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A system of linear equations

We are interested in solving systems of linear equations having the
form:

a11X1 +apXy +a13x3 + -+ - + Xy = bl
a21X1 + 20X +anzxz + -+ - +aoxy, = by
a31x1 +azpxy +azxz + -+ azxy = b
Ap1X1 + X0 +ay3xz + - Fapxy, = by

This is a system of n equations in the n unknowns, x1,x2, - - - , x4. The
elements a;; and b; are assumed to be prescribed real numbers.

Suh-Yuh Yang ( ), Math. Dept., NCU, Taiwe Numerical Methods for Linear Systems —2/62



Ax=1Db

We can rewrite this system of linear equations in a matrix form:

ajp a2 413
a1 dpp a3
a3y d3z2 433

ap1l  An2 A3

a1y x1 by
Ay X by
a3y x3 | — | b3
Ann Xn by

We can denote these matrices by A, x, and b, giving the simpler

equation:
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Matrix

A matrix is a rectangular array of numbers such as

30 11
6.2 0.0
06 —4.0
9.3 21

—0.12
0.15
1.3 !
8.2

4 x 3 matrix
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3.2
—4.7
0.11

[3 6 ¥ -17],

3 x 1 matrix
a column vector

1 X 4 matrix
a row vector
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Matrix properties

O If A is a matrix, the notation a;;, (A);;, or A(i, ) is used to denote
the element at the intersection of the ith row and the jth column.
For example, let A be the first matrix on the previous slide. Then
azp = A32 = A(3,2) = —4.0.

@ The transpose of a matrix is denoted by A" and is the matrix
defined by (A");j = aj;. If a matrix A has the property A = AT,
we say that A is symmetric.

© The n X n matrix

[e>ian)
O =
— O
o O

Ii'=1; = Ijxy :=
o0 o0 --- 1

is called an identity matrix. Note that IA = A = Al forany n x n
matrix A.
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Algebraic operations

@ Scalar * Matrix: If A is a matrix and A is a scalar, then AA is
defined by (AA);; = Aaj;.

@ Matrix + Matrix: If A = (a;;) and B = (b;;) are m x n matrices,
then A + B is defined by (A + B);; = aj;j + bj;.

© Matrix * Matrix: If A is an m X p matrix and B is a p x n matrix,
then AB is an m X n matrix defined by:

p
(AB)l'j = Z aikbkj, 1 S i S m, 1 S] S n.
k=1

What is the cost of AB?

Answer: mnp multiplications and mn(p — 1) additions.
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Right inverse and left inverse

If A and B are two matrices such that AB = I, then we say that B is a
right inverse of A and that A is a left inverse of B. For example,

Bk
Bk

Notice that right inverse and left inverse may not unique.

(=]

1 0
:| = { 0 1 :| :szz, VLX,’BE]R.

o
OoORr O ™ O

1 0
:| |: 0 1 :| = Iy, VD(,IBEIR.

@ Theorem: A square matrix can possess at most one right inverse.

n .
Proof: Let AB = 1. Then Z b]va(/) = I(k>, 1 < k < n. So, the columns of A form a
=1
basis for R". Therefore, the coefficients b]-k above are uniquely determined.
© Theorem: If A and B are square matrices such that AB = I, then
BA =1.
Proof: Let C =BA —1+B. Then AC=ABA—-AI+AB=A—-A+I1=1
Since right inverse for square matrix is at most one, B = C.
Hence, C=BA—-14+B=BA—-1+C,ie,BA=1
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Inverse

@ If a square matrix A has a right inverse B, then B is unique and
BA = AB = I. We then call B the inverse of A and say that A is
invertible or nonsingular. We denote B = A~L.

© Example:

FRBEHENEhE

© If Aisinvertible, then the system of equations Ax = b has the
solution x = A~1b. If A1 is not available, then in general, Al
should not be computed solely for the purpose of obtaining x.

© How do we get this A 1?
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Equivalent systems

@ Let two linear systems be given, each consisting of n equations
with n unknowns:

Ax=0b and Bx=d.

If the two systems have precisely the same solutions, we call
them equivalent systems.

@ Note that A and B can be very different.

