MA 3021：Numerical Analysis I Direct and Iterative Methods for Solving Linear Systems

Suh－Yuh Yang（楊肅暗）

Department of Mathematics，National Central University Jhongli District，Taoyuan City 32001，Taiwan
syyang＠math．ncu．edu．tw
http：／／www．math．ncu．edu．tw／～syyang／

A system of linear equations

We are interested in solving systems of linear equations having the form：

$$
\left\{\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3} \\
\vdots & \vdots & \vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+a_{n 3} x_{3}+\cdots+a_{n n} x_{n} & =b_{n}
\end{array}\right.
$$

This is a system of n equations in the n unknowns，$x_{1}, x_{2}, \cdots, x_{n}$ ．The elements $a_{i j}$ and b_{i} are assumed to be prescribed real numbers．

$A x=b$

We can rewrite this system of linear equations in a matrix form：

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n}
\end{array}\right]
$$

We can denote these matrices by A, x ，and b ，giving the simpler equation：

$$
A x=b .
$$

Matrix

A matrix is a rectangular array of numbers such as

$$
\left.\begin{array}{ccc}
{\left[\begin{array}{ccc}
3.0 & 1.1 & -0.12 \\
6.2 & 0.0 & 0.15 \\
0.6 & -4.0 & 1.3 \\
9.3 & 2.1 & 8.2
\end{array}\right],}
\end{array} \begin{array}{llll}
{\left[\begin{array}{llll}
3 & 6 & \frac{11}{7} & -17
\end{array}\right],}
\end{array} \begin{array}{cc}
3.2 \\
-4.7 \\
0.11
\end{array}\right] .
$$

Matrix properties

（1）If A is a matrix，the notation $a_{i j},(A)_{i j}$ ，or $A(i, j)$ is used to denote the element at the intersection of the i th row and the j th column． For example，let A be the first matrix on the previous slide．Then $a_{32}=A_{32}=A(3,2)=-4.0$ ．
（2）The transpose of a matrix is denoted by A^{\top} and is the matrix defined by $\left(A^{\top}\right)_{i j}=a_{j i}$ ．If a matrix A has the property $A=A^{\top}$ ， we say that A is symmetric．
（3）The $n \times n$ matrix

$$
I:=I_{n}:=I_{n \times n}:=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

is called an identity matrix．Note that $I A=A=A I$ for any $n \times n$ matrix A ．

Algebraic operations

（1）Scalar ${ }^{*}$ Matrix：If A is a matrix and λ is a scalar，then λA is defined by $(\lambda A)_{i j}=\lambda a_{i j}$ ．
（2）Matrix + Matrix：If $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ are $m \times n$ matrices， then $A+B$ is defined by $(A+B)_{i j}=a_{i j}+b_{i j}$ ．
（3）Matrix＊Matrix：If A is an $m \times p$ matrix and B is a $p \times n$ matrix， then $A B$ is an $m \times n$ matrix defined by：

$$
(A B)_{i j}=\sum_{k=1}^{p} a_{i k} b_{k j}, \quad 1 \leq i \leq m, 1 \leq j \leq n .
$$

What is the cost of $A B$ ？
Answer：$m n p$ multiplications and $m n(p-1)$ additions．

Right inverse and left inverse

If A and B are two matrices such that $A B=I$ ，then we say that B is a right inverse of A and that A is a left inverse of B ．For example，

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
\alpha & \beta
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I_{2 \times 2}, \quad \forall \alpha, \beta \in \mathbb{R} .} \\
& {\left[\begin{array}{lll}
1 & 0 & \alpha \\
0 & 1 & \beta
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I_{2 \times 2}, \quad \forall \alpha, \beta \in \mathbb{R} .}
\end{aligned}
$$

Notice that right inverse and left inverse may not unique．
（1）Theorem：A square matrix can possess at most one right inverse．
Proof：Let $A B=I$ ．Then $\sum_{j=1}^{n} b_{j k} A^{(j)}=I^{(k)}, 1 \leq k \leq n$ ．So，the columns of A form a basis for \mathbb{R}^{n} ．Therefore，the coefficients $b_{j k}$ above are uniquely determined．
（2）Theorem：If A and B are square matrices such that $A B=I$ ，then $B A=I$ ．
Proof：Let $C=B A-I+B$ ．Then $A C=A B A-A I+A B=A-A+I=I$ ．
Since right inverse for square matrix is at most one，$B=C$ ．
Hence，$C=B A-I+B=B A-I+C$ ，i．e．，$B A=I$ ．

