ⇐⇒

∀ ε > 0, ∃ an integer N(ε) > 0 such that if k ≥ N(ε) then
‖x(k) − x‖ < ε.

2 lim
k→∞

x(k) = x with respect to ‖ · ‖∞ ⇐⇒ lim
k→∞

x(k)i = xi for

i = 1, 2, · · · , n.
3 Example:

x(k) = (x(k)1 , x(k)2 , x(k)3 , x(k)4 )> = (1, 2 +
1
k

,
3
k2 , e−k sin(k))>.

∵ lim
k→∞

1 = 1, lim
k→∞

(2 +
1
k
) = 2, lim

k→∞

3
k2 = 0, lim

k→∞
e−k sin(k) = 0.

∴ lim
k→∞

x(k) = x = (1, 2, 0, 0)> with respect to ‖ · ‖∞ norm.
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All vector norms on Rn are equivalent

1 For each x ∈ Rn, ‖x‖∞ ≤ ‖x‖2 ≤
√

n‖x‖∞.

Proof: Let |xj| = ‖x‖∞. Then

‖x‖2
∞ = |xj|2 = x2

j ≤
n

∑
i=1

x2
i = ‖x‖2

2 ≤
n

∑
i=1

x2
j = nx2

j = n‖x‖2
∞.

2 In fact, all vector norms on Rn are equivalent!
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Matrix norm

Let A be an n× n real matrix. If ‖ · ‖ is any vector norm on Rn, then

‖A‖ := max{‖Ax‖ : x ∈ Rn, ‖x‖ = 1}

⇐⇒ ‖A‖ := max{‖Ax‖
‖x‖ : x ∈ Rn, x 6= 0}

defines a norm on the vector space of all n× n real matrices. (This is
called the matrix norm associated with the given vector norm)

Proof:
1 ∵ ‖Ax‖ ≥ 0 ∀ x ∈ Rn, ‖x‖ = 1. ∴ ‖A‖ ≥ 0.

Exercise: ‖A‖ = 0 if and only if A = 0.
2 ‖λA‖ = max{‖λAx‖ : ‖x‖ = 1} = max{|λ|‖Ax‖ : ‖x‖ = 1}

= |λ|max{‖Ax‖ : ‖x‖ = 1} = |λ|‖A‖.
3 ‖A + B‖ = max{‖(A + B)x‖ : ‖x‖ = 1} ≤ max{‖Ax‖+ ‖Bx‖ :
‖x‖ = 1}
≤ max{‖Ax‖ : ‖x‖ = 1}+ max{‖Bx‖ : ‖x‖ = 1} = ‖A‖+ ‖B‖.
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Some additional properties

1 ‖Ax‖ ≤ ‖A‖‖x‖, ∀ x ∈ Rn.

Proof: Let x 6= 0.

Then v =
x
‖x‖ is of norm 1. ∴ ‖A‖ ≥ ‖Av‖ = ‖Ax‖

‖x‖ .

2 ‖I‖ = 1.
3 ‖AB‖ ≤ ‖A‖‖B‖.

Proof:

‖AB‖ := max{‖(AB)x‖ : x ∈ Rn, ‖x‖ = 1}
≤ max{‖A‖‖Bx‖ : x ∈ Rn, ‖x‖ = 1}
≤ max{‖A‖‖B‖‖x‖ : x ∈ Rn, ‖x‖ = 1} = ‖A‖‖B‖.
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Some matrix norms

Let An×n = (aij) be an n× n real matrix. Then
1 The ∞-matrix norm:

‖A‖∞ = max
1≤i≤n

n

∑
j=1
|aij|

2 The 1-matrix norm:

‖A‖1 = max
1≤j≤n

n

∑
i=1
|aij|

3 The 2-matrix norm (`2-matrix norm):

‖A‖2 = max
‖x‖2=1

‖Ax‖2
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Example

We consider the matrix

A =

 1 0 2
0 1 −1
−1 1 1

 .