© Thus, to solve a linear system of equations, we can instead solve
any equivalent system. This simple idea is at the heart of our
numerical procedures.
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Elementary operations

@ Let & denote the i-th equation in the system Ax = b. The
following are the elementary operations which can be
performed:

o Interchanging two equations in the system: &; <+ &j;
o Multiplying an equation by a nonzero number: A&; — &;;
e Adding to an equation a multiple of some other equation:
E+AE — &
© Theorem on equivalent systems: If one system of equations is
obtained from another by a finite sequence of elementary
operations, then the two systems are equivalent.
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Elementary operations (cont’d)

© An elementary matrix is defined to be an n x n matrix that arises
when an elementary operation is applied to the n x n identity
matrix.

© Let A; be the i-th row of matrix A. The elementary operations
expressed in terms of the rows of matrix A are:
o The interchange of two rows in A: A; <+ Aj;
e Multiplying one row by a nonzero constant: AA; — A;;
o Adding to one row a multiple of another: A; + AA; — A;.

© Each elementary row operation on A can be accomplished by
multiplying A on the left by an elementary matrix.
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Examples

100 an a4 413 an daip 413

0 0 1 ay1 Adpy a3 = az1 4azp ass

01 0 | [ a1 a3 as | | 421 a2 a3

1.0 0 an a1 413 an A4 a3

0 A0 ax1 a4 = Adpy Aayp Ada
| 0 0 1 1 L a1 a3 a3z | L 431 asp a33

100 an a1 413 an a a13

010 ap a4 = ann az a3
0 A 1| [ an ax a3 | | Adoy +a31 Aaxp +azy  Adgz +as3
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Invertible matrix

@ If matrix A is invertible, then there exists a sequence of
elementary row operations can be applied to A, reducing it to I,

EmEn—1---E2E1A =1
@ This gives us an equation for computing the inverse of a matrix:
Ail = EwEn—1-+-E2Ey = EnEy1- - E2Eql.

Remark: This is not a practical method to compute A~1.
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Eigenvalue and eigenvector

Let A € C"*" be a square matrix. If there exists a nonzero vector
x € C" and a scalar A € C such that

Ax = Ax,
then A is called an eigenvalue of A and x is called the corresponding
eigenvector of A.

Remark: Computing A and x is a major task in numerical linear
algebra.
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Theorem on nonsingular matrix properties

For an n x n real matrix A, the following properties are equivalent:
The inverse of A exists; that is, A is nonsingular

The determinant of A is nonzero

The rows of A form a basis for IR”

The columns of A form a basis for IR”

As a map from R" to R”, A is injective (one to one)

As a map from R" to R”, A is surjective (onto)

The equation Ax = 0 implies x = 0

©00000O0OFOC

For each b € IR", there is exactly one x € R" such that Ax = b
@ Aisaproduct of elementary matrices

@ 0is not an eigenvalue of A
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Some easy-to-solve systems:

1. Diagonal Structure

ai 0 0 s 0 X1 bl
0 az» 0 cee 0 X2 b2
0 0 as --- 0 X3 = bs
0 0 0 st ann xn bn

The solution is: (provided a;; # 0 foralli =1,2,--- ,n)
_(by by b3 by \T
o (bt b eyt

7 7 4 7
a1 azp 4ass Ann

@ If a; = 0 for some index i, and if b; = 0 also, then x; can be any
real number. The number of solutions is infinity.

@ Ifa; = 0and b; # 0, no solution of the system exists.

@ What is the complexity of the method? n divisions.
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2. Lower Triangular Systems

ai 0 0 s 0 X1 b1
ay1 A4y 0 ce 0 X2 b2
a3 Az 433 0 x3 | = | b3
a1 ap2 au3 -+ Opn Xn by

Some simple observations:
@ Ifay; # 0, then we have x1 = by /aq;.
@ Once we have x;, we can simplify the second equation,
xp = (bp — apy1x1)/ax, provided that ay; # 0.
Similarly, x3 = (b3 —az1x1 — a32x2) /a33, provided that a33 # 0.
In general, to find the solution to this system, we use forward
substitution (assume that a; # 0 for all 7).
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2. Lower Triangular Systems (cont’d)

@ Algorithm of forward substitution:

input n, (aij), b= (b, by, ,by)"
fori=1tondo

i—1
Xj < (b1 — Z{li]’x]') /aii
j=1
end do
output x = (x1,xp,- -+ ,x,) "
@ Complexity of forward substitution:
e n divisions.
o the number of multiplications: 0 for x1, 1 for x,, 2 for x3, - - -
total=0+1+2+---+ (n—1) = (n+1)n/2 = O(n?).
e the number of subtractions: same as the number of
multiplications = O(n?).
Forward substitution is an O(n?) algorithm.