Inverse

（1）If a square matrix A has a right inverse B ，then B is unique and $B A=A B=I$ ．We then call B the inverse of A and say that A is invertible or nonsingular．We denote $B=A^{-1}$ ．
（2）Example：

$$
\left[\begin{array}{rr}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{rr}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I_{2 \times 2}
$$

（3）If A is invertible，then the system of equations $A x=b$ has the solution $x=A^{-1} b$ ．If A^{-1} is not available，then in general，A^{-1} should not be computed solely for the purpose of obtaining x ．
（9）How do we get this A^{-1} ？

Equivalent systems

（1）Let two linear systems be given，each consisting of n equations with n unknowns：

$$
A x=b \quad \text { and } \quad B x=d .
$$

If the two systems have precisely the same solutions，we call them equivalent systems．
（2）Note that A and B can be very different．
（3）Thus，to solve a linear system of equations，we can instead solve any equivalent system．This simple idea is at the heart of our numerical procedures．

Elementary operations

（1）Let \mathcal{E}_{i} denote the i－th equation in the system $A x=b$ ．The following are the elementary operations which can be performed：
－Interchanging two equations in the system： $\mathcal{E}_{i} \leftrightarrow \mathcal{E}_{j}$ ；
－Multiplying an equation by a nonzero number：$\lambda \mathcal{E}_{i} \rightarrow \mathcal{E}_{i}$ ；
－Adding to an equation a multiple of some other equation： $\mathcal{E}_{i}+\lambda \mathcal{E}_{j} \rightarrow \mathcal{E}_{i}$.
（2）Theorem on equivalent systems：If one system of equations is obtained from another by a finite sequence of elementary operations，then the two systems are equivalent．

Elementary operations（cont＇d）

（1）An elementary matrix is defined to be an $n \times n$ matrix that arises when an elementary operation is applied to the $n \times n$ identity matrix．
（2）Let A_{i} be the i－th row of matrix A ．The elementary operations expressed in terms of the rows of matrix A are：
－The interchange of two rows in $A: A_{i} \leftrightarrow A_{j}$ ；
－Multiplying one row by a nonzero constant：$\lambda A_{i} \rightarrow A_{i}$ ；
－Adding to one row a multiple of another：$A_{i}+\lambda A_{j} \rightarrow A_{i}$ ．
（3）Each elementary row operation on A can be accomplished by multiplying A on the left by an elementary matrix．

Examples

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{31} & a_{32} & a_{33} \\
a_{21} & a_{22} & a_{23}
\end{array}\right] .} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
\lambda a_{21} & \lambda a_{22} & \lambda a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] .} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \lambda & 1
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
\lambda a_{21}+a_{31} & \lambda a_{22}+a_{32} & \lambda a_{23}+a_{33}
\end{array}\right.}
\end{aligned}
$$

Invertible matrix

（1）If matrix A is invertible，then there exists a sequence of elementary row operations can be applied to A ，reducing it to I ，

$$
E_{m} E_{m-1} \cdots E_{2} E_{1} A=I .
$$

（2）This gives us an equation for computing the inverse of a matrix：

$$
A^{-1}=E_{m} E_{m-1} \cdots E_{2} E_{1}=E_{m} E_{m-1} \cdots E_{2} E_{1} I
$$

Remark：This is not a practical method to compute A^{-1} ．

Eigenvalue and eigenvector

Let $A \in \mathbb{C}^{n \times n}$ be a square matrix．If there exists a nonzero vector $x \in \mathbb{C}^{n}$ and a scalar $\lambda \in \mathbb{C}$ such that

$$
A x=\lambda x
$$

then λ is called an eigenvalue of A and x is called the corresponding eigenvector of A ．
Remark：Computing λ and x is a major task in numerical linear algebra．