The characteristic polynomial p(λ) of A is given by

p(λ) = det(A− λI)

= (1− λ){(1− λ)2 + 1}+ (−1){−2(1− λ)}
= (1− λ){λ2 − 2λ + 4}.

The eigenvalues of A are λ1 = 1, λ2 = 1 +
√

3i and λ3 = 1−
√

3i.

The spectral radius ρ(A) of matrix A is defined by

ρ(A) = max{|λ| : λ is an eigenvalue of A}.

For matrix A, we have ρ(A) = max{|1|, |1+
√

3i|, |1−
√

3i|} = 2.
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The 2-matrix norm

1 ‖A‖2 is not easy to compute.

2 Since A>A is symmetric, A>A has n real eigenvalues,
λ1, λ2, · · · , λn ∈ R. Moreover, one can prove that they are all
nonnegative. Then

ρ(A>A) := max
1≤i≤n

{λi} ≥ 0.

is called the spectral radius of A>A.

3 Then the `2-matrix norm of A is given by

‖A‖2 =
√

ρ(A>A).

The `2-matrix norm is also called the spectral norm.
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Properties of matrix norm

Let A be an n× n real matrix. Then

1 Then the `2-matrix norm of A is given by ‖A‖2 =
√

ρ(A>A).

The `2-matrix norm is also called the spectral norm.
2 ρ(A) ≤ ‖A‖ for any matrix norm ‖ · ‖.

Proof: Suppose that λ is an eigenvalue of A with eigenvector x
and ‖x‖ = 1.

=⇒ |λ| = |λ|‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖ = ‖A‖

=⇒ ρ(A) = max |λ| ≤ ‖A‖
3 For any n× n matrix A and any ε > 0, ∃ a matrix norm ‖ · ‖

such that ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε.
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Example

A =

 1 1 0
1 2 1
−1 1 2

 .

A>A =

 1 1 −1
1 2 1
0 1 2

 1 1 0
1 2 1
−1 1 2

 =

 3 2 −1
2 6 4
−1 4 5


det(A>A− λI) = det

 3− λ 2 −1
2 6− λ 4
−1 4 5− λ

 = −λ(λ2 − 14λ + 42)

=⇒ λ = 0, 7 +
√

7, 7−
√

7

=⇒ ‖A‖2 =
√

ρ(A>A) =
√

7 +
√

7 ≈ 3.106

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Numerical Methods for Linear Systems – 38/62



Convergence

1 Definition: An n× n matrix A is said to be convergent (to zero
matrix) if lim

k→∞
(Ak)ij = 0 for i, j = 1, 2, · · · , n.

2 Example:

A =

[ 1
2 0
1
4

1
2

]
=⇒ A2 =

[ 1
4 0
1
4

1
4

]
=⇒ A3 =

[ 1
8 0
3

16
1
8

]
=⇒ · · ·

Ak =

[
( 1

2 )
k 0

k
2k+1 ( 1

2 )
k

]
, lim

k→∞
(

1
2
)k = 0, lim

k→∞

k
2k+1 = 0.

∴ A is a convergent matrix
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Equivalent statements

The following statements are equivalent:

1 A is a convergent matrix

2 lim
n→∞
‖An‖ = 0 for some natural matrix norm

3 lim
n→∞
‖An‖ = 0 for all natural matrix norms

4 ρ(A) < 1

5 lim
n→∞

Anx = 0 for all x
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Iterative methods

1 Basic idea: Ax = b =⇒ x = Tx + c for some fixed matrix T and
vector c

2 Given x(0), x(k) := Tx(k−1) + c for k = 1, 2, · · ·
3 Consider a linear system:

10x1 − x2 + 2x3 + 0 = 6
−x1 + 11x2 − x3 + 3x4 = 25

2x1 − x2 + 10x3 − x4 = −11
0 + 3x2 − x3 + 8x4 = 15

Exact unique solution: x = (1, 2,−1, 1)>
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The Jacobi iterative method