@ Remark: forward substitution is a sequential algorithm (not
parallel at all).
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3. Upper Triangular Systems

ann a4 413 v A X1 by
0 axp axp -+ ay X by
0 0 axp - az x3 | — | b3
0 0 0 - au Xy b,

The formal algorithm to solve for x is called backward substitution. It
is also an O(n?) algorithm. Assume that a;; # 0 for all i:

input n, (ﬂij), b= (bl, by, - -- ,bn)T
fori=n:—-1:1do

Xj < (bz — i ai]'x]') /aii

j=it1
end do
output x = (x1,x,- -+ , Xy
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LU decomposition (factorization)

Suppose that A can be factored into the product of a lower triangular
matrix L and an upper triangular matrix U:

A=1LU.

Then, Ax = LUx = L(Ux). Thus, to solve the system of equations
Ax = b, it is enough to solve this problem in two stages:

Lz = b solvefor z,
Ux = 2z solvefor x.
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Let AD = (a(l)) = A = (a;) and b() = b. Consider the following

ij

linear system Ax = b:

Basic Gaussian elimination

6 -2 2 4 x 12
12 -8 6 10 X | 34
3 —-13 9 3 x3 | 27
—6 4 1 -18 X4 —38
pivot row =rowl.
pivot element: agll) =6.
row?2 - (12/6)*row1l — row?2.
row3 - (3/6)*rowl — row3.
row4 - (-6/6)*rowl — row4.
6 -2 2 4 X1 12
N 0 -4 2 2 x| 10
0 —-12 8 1 X3 21
0 2 3 -14 X4 —26

multipliers: 12/6, 3/6, (—6)/6
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Basic Gaussian elimination (cont’d)

We have the following equivalent system A(2)x = b(2):

6 -2 2 4 X 12
0 -4 2 2 x| | 10
0 -12 8 1 o || 21
0 23 —14 x4 —26

pivot row = row?2.

pivot element ag) = —4.
row3 - (-12/-4)*row2 — row3.
row4 - (2/-4)*row2 — row4.

6 —2 2 4 X 12
|0 42 2 x| | 10
0 02 -5 X3 -9
0 0 4 —13 Xy —21

multiplier: (—=12)/(—4), 2/(—4)
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Basic Gaussian elimination (cont’d)

We have the following equivalent system A()x = b():

6 —2 2 4 X1 12

0 —4 2 2 x2 | 10

0 0 2 =5 x3 | -9

0 0 4 -13 Xq -21
pivot row = row3.

pivot element agz) =2

row4 - (4/2)*row3 — row4.

6 -2 2 4 X 12
|0 42 2 x| | 10
0 02 -5 X3 -9
0 00 -3 x4 -3

multiplier: 4/2
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Basic Gaussian elimination (cont’d)

Finally, we have the following equivalent upper triangular system

Ay = p&):
6 -2 2 4 X1 12
0 42 2||x| | 10
0 0 2 =5 x3 || -9
0 00 -3 Xy -3
Using the backward substitution, we have
X1 1
X2 . -3
X3 - -2
X4 1
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The LU decomposition

Display the multipliers in an unit lower triangular matrix L = (¢;;):

1 000
2 100
=11 3510
-1 -1 21

Let U = (u;;) be the final upper triangular matrix A®) ., Then we have

6 -2 2 4
0o -4 2 2
U= 0 0 2 =5
0 0 0 -3

and one can check that A = LU (the Doolittle Decomposition).
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Some remarks

@ The entire elimination process will break down if any of the
pivot elements are 0.