Theorem on nonsingular matrix properties

For an $n \times n$ real matrix A ，the following properties are equivalent：
（1）The inverse of A exists；that is，A is nonsingular
（2）The determinant of A is nonzero
（3）The rows of A form a basis for \mathbb{R}^{n}
（4）The columns of A form a basis for \mathbb{R}^{n}
（5）As a map from \mathbb{R}^{n} to \mathbb{R}^{n}, A is injective（one to one）
（6）As a map from \mathbb{R}^{n} to \mathbb{R}^{n}, A is surjective（onto）
（2）The equation $A x=0$ implies $x=0$
（8）For each $b \in \mathbb{R}^{n}$ ，there is exactly one $x \in \mathbb{R}^{n}$ such that $A x=b$
（2）A is a product of elementary matrices
（10） 0 is not an eigenvalue of A

Some easy－to－solve systems：

1．Diagonal Structure

$$
\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & \cdots & 0 \\
0 & a_{22} & 0 & \cdots & 0 \\
0 & 0 & a_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n}
\end{array}\right]
$$

The solution is：（provided $a_{i i} \neq 0$ for all $i=1,2, \cdots, n$ ）

$$
x=\left(\frac{b_{1}}{a_{11}}, \frac{b_{2}}{a_{22}}, \frac{b_{3}}{a_{33}}, \cdots, \frac{b_{n}}{a_{n n}}\right)^{\top} .
$$

－If $a_{i i}=0$ for some index i ，and if $b_{i}=0$ also，then x_{i} can be any real number．The number of solutions is infinity．
－If $a_{i i}=0$ and $b_{i} \neq 0$ ，no solution of the system exists．
－What is the complexity of the method？n divisions．

2．Lower Triangular Systems

$$
\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & \cdots & 0 \\
a_{21} & a_{22} & 0 & \cdots & 0 \\
a_{31} & a_{32} & a_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n}
\end{array}\right]
$$

Some simple observations：
－If $a_{11} \neq 0$ ，then we have $x_{1}=b_{1} / a_{11}$ ．
－Once we have x_{1} ，we can simplify the second equation， $x_{2}=\left(b_{2}-a_{21} x_{1}\right) / a_{22}$ ，provided that $a_{22} \neq 0$ ．
Similarly，$x_{3}=\left(b_{3}-a_{31} x_{1}-a_{32} x_{2}\right) / a_{33}$ ，provided that $a_{33} \neq 0$ ． In general，to find the solution to this system，we use forward substitution（assume that $a_{i i} \neq 0$ for all i ）．

2．Lower Triangular Systems（cont＇d）

－Algorithm of forward substitution：
input $n,\left(a_{i j}\right), b=\left(b_{1}, b_{2}, \cdots, b_{n}\right)^{\top}$
for $i=1$ to n do

$$
x_{i} \leftarrow\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}\right) / a_{i i}
$$

end do
output $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\top}$
－Complexity of forward substitution：
－n divisions．
－the number of multiplications： 0 for $x_{1}, 1$ for $x_{2}, 2$ for x_{3}, \ldots total $=0+1+2+\cdots+(n-1) \approx(n+1) n / 2=O\left(n^{2}\right)$ ．
－the number of subtractions：same as the number of multiplications $=O\left(n^{2}\right)$ ．
Forward substitution is an $O\left(n^{2}\right)$ algorithm．
－Remark：forward substitution is a sequential algorithm（not parallel at all）．

3．Upper Triangular Systems

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a_{22} & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n}
\end{array}\right]
$$

The formal algorithm to solve for x is called backward substitution．It is also an $O\left(n^{2}\right)$ algorithm．Assume that $a_{i i} \neq 0$ for all i ：
input $n,\left(a_{i j}\right), b=\left(b_{1}, b_{2}, \cdots, b_{n}\right)^{\top}$
for $i=n:-1: 1$ do

$$
x_{i} \leftarrow\left(b_{i}-\sum_{j=i+1}^{n} a_{i j} x_{j}\right) / a_{i i}
$$

end do
output $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\top}$

LU decomposition（factorization）

Suppose that A can be factored into the product of a lower triangular matrix L and an upper triangular matrix U ：

$$
A=L U .
$$

Then，$A x=L U x=L(U x)$ ．Thus，to solve the system of equations $A x=b$ ，it is enough to solve this problem in two stages：

$$
\begin{aligned}
L z & =b \text { solve for } z \\
U x & =z \text { solve for } x .
\end{aligned}
$$