We first rewrite the linear system as

x1 = 0 +
1
10

x2 −
2
10

x3 + 0 +
6
10

x2 =
1

11
x1 + 0 +

1
11

x3 −
3

11
x4 +

25
11

x3 = − 2
10

x1 +
1

10
x2 + 0 +

1
10

x4 −
11
10

x4 = 0− 3
8

x2 +
1
8

x3 + 0 +
15
8

x =


x1
x2
x3
x4

 = Tx + c =



0 1
10 − 2

10 0

1
11 0 1

11 − 3
11

− 2
10

1
10 0 1

10

0 − 3
8

1
8 0


x +



6
10

25
11

− 11
10

15
8


.
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The Jacobi iterative method (cont’d)

If x(0) = (0, 0, 0, 0)>, then

x(1) = Tx(0) + c =



6
10

25
11

− 11
10

15
8


=



0.6000

2.2727

−1.1000

1.8750


.

=⇒ x(2) = Tx(1) + c =⇒ · · ·

=⇒ ‖x
(10) − x(9)‖∞

‖x(10)‖∞
=

8.0× 10−4

1.9998
< 10−3 stop! x ≈ x(10).
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The Jacobi iterative method (cont’d)

Ax = b, aii 6= 0 for all i = 1, 2, · · · , n.

Given x(k−1), k ≥ 1.

For i = 1, 2, · · · , n,

x(k)i =

−
n

∑
j=1,j 6=i

aijx
(k−1)
j + bi

aii
.
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Theoretical setting


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

 =


a11

a22
. . .

ann



−


0
−a21 0

...
. . . . . .

−an1 · · · −ann−1 0

−


0 −a12 · · · −a1n
. . . . . .

...
−an−1n

0


=⇒ A = D− L−U

D: diagonal matrix
L: lower triangular matrix
U: upper triangular matrix

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Numerical Methods for Linear Systems – 45/62



Theoretical setting (cont’d)

Ax = b

=⇒ Dx = (L + U)x + b

=⇒ x = D−1(L + U)x + D−1b

The Jacobi iterative method:

x(k) = D−1(L + U)x(k−1) + D−1b, k = 1, 2, · · ·

Notation: x(k) = TJx(k−1) + cJ, where TJ := D−1(L + U), cJ := D−1b
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The Gauss-Seidel iterative method

Ax = b, aii 6= 0 for all i = 1, 2, · · · , n.

Given x(k−1), k ≥ 1.

For i = 1, 2, · · · , n,

x(k)i =

−
i−1

∑
j=1

aijx
(k)
j −

n

∑
j=i+1

aijx
(k−1)
j + bi

aii
.
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Example

Letting x(0) = (0, 0, 0, 0)>, for k = 1, 2, · · ·

x(k)1 = 0 +
1
10

x(k−1)
2 − 2

10
x(k−1)

3 + 0 +
6

10

x(k)2 =
1
11

x(k)1 + 0 +
1

11
x(k−1)

3 − 3
11

x(k−1)
4 +

25
11

x(k)3 = − 2
10

x(k)1 +
1

10
x(k)2 + 0 +

1
10

x(k−1)
4 − 11

10

x(k)4 = 0− 3
8

x(k)2 +
1
8

x(k)3 + 0 +
15
8

=⇒ ‖x
(5) − x(4)‖∞

‖x(5)‖∞
= 4.0× 10−4 < 10−3 stop! x ≈ x(5).