@ The total number of arithmetic operations:

3
B S
M/D—3+n 3
3 2
A/s=" o 5n

3 2 6
.. The GE is an O(n?) algorithm.
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Vector norm

A vector norm on R" is a real-valued function | - || : R” — R with the
properties:

Q [[x]| >0,Vx eR" and ||x|| = 0if and only if x = 0;
Q |jax| = |a|||x]|, Vx € R"and « € R;
Q |x+yl| < x|+ lyll, ¥ x,y € R" (the triangle inequality).

Note: ||x|| is called the norm of x, the length or magnitude of x.

Suh-Yuh Yang ( Wi 1), Math. Dept., NCU, Taiwan Numerical Methods for Linear Systems — 27/62



Some vector norms on R"” and distance

Q Letx = (x;,xp,---,x;)| €R™
n
o The 2-norm (Euclidean norm, or 2 norm): ||x|> = /) x?
i=1
o The infinity norm (/*-norm): ||x||cc = max |x;]
1<i<n

n
e The 1-norm (¢'-norm):||x[[; = ) _ |x;|
i=1

Q Letx = (x1,x, - ,xn)T,y = (Y12, - ,yn)T € R". Then

n

o [[x—yl2= Z(Xi—%’)z
i=1

o [lx—yllo = max [x; — yil

n
o [x—yli=)_|xi— il
=
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The difference between the above norms

© What is the unit ball {x € R? : ||x| < 1} for the three norms
above?

e 2-norm: a circle
e co-norm: a square
o l-norm: a diamond

@ Example: Letx = (—1,1,-2)" € R3. Then
Ixll2 = y/(~1)2 +12 + (<2 = V&,
elleo = max |xi| = max{| — 1|, 1],| - 2[} =2,

3
Il =} lxl =[=1+ 1 +]-2| =4
i=1

© Cauchy-Buniakowsky-Schwarz inequality: For
X = (xlrx2/ Tt rx'rl>Try - (yllyZI e /]/n)T S anl we have

" " 1/2 0 1/2
Y eyl < (29512) (Z%Z> = |lxll2/[¥ll2-
i=1 i=1 i=1
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Convergence of sequences in R”

© Definition: Let x, x*) € R" fork = 1,2, --. Then

klim x¥) = x with respect to the norm || - || <=

—00
Ve > 0,3 aninteger N(e) > 0 such thatif k > N(e) then
[x®) — x| < e.

@ lim x*) = x with respect to || - [|oo <= lim x§k> = x; for
k—co k—ro0
i=12,--,n

© Example:
xk) = (xg ) xék),xg ),xi )) =(1,2++ ! e *sin(k)) ",

k’ kz'

“lim1=1, hm(2+ ) =2, hm 3 =0, hme ksin(k)
k—oc0 oo k2

- lim x® = x = (1,2,0,0) " with respect to || - ||co nOrm.
k—o0

=0.
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All vector norms on R" are equivalent

@ Foreachx € R”, ||x|leo < ||x]l2 < v/1|X]]c0-
Proof: Let |x;| = [|x[|co- Then
2 2 _ . 2
Ix% = Ixi? = xF < ) aF = |lx]3 < Zx = nx} = nl|x|%.
i=

i=1

@ In fact, all vector norms on IR" are equivalent!
q
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Matrix norm

Let A be an n x n real matrix. If || - || is any vector norm on R”, then
[A]] := max{[|Ax[| : x € R, [|x[| = 1}

— |A] = {”” || x € R",x # 0}

defines a norm on the vector space of all n x n real matrices. (This is
called the matrix norm associated with the given vector norm)

Proof:

Q |Ax|| > 0VxeR" |x]| =1. .. [JA| > 0.
Exercise: |A]| = 0if and only if A = 0.

Q [AA]l = max{[[AAx]| : [[x]| = 1} = max{[A[[[Ax[| : [[x]| = 1}
= [Almax{|[Ax]| : [lx[| = 1} = [A[[|A]]

Q [[A+B|| = max{[|(A+B)x] : [lx[| = 1} < max{[[Ax] + [|Bx] :
[ = 1}
< max{[|Ax|[ + [lx[] = 1} + max{{|Bx]| - x| = 1} = [|A]| + [B]|
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Some additional properties

Q [[Ax|[ < [[A[[lx[l, ¥ x & R™.
Proof: Let x # 0.