Basic Gaussian elimination

Let $A^{(1)}=\left(a_{i j}^{(1)}\right)=A=\left(a_{i j}\right)$ and $b^{(1)}=b$ ．Consider the following linear system $A x=b$ ：

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
12 & -8 & 6 & 10 \\
3 & -13 & 9 & 3 \\
-6 & 4 & 1 & -18
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
34 \\
27 \\
-38
\end{array}\right]
$$

pivot row＝row1．
pivot element：$a_{11}^{(1)}=6$ ．
row2－$(12 / 6)^{*}$ row1 \rightarrow row2．
row3－（3／6）＊row1 \rightarrow row3．
row $4-(-6 / 6)^{*}$ row $1 \rightarrow$ row4．

$$
\Longrightarrow\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & -12 & 8 & 1 \\
0 & 2 & 3 & -14
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
10 \\
21 \\
-26
\end{array}\right] .
$$

multipliers： $12 / 6,3 / 6,(-6) / 6$

Basic Gaussian elimination（cont＇d）

We have the following equivalent system $A^{(2)} x=b^{(2)}$ ：

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & -12 & 8 & 1 \\
0 & 2 & 3 & -14
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
10 \\
21 \\
-26
\end{array}\right] .
$$

pivot row＝row2．
pivot element $a_{22}^{(2)}=-4$ ．
row3 $-(-12 /-4)^{*}$ row2 \rightarrow row3．
row $4-(2 /-4)^{*}$ row $2 \rightarrow$ row4．

$$
\Longrightarrow\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 4 & -13
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
10 \\
-9 \\
-21
\end{array}\right] .
$$

multiplier：$(-12) /(-4), 2 /(-4)$

Basic Gaussian elimination（cont＇d）

We have the following equivalent system $A^{(3)} x=b^{(3)}$ ：

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 4 & -13
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
10 \\
-9 \\
-21
\end{array}\right] .
$$

pivot row＝row3．
pivot element $a_{33}^{(3)}=2$ ．
row4 $-(4 / 2)^{*}$ row3 \rightarrow row4．

$$
\Longrightarrow\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
10 \\
-9 \\
-3
\end{array}\right] .
$$

multiplier：4／2

Basic Gaussian elimination（cont＇d）

Finally，we have the following equivalent upper triangular system $A^{(4)} x=b^{(4)}$ ：

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
10 \\
-9 \\
-3
\end{array}\right] .
$$

Using the backward substitution，we have

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
1 \\
-3 \\
-2 \\
1
\end{array}\right] .
$$

The $L U$ decomposition

Display the multipliers in an unit lower triangular matrix $L=\left(\ell_{i j}\right)$ ：

$$
L=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
\frac{1}{2} & 3 & 1 & 0 \\
-1 & -\frac{1}{2} & 2 & 1
\end{array}\right]
$$

Let $U=\left(u_{i j}\right)$ be the final upper triangular matrix $A^{(4)}$ ．Then we have

$$
U=\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 0 & -3
\end{array}\right]
$$

and one can check that $A=L U$（the Doolittle Decomposition）．

Some remarks

（1）The entire elimination process will break down if any of the pivot elements are 0 ．
（2）The total number of arithmetic operations：

$$
\begin{aligned}
& M / D=\frac{n^{3}}{3}+n^{2}-\frac{n}{3} \\
& A / S=\frac{n^{3}}{3}+\frac{n^{2}}{2}-\frac{5 n}{6}
\end{aligned}
$$

\therefore The GE is an $O\left(n^{3}\right)$ algorithm．

Vector norm

A vector norm on \mathbb{R}^{n} is a real－valued function $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with the properties：
（1）$\|x\| \geq 0, \forall x \in \mathbb{R}^{n}$ ，and $\|x\|=0$ if and only if $x=0$ ；
（2）$\|\alpha x\|=|\alpha|\|x\|, \forall x \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$ ；
（3）$\|x+y\| \leq\|x\|+\|y\|, \forall x, y \in \mathbb{R}^{n}$（the triangle inequality）．
Note：$\|x\|$ is called the norm of x ，the length or magnitude of x ．