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Numerical Methods for Linear Systems – 48/62



Theoretical setting

Ax = b, A = D− L−U =⇒ (D− L)x(k) = Ux(k−1) + b. That is,

a11x(k)1 = −a12x(k−1)
2 − · · · − a1nx(k−1)

n + b1

a21x(k)1 + a22x(k)2 = −a23x(k−1)
3 − · · · − a2nx(k−1)

n + b2

... =
...

an1x(k)1 + an2x(k)2 + · · ·+ annx(k)n = bn

=⇒ x(k) = (D− L)−1Ux(k−1) + (D− L)−1b for k = 1, 2, · · ·

The Gauss-Seidel iterative method: x(k) = TSx(k−1) + cS,

where TS := (D− L)−1U and cS := (D− L)−1b.

Note: aii 6= 0, i = 1, 2, · · · , n⇐⇒ D− L is nonsingular!
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Theorem on convergence

1 For any x(0) ∈ Rn, the sequence {x(k)} defined by

x(k) := Tx(k−1) + c, k ≥ 1,

converges to the unique solution of x = Tx + c⇐⇒ ρ(T) < 1.

2 A lemma: If ρ(T) < 1, then (I− T)−1 exists and

(I− T)−1 = I + T + T2 + · · · (:=
∞

∑
n=0

Tn).
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Corollaries

1 x(0) ∈ Rn, x(k) := Tx(k−1) + c, k ≥ 1. If ‖T‖ < 1 for any natural
matrix norm then {x(k)} converges to the unique solution of
x = Tx + c and

‖x− x(k)‖ ≤ ‖T‖k‖x− x(0)‖.

‖x− x(k)‖ ≤ ‖T‖k

1− ‖T‖‖x
(1) − x(0)‖.

2 If A is strictly diagonally dominant, then for any x(0) ∈ Rn, both
the Jacobi and Gauss-Seidel methods give sequences {x(k)} that
converge to the unique solution of Ax = b (x = Tx + c).
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Successive Over-Relaxation (SOR)

1 The Gauss-Seidel method:

x(k)i =
1
aii

{
−

i−1

∑
j=1

aijx
(k)
j −

n

∑
j=i+1

aijx
(k−1)
j + bi

}

2 Successive over-relaxation:

x(k)i = (1−ω)x(k−1)
i +

ω

aii

{
−

i−1

∑
j=1

aijx
(k)
j −

n

∑
j=i+1

aijx
(k−1)
j + bi

}
, ω > 0

In general,

ω = 1: the Gauss-Seidel method
0 < ω < 1: when G-S diverges
ω > 1: when G-S converges
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SOR (cont’d)

aiix
(k)
i + ω

i−1

∑
j=1

aijx
(k)
j = (1−ω)aiix

(k−1)
i −ω

n

∑
j=i+1

aijx
(k−1)
j + ωbi

=⇒ (D−ωL)x(k) =
(
(1−ω)D + ωU

)
x(k−1) + ωb

=⇒ x(k) = (D−ωL)−1
(
(1−ω)D + ωU

)
x(k−1) + ω(D−ωL)−1b

=⇒ x(k) = Tωx(k−1) + cω
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Example

1 Consider a linear system: 4x1 + 3x2 + 0 = 24
3x1 + 4x2 − x3 = 30

0− x2 + 4x3 = −24

Exact unique solution: x = (3, 4,−5)>.

2 Let x(0) = (1, 1, 1)>. The G-S method:
x(k)1 = −0.75x(k−1)

2 + 6
x(k)2 = −0.75x(k)1 + 0.25x(k−1)

3 + 7.5
x(k)3 = 0.25x(k)2 − 6

3 Let x(0) = (1, 1, 1)>. The SOR with ω = 1.25:
x(k)1 = −0.25x(k−1)

1 − 0.9375x(k−1)
2 + 7.5

x(k)2 = −0.9375x(k)1 − 0.25x(k−1)
2 + 0.3125x(k−1)

3 + 9.375
x(k)3 = 0.3125x(k)2 − 0.25x(k−1)

3 − 7.5
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Theorems on convergence

1 If aii 6= 0, i = 1, 2, · · · , n, then ρ(Tω) ≥ |ω− 1|. This implies the
SOR method can converge only if 0 < ω < 2.

2 If A is SPD, 0 < ω < 2, then the SOR method converges for any
x(0).
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Some error analysis

1 Suppose that we want to solve the linear system Ax = b, but b is
somehow perturbed to b̃ (this may happen when we convert a
real b to a floating-point b).