Then v = * is of norm 1. A = A = ||Ax|]
Il x|
Q (I =1
Q [|AB|| < [|A[[|[B]I.
Proof:

|AB|| := max{||(AB)x|| : x € R", [[x|| = 1}
< max{|[All[[Bx] : x € R", [[x[| =1}
< max{|[Al[|B]l[|x]| : x € R", [[x]| = 1} = [|A[|[|B]
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Some matrix norms

Let A,y = (aij) be an n x n real matrix. Then

@ The co-matrix norm:

4l = o 3.l
/:

@ The 1-matrix norm:

|All1 = max Z |aj;]
<j<n =

@ The 2-matrix norm (/?-matrix norm):

[Allz = max |[Ax]|2
[Ixll2=1
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Example

We consider the matrix

1 0 2
A= 01 -1
-1 1 1

@ The characteristic polynomial p(A) of A is given by

p(A) = det(A—Al)
= (1=-D){1-AP+1}+(1){-2(1-1)}
(1—A){A%2 =271 44}

The eigenvaluesof Aare Ay =1, Ay =1+ V3iand A3 =1 — /3i.
@ The spectral radius p(A) of matrix A is defined by
0p(A) = max{|A| : Aisan eigenvalue of A}.

For matrix A, we have p(A) = max{|1], |1+ +/3i|, |1 — V/3i|} = 2.
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The 2-matrix norm

Q ||A|l2 is not easy to compute.

@ Since AT A is symmetric, AT A has n real eigenvalues,
A1, Az, -+, Ay € R. Moreover, one can prove that they are all
nonnegative. Then

p(ATA): ]Sgn{m} > 0.

is called the spectral radius of AT A.

@ Then the ¢2-matrix norm of A is given by

JAll = \/p(ATA).

The ¢2-matrix norm is also called the spectral norm.
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Properties of matrix norm

Let A be an n X n real matrix. Then

© Then the /2-matrix norm of A is given by [|Al|> = \/p(ATA).

The ¢2-matrix norm is also called the spectral norm.

Q p(A) < ||A|| for any matrix norm || - ||.

Proof: Suppose that A is an eigenvalue of A with eigenvector x
and ||x|| = 1.

= Al = [Afllxll = [[Ax]] = [[Ax] < [lA[[[lx]| = [lAl
= p(A) = max |A] < [|A]

@ For any n X n matrix A and any € > 0, 3 a matrix norm || - ||
such that p(A) < [|A]| < p(A) +&.
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Example

110
A = 1 2 1
-1 1 2]
(1 1 —17 110 3 2 -1
ATA = |1 2 1 1 21]|=| 26 4
(01 2]|-112 -1 4 5
3—A 2 1
det(ATA—AI) = det 2 6-A 4 | = —A(A% 141 +42)
-1 4 5-)

—A=0,74+V7,7—7

= ||All2 = \/p(ATA) = V7 + V7 ~ 3.106
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Convergence

@ Definition: An n X n matrix A is said to be convergent (to zero
matrix) if lim (A¥); = 0fori,j=1,2,---,n.
k—oco0

© Example
1 1 1
i 2 1 1 6 8
1\k
5 0 1 k
A= | ) , lim(3)f=0, lim — =0
kk+1 (%)k kg?o(Z) k;n;o 2k+1

.. A is a convergent matrix
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Equivalent statements

The following statements are equivalent:
@ Aisaconvergent matrix

@ lim ||A"|| = 0 for some natural matrix norm
n—oo

© lim ||A"|| = 0 for all natural matrix norms
n—oo

Q p(4) <1
@ lim A"x =0forall x

n—oo
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Iterative methods

@ Basicidea: Ax = b = x = Tx + ¢ for some fixed matrix T and
vector ¢

@ Givenx(®, x®) .= Txtk=1) 4 cfork=1,2,- -

© Consider a linear system:

10x; —x0 +2x3+0 = 6
—x1+11lxp —x3+3x4 = 25
2x1 —xp +10x3 — x4 = —11
0+4+3x) —x3+8xy = 15

Exact unique solution: x = (1,2,-1, 1)T
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The Jacobi iterative method