Some vector norms on \mathbb{R}^{n} and distance

（1）Let $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\top} \in \mathbb{R}^{n}$ ：
－The 2－norm（Euclidean norm，or ℓ^{2} norm）：$\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$
－The infinity norm（ ℓ^{∞}－norm）：$\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|$
－The 1－norm（ ℓ^{1}－norm）：$\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
（2）Let $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\top}, y=\left(y_{1}, y_{2}, \cdots, y_{n}\right)^{\top} \in \mathbb{R}^{n}$ ．Then
－$\|x-y\|_{2}=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}$
－$\|x-y\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}-y_{i}\right|$
－$\|x-y\|_{1}=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$

The difference between the above norms

（1）What is the unit ball $\left\{x \in \mathbb{R}^{2}:\|x\| \leq 1\right\}$ for the three norms above？
－2－norm：a circle
－∞－norm：a square
－1－norm：a diamond
（2）Example：Let $x=(-1,1,-2)^{\top} \in \mathbb{R}^{3}$ ．Then

$$
\begin{aligned}
& \|x\|_{2}=\sqrt{(-1)^{2}+1^{2}+(-2)^{2}}=\sqrt{6}, \\
& \|x\|_{\infty}=\max _{1 \leq i \leq 3}\left|x_{i}\right|=\max \{|-1|,|1|,|-2|\}=2, \\
& \|x\|_{1}=\sum_{i=1}^{3}\left|x_{i}\right|=|-1|+|1|+|-2|=4 .
\end{aligned}
$$

（3）Cauchy－Buniakowsky－Schwarz inequality：For $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\top}, y=\left(y_{1}, y_{2}, \cdots, y_{n}\right)^{\top} \in \mathbb{R}^{n}$ ，we have

$$
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} y_{i}^{2}\right)^{1 / 2}=\|x\|_{2}\|y\|_{2}
$$

Convergence of sequences in \mathbb{R}^{n}

（1）Definition：Let $x, x^{(k)} \in \mathbb{R}^{n}$ for $k=1,2, \cdots$ ．Then $\lim _{k \rightarrow \infty} x^{(k)}=x$ with respect to the norm $\|\cdot\| \Longleftrightarrow$ $\forall \varepsilon>0, \exists$ an integer $N(\varepsilon)>0$ such that if $k \geq N(\varepsilon)$ then $\left\|x^{(k)}-x\right\|<\varepsilon$ ．
（2） $\lim _{k \rightarrow \infty} x^{(k)}=x$ with respect to $\|\cdot\|_{\infty} \Longleftrightarrow \lim _{k \rightarrow \infty} x_{i}^{(k)}=x_{i}$ for $i=1,2, \cdots, n$ ．
（3）Example：
$x^{(k)}=\left(x_{1}^{(k)}, x_{2}^{(k)}, x_{3}^{(k)}, x_{4}^{(k)}\right)^{\top}=\left(1,2+\frac{1}{k^{\prime}}, \frac{3}{k^{2}}, e^{-k} \sin (k)\right)^{\top}$ ．
$\because \lim _{k \rightarrow \infty} 1=1, \lim _{k \rightarrow \infty}\left(2+\frac{1}{k}\right)=2, \lim _{k \rightarrow \infty} \frac{3}{k^{2}}=0, \lim _{k \rightarrow \infty} e^{-k} \sin (k)=0$ ．
$\therefore \lim _{k \rightarrow \infty} x^{(k)}=x=(1,2,0,0)^{\top}$ with respect to $\|\cdot\|_{\infty}$ norm．

All vector norms on \mathbb{R}^{n} are equivalent

（1）For each $x \in \mathbb{R}^{n},\|x\|_{\infty} \leq\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty}$ ．
Proof：Let $\left|x_{j}\right|=\|x\|_{\infty}$ ．Then

$$
\|x\|_{\infty}^{2}=\left|x_{j}\right|^{2}=x_{j}^{2} \leq \sum_{i=1}^{n} x_{i}^{2}=\|x\|_{2}^{2} \leq \sum_{i=1}^{n} x_{j}^{2}=n x_{j}^{2}=n\|x\|_{\infty}^{2} .
$$