2 Then actual solution would satisfy a slightly different linear
system

Ax̃ = b̃.

3 Question: Is x̃ very different from the desired solution x of the
original system?

4 Of course, the answer should depend on how good the matrix A
is.

5 Let ‖ · ‖ be a vector norm, we consider two types of errors:
absolute error: ‖x− x̃‖
relative error: ‖x− x̃‖/‖x‖
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The absolute error

For the absolute error, we have

‖x− x̃‖ = ‖A−1b−A−1b̃‖ = ‖A−1(b− b̃)‖ ≤ ‖A−1‖‖b− b̃‖.

Therefore, the absolute error of x depends on two factors: the
absolute error of b and the matrix norm of A−1.
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The relative error

For the relative error, we have

‖x− x̃‖ = ‖A−1b−A−1b̃‖ = ‖A−1(b− b̃)‖

≤ ‖A−1‖‖b− b̃‖ = ‖A−1‖‖Ax‖‖b− b̃‖
‖b‖

≤ ‖A−1‖‖A‖‖x‖‖b− b̃‖
‖b‖ .

That is
‖x− x̃‖
‖x‖ ≤ ‖A−1‖‖A‖ ‖b− b̃‖

‖b‖ .

Therefore, the relative error of x depends on two factors: the relative
error of b and ‖A‖‖A−1‖.
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Condition number

1 Therefore, we define a condition number of the matrix A as

κ(A) := ‖A‖‖A−1‖.
κ(A) measures how good the matrix A is.

2 Example: Let ε > 0 and

A =

[
1 1 + ε

1− ε 1

]
=⇒ A−1 = ε−2

[
1 −1− ε

−1 + ε 1

]
.

Then ‖A‖∞ = 2 + ε, ‖A−1‖∞ = ε−2(2 + ε), and

κ(A) =
(2 + ε

ε

)2
≥ 4

ε2 .
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Condition number (cont’d)

1 For example, if ε = 0.01, then κ(A) ≥ 40000.

2 What does this mean?
It means that the relative error in x can be 40000 times greater
than the relative error in b.

3 If κ(A) is large, we say that A is ill-conditioned, otherwise A is
well-conditioned.

4 In the ill-conditioned case, the solution is very sensitive to the
small changes in the right-hand vector b (higher precision in b
may be needed).
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Another way to measure the error

Consider the linear system Ax = b. Let x̃ be a computed solution (an
approximation to x).

1 Residual vector:
r = b−Ax̃

2 Error vector:
e = x− x̃

3 They satisfy
Ae = r

(Proof: Ae = Ax−Ax̃ = b−Ax̃ = r)
4 Moreover, we have

1
κ(A)

‖r‖
‖b‖ ≤

‖e‖
‖x‖ ≤ κ(A)

‖r‖
‖b‖ .

(Theorem on bounds involving condition number)
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Proof of the Theorem

∵ Ae = r

∴ e = A−1r

∴ ‖e‖‖b‖ = ‖A−1r‖‖Ax‖ ≤ ‖A−1‖‖r‖‖A‖‖x‖

∴
‖e‖
‖x‖ ≤ κ(A)

‖r‖
‖b‖

On the other hand, we have

‖r‖‖x‖ = ‖Ae‖‖A−1b‖ ≤ ‖A‖‖e‖‖A−1‖‖b‖.

∴
1

κ(A)

‖r‖
‖b‖ ≤

‖e‖
‖x‖

Suh-Yuh Yang (楊肅煜), Math. Dept., NCU, Taiwan Numerical Methods for Linear Systems – 62/62