We first rewrite the linear system as

X1 =
Xy =
X3 =
X4 =
X1
X
X = 2 | =Tx+c
X3
X4

Suh-Yuh Yang (

1 2 6
0+ —xp— —x3+0+ —

10 10 10
ix —|—0+ix —ix 4—§
11! 11 1141
—gx —|—ix +0+ix _u

10107 107410
0—§x —i—lx +0—i—E
g 2T g 8
— 1 2 —
0 & -3 0
1 1 3
7 0 7 —1
= x+

2 1 1

—f0 10 0 1

3 1
Lo 3§ ol

), Math. Dept., NCU, Taiwan
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The Jacobi iterative method (cont’d)

1f x(© = (0,0,0,0)T, then

- 6 - -
0 0.6000
2 2.2727
x(l) — Tx(()) +c= —
11
-4 —1.1000
15
| 5] | 18750 |

:}x(z) = Tx(l) +o= -
210 —xO)||,  8.0x107*

_ 10)
2010 || o 1.9998

<107% stop! x ~ x(10),
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The Jacobi iterative method (cont’d)

Ax=b,a; #0foralli=1,2,--- ,n.
Given x*1) k> 1.

Fori=1,2,---,n,
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Theoretical setting

ajin a2
az1  ax
an1  an2
0
—ap1
—Ayu

A1p
A

Ann

0

—A=D-L-U

D: diagonal matrix
L: lower triangular matrix
U: upper triangular matrix
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Theoretical setting (cont’d)

Ax=b

= Dx=(L+U)x+b

= x=DYL+U)x+D b
The Jacobi iterative method:

O =D+ wx*Y 4D, k=12,

Notation: x¥) = Tjx*=1) 4 ¢;, where T; := D~ (L + U), ¢; := D~ 'b
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The Gauss-Seidel iterative method

Ax="b,a; #0foralli=1,2,--- ,n.
Given x=1) k> 1.

Fori=1,2,---,n,

i—1 n
— Za,-jx](k) — Z aijxj(kfw + bi
(k) j=1 j=i+1

x; =
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Example

Letting x(*) = (0,0,0,0) 7, fork = 1,2, - - -

W) o a2 g &
AW = 111()+0+%(k 1)_%(k 1)+§
B = _%()+%()+O+E(k 1 %
B = 0_§x§>+8x<k>+0+§

) = 2@ o

15 feo

=40x107* <1073 stop! x= x(®),

Suh-Yuh Yang ( ), Math. Dept., NCU, Taiwan Numerical Methods for Linear Systems — 48/62



Theoretical setting

Ax=bA=D—-L—-U= (D—L)x® = Ux*1) 4 p. Thatis,

a11x§k) = auXEk VoY
a21x§k) + azzxgk) = —a7_3x§k n_ aanﬁ, b + by
anlxgk) + an2x£k) + -+ ﬂnnx(k) = by

— x® =D -L)ux*V +(D-L) bfork=1,2,---

The Gauss-Seidel iterative method: x¥) = Tsx(kfl) +cs,
where Ts := (D — L) 'Uand c5 := (D — L)~ !b.

Note: a;; #0,i=1,2,--- ,n <= D — L is nonsingular!
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Theorem on convergence

@ For any x(9) € R", the sequence {x)} defined by
xK) = Tylk=1) 4 c, k>1,
converges to the unique solution of x = Tx 4+ ¢ <= p(T) < 1.

Q@ Alemma: If p(T) < 1, then (I — T)~! exists and

I-T) '=1+T+T?+ ZT”
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Corollaries

Q@ x© e R?, x® .= Txk=1) ¢ k > 1. If || T|| < 1 for any natural
matrix norm then {x(¥)} converges to the unique solution of
x = Tx+cand
o [lx — M| < IT)[|x — =
° Hx_x(k)H < HTHk ||x(1) _x(O)H‘
17|
@ If A is strictly diagonally dominant, then for any x(*) € R”, both

the Jacobi and Gauss-Seidel methods give sequences {x(¥)} that
converge to the unique solutionof Ax =b (x = Tx +¢).