（2）In fact，all vector norms on \mathbb{R}^{n} are equivalent！

Matrix norm

Let A be an $n \times n$ real matrix．If $\|\cdot\|$ is any vector norm on \mathbb{R}^{n} ，then

$$
\begin{aligned}
& \|A\|:=\max \left\{\|A x\|: x \in \mathbb{R}^{n},\|x\|=1\right\} \\
& \Longleftrightarrow\|A\|:=\max \left\{\frac{\|A x\|}{\|x\|}: x \in \mathbb{R}^{n}, x \neq 0\right\}
\end{aligned}
$$

defines a norm on the vector space of all $n \times n$ real matrices．（This is called the matrix norm associated with the given vector norm）
Proof：
（1）$\because\|A x\| \geq 0 \forall x \in \mathbb{R}^{n},\|x\|=1 . \therefore\|A\| \geq 0$ ．
Exercise：$\|A\|=0$ if and only if $A=0$ ．
（2）$\|\lambda A\|=\max \{\|\lambda A x\|:\|x\|=1\}=\max \{|\lambda|\|A x\|:\|x\|=1\}$ $=|\lambda| \max \{\|A x\|:\|x\|=1\}=|\lambda|\|A\|$ ．
（3）$\|A+B\|=\max \{\|(A+B) x\|:\|x\|=1\} \leq \max \{\|A x\|+\|B x\|$ ： $\|x\|=1\}$
$\leq \max \{\|A x\|:\|x\|=1\}+\max \{\|B x\|:\|x\|=1\}=\|A\|+\|B\|$ ．

Some additional properties

（1）$\|A x\| \leq\|A\|\|x\|, \forall x \in \mathbb{R}^{n}$ ．
Proof：Let $x \neq 0$ ．
Then $v=\frac{x}{\|x\|}$ is of norm 1．$\quad \therefore\|A\| \geq\|A v\|=\frac{\|A x\|}{\|x\|}$ ．
（2）$\|I\|=1$ ．
（3）$\|A B\| \leq\|A\|\|B\|$ ．
Proof：
$\|A B\|:=\max \left\{\|(A B) x\|: x \in \mathbb{R}^{n},\|x\|=1\right\}$
$\leq \max \left\{\|A\|\|B x\|: x \in \mathbb{R}^{n},\|x\|=1\right\}$
$\leq \max \left\{\|A\|\|B\|\|x\|: x \in \mathbb{R}^{n},\|x\|=1\right\}=\|A\|\|B\|$ ．

Some matrix norms

Let $A_{n \times n}=\left(a_{i j}\right)$ be an $n \times n$ real matrix．Then
（1）The ∞－matrix norm：

$$
\|A\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

（2）The 1－matrix norm：

$$
\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

（3）The 2－matrix norm（ ℓ^{2}－matrix norm）：

$$
\|A\|_{2}=\max _{\|x\|_{2}=1}\|A x\|_{2}
$$

Example

We consider the matrix

$$
A=\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]
$$

－The characteristic polynomial $p(\lambda)$ of A is given by

$$
\begin{aligned}
p(\lambda) & =\operatorname{det}(A-\lambda I) \\
& =(1-\lambda)\left\{(1-\lambda)^{2}+1\right\}+(-1)\{-2(1-\lambda)\} \\
& =(1-\lambda)\left\{\lambda^{2}-2 \lambda+4\right\}
\end{aligned}
$$

The eigenvalues of A are $\lambda_{1}=1, \lambda_{2}=1+\sqrt{3} i$ and $\lambda_{3}=1-\sqrt{3} i$ ．
－The spectral radius $\rho(A)$ of matrix A is defined by

$$
\rho(A)=\max \{|\lambda|: \lambda \text { is an eigenvalue of } A\} .
$$

For matrix A ，we have $\rho(A)=\max \{|1|,|1+\sqrt{3} i|,|1-\sqrt{3} i|\}=2$ ．

The 2－matrix norm

（1）$\|A\|_{2}$ is not easy to compute．
（2）Since $A^{\top} A$ is symmetric，$A^{\top} A$ has n real eigenvalues， $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n} \in \mathbb{R}$ ．Moreover，one can prove that they are all nonnegative．Then

$$
\rho\left(A^{\top} A\right):=\max _{1 \leq i \leq n}\left\{\lambda_{i}\right\} \geq 0 .
$$

is called the spectral radius of $A^{\top} A$ ．
（3）Then the ℓ^{2}－matrix norm of A is given by

$$
\|A\|_{2}=\sqrt{\rho\left(A^{\top} A\right)}
$$

The ℓ^{2}－matrix norm is also called the spectral norm．

Properties of matrix norm

Let A be an $n \times n$ real matrix．Then
（1）Then the ℓ^{2}－matrix norm of A is given by $\|A\|_{2}=\sqrt{\rho\left(A^{\top} A\right)}$ ．
The ℓ^{2}－matrix norm is also called the spectral norm．
（2）$\rho(A) \leq\|A\|$ for any matrix norm $\|\cdot\|$ ．
Proof：Suppose that λ is an eigenvalue of A with eigenvector x and $\|x\|=1$ ．
$\Longrightarrow|\lambda|=|\lambda|\|x\|=\|\lambda x\|=\|A x\| \leq\|A\|\|x\|=\|A\|$
$\Longrightarrow \rho(A)=\max |\lambda| \leq\|A\|$
（3）For any $n \times n$ matrix A and any $\varepsilon>0, \exists$ a matrix norm $\|\cdot\|$ such that $\rho(A) \leq\|A\| \leq \rho(A)+\varepsilon$ ．

Example

$$
\begin{aligned}
A & =\left[\begin{array}{rrr}
1 & 1 & 0 \\
1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right] . \\
A^{\top} A & =\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & 0 \\
1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right]=\left[\begin{array}{rrr}
3 & 2 & -1 \\
2 & 6 & 4 \\
-1 & 4 & 5
\end{array}\right]
\end{aligned}
$$

$\operatorname{det}\left(A^{\top} A-\lambda I\right)=\operatorname{det}\left[\begin{array}{rrr}3-\lambda & 2 & -1 \\ 2 & 6-\lambda & 4 \\ -1 & 4 & 5-\lambda\end{array}\right]=-\lambda\left(\lambda^{2}-14 \lambda+42\right)$
$\Longrightarrow \lambda=0,7+\sqrt{7}, 7-\sqrt{7}$
$\Longrightarrow\|A\|_{2}=\sqrt{\rho\left(A^{\top} A\right)}=\sqrt{7+\sqrt{7}} \approx 3.106$

Convergence

（1）Definition：An $n \times n$ matrix A is said to be convergent（to zero matrix）if $\lim _{k \rightarrow \infty}\left(A^{k}\right)_{i j}=0$ for $i, j=1,2, \cdots, n$ ．
（2）Example：

$$
\begin{gathered}
A=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
\frac{1}{4} & \frac{1}{2}
\end{array}\right] \Longrightarrow A^{2}=\left[\begin{array}{cc}
\frac{1}{4} & 0 \\
\frac{1}{4} & \frac{1}{4}
\end{array}\right] \Longrightarrow A^{3}=\left[\begin{array}{cc}
\frac{1}{8} & 0 \\
\frac{3}{16} & \frac{1}{8}
\end{array}\right] \Longrightarrow \cdots \\
A^{k}=\left[\begin{array}{cc}
\left(\frac{1}{2}\right)^{k} & 0 \\
\frac{k}{2^{k+1}} & \left(\frac{1}{2}\right)^{k}
\end{array}\right], \quad \lim _{k \rightarrow \infty}\left(\frac{1}{2}\right)^{k}=0, \quad \lim _{k \rightarrow \infty} \frac{k}{2^{k+1}}=0 .
\end{gathered}
$$

$\therefore A$ is a convergent matrix

Equivalent statements

The following statements are equivalent：
（1）A is a convergent matrix
（2） $\lim _{n \rightarrow \infty}\left\|A^{n}\right\|=0$ for some natural matrix norm
（3） $\lim _{n \rightarrow \infty}\left\|A^{n}\right\|=0$ for all natural matrix norms
（9）$\rho(A)<1$
（3） $\lim _{n \rightarrow \infty} A^{n} x=0$ for all x