Suh-Yuh Yang ( Wi 1), Math. Dept., NCU, Taiwan Numerical Methods for Linear Systems — 51/62



Successive Over-Relaxation (SOR)

@ The Gauss-Seidel method:

n
2111] - Z ui]«x;k_l) +b;

i
a” j=i+1

@ Successive over-relaxation:

i—1 n
x§k) = (1 —w)xi(k*1> + by Zaijx}k) — Z ai]-x]-(kfl) +biy,w>0
i =3 j=itl
In general,
e w = 1: the Gauss-Seidel method

e 0 < w < 1: when G-S diverges
e w > 1: when G-5 converges
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SOR (cont’d)

i

i—1 n
aiixlgk) +w Zai]-x(k) =(1- w)aiix(k_l) —w Z uijx}k_l) + wb;
=1 j=it1

— (D—wL)x® = ((1 —w)D + wu) 1 4 wp

— x® = (D—wL)™! ((1 —w)D + wll)x(k_l) +w(D—wL)" b

= x®) = wa(k_l) + o
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Example

@ Consider a linear system:

4x1+3x+0 = 24
3x1+4xp —x3 = 30
0—xp4+4x3 = —-24
Exact unique solution: x = (3,4, —5)".
@ Letx(®) = (1,1,1)". The G-S method:
x%k) = —075: V46
W= —075Y 4025V 475
A= 025 —6

@ Letx(® = (1,1,1)". The SOR with w = 1.25:

A= 025 —0.9375:F Y 475
W= —o. 9375x( ) 0.25:F M 4o 31250 9375
)= o 3125x(k) 0.25:{" Y —75
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Theorems on convergence

Q Ifa; #0,i=1,2,--- ,n,then p(Ty) > |w — 1|. This implies the
SOR method can converge only if 0 < w < 2.

Q IfAisSPD, 0 < w < 2, then the SOR method converges for any
(0)
x\Y),
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Some error analysis

@ Suppose that we want to solve the linear system Ax = b, but b is
somehow perturbed to b (this may happen when we convert a
real b to a floating-point b).

@ Then actual solution would satisfy a slightly different linear
system

AX =b.

© Question: Is ¥ very different from the desired solution x of the
original system?

© Of course, the answer should depend on how good the matrix A
is.

@ Let| - || be a vector norm, we consider two types of errors:

e absolute error: ||x — X||
e relative error: ||x —X||/||x||
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The absolute error

For the absolute error, we have
lx—%|| = |A7 " —A7Tb|| = |AT (b —b)[| < |AT|[[b—b].

Therefore, the absolute error of x depends on two factors: the
absolute error of b and the matrix norm of A~1.
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The relative error

For the relative error, we have

lr—F = [Ab-ATE) = A6 D)
_ ~ _ b—b
< hae =5 = A ar L
_ b—b
< paypag o=l

11l

That is _
[lx — X| 1 1b— bll
< [lATITlAl
x| Il

Therefore, the relative error of x depends on two factors: the relative
error of band ||A[|[|AY.
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Condition number

@ Therefore, we define a condition number of the matrix A as
K(A) = [lA[lA7H.
x(A) measures how good the matrix A is.
© Example: Lete > 0 and

. 1 14¢ 1 -2 1 —-1—¢
A_{l—s 1 }:”‘ —¢ {—1+s 1
Then [|[Afle =2+¢, |A7 | = e2(2+¢), and
24e\2 _ 4
= > —
x(4) ( € ) — e
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Condition number (cont’d)

@ For example, if e = 0.01, then «(A) > 40000.

@ What does this mean?

It means that the relative error in x can be 40000 times greater
than the relative error in b.

© Ifx(A) is large, we say that A is ill-conditioned, otherwise A is
well-conditioned.

© In the ill-conditioned case, the solution is very sensitive to the
small changes in the right-hand vector b (higher precision in b
may be needed).
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Another way to measure the error

Consider the linear system Ax = b. Let X be a computed solution (an
approximation to x).
© Residual vector:

@ Error vector:

© They satisfy

Ae=r
(Proof: Ae = Ax —AX=b—Ax =)

@ Moreover, we have




Proof of the Theorem

cAe=r
e=A1r

~Nelllpll = A=l Ax]] < A= (Allx]

el Il
Cor—r <k(A)
o = A

On the other hand, we have
Il llx]l = flAelllA="e] < AllllellA~ ] lI2])-
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