Iterative methods

（1）Basic idea：$A x=b \Longrightarrow x=T x+c$ for some fixed matrix T and vector c
（2）Given $x^{(0)}, x^{(k)}:=T x^{(k-1)}+c$ for $k=1,2, \cdots$
（3）Consider a linear system：

$$
\left\{\begin{array}{rlr}
10 x_{1}-x_{2}+2 x_{3}+0 & = & 6 \\
-x_{1}+11 x_{2}-x_{3}+3 x_{4} & = & 25 \\
2 x_{1}-x_{2}+10 x_{3}-x_{4} & = & -11 \\
0+3 x_{2}-x_{3}+8 x_{4} & = & 15
\end{array}\right.
$$

Exact unique solution：$x=(1,2,-1,1)^{\top}$

The Jacobi iterative method

We first rewrite the linear system as

$$
\begin{aligned}
& x_{1}=0+\frac{1}{10} x_{2}-\frac{2}{10} x_{3}+0+\frac{6}{10} \\
& x_{2}=\frac{1}{11} x_{1}+0+\frac{1}{11} x_{3}-\frac{3}{11} x_{4}+\frac{25}{11} \\
& x_{3}=-\frac{2}{10} x_{1}+\frac{1}{10} x_{2}+0+\frac{1}{10} x_{4}-\frac{11}{10} \\
& x_{4}=0-\frac{3}{8} x_{2}+\frac{1}{8} x_{3}+0+\frac{15}{8} \\
& x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=T x+c=\left[\begin{array}{rrrr}
0 & \frac{1}{10} & -\frac{2}{10} & 0 \\
\frac{1}{11} & 0 & \frac{1}{11} & -\frac{3}{11} \\
-\frac{2}{10} & \frac{1}{10} & 0 & \frac{1}{10} \\
0 & -\frac{3}{8} & \frac{1}{8} & 0
\end{array}\right] x+\left[\begin{array}{r}
\frac{6}{10} \\
\frac{25}{11} \\
-\frac{11}{10} \\
\frac{15}{8}
\end{array}\right] .
\end{aligned}
$$

The Jacobi iterative method（cont＇d）

If $x^{(0)}=(0,0,0,0)^{\top}$ ，then

$$
x^{(1)}=T x^{(0)}+c=\left[\begin{array}{r}
\frac{6}{10} \\
\frac{25}{11} \\
-\frac{11}{10} \\
\frac{15}{8}
\end{array}\right]=\left[\begin{array}{r}
0.6000 \\
2.2727 \\
-1.1000 \\
1.8750
\end{array}\right]
$$

$\Longrightarrow x^{(2)}=T x^{(1)}+c \Longrightarrow \cdots$
$\Longrightarrow \frac{\left\|x^{(10)}-x^{(9)}\right\|_{\infty}}{\left\|x^{(10)}\right\|_{\infty}}=\frac{8.0 \times 10^{-4}}{1.9998}<10^{-3}$ stop！$x \approx x^{(10)}$ ．

The Jacobi iterative method（cont＇d）

$A x=b, a_{i i} \neq 0$ for all $i=1,2, \cdots, n$.
Given $x^{(k-1)}, k \geq 1$ ．
For $i=1,2, \cdots, n$ ，
$x_{i}^{(k)}=\frac{-\sum_{j=1, j \neq i}^{n} a_{i j} x_{j}^{(k-1)}+b_{i}}{a_{i i}}$.

Theoretical setting

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & & & \\
& a_{22} & & \\
& & \ddots & \\
& & & a_{n n}
\end{array}\right]} \\
& \quad-\left[\begin{array}{cccc}
0 & 0 & \\
-a_{21} & 0 & \\
\vdots & \ddots & \ddots & \\
-a_{n 1} & \cdots & -a_{n n-1} & 0
\end{array}\right]-\left[\begin{array}{cccc}
0 & -a_{12} & \cdots & -a_{1 n} \\
& \ddots & \ddots & \vdots \\
& & & -a_{n-1 n} \\
& & & 0
\end{array}\right]
\end{aligned}
$$

$\Longrightarrow A=D-L-U$
D ：diagonal matrix
L：lower triangular matrix
U ：upper triangular matrix

Theoretical setting（cont＇d）

$A x=b$
$\Longrightarrow D x=(L+U) x+b$
$\Longrightarrow x=D^{-1}(L+U) x+D^{-1} b$
The Jacobi iterative method：

$$
x^{(k)}=D^{-1}(L+U) x^{(k-1)}+D^{-1} b, \quad k=1,2, \cdots
$$

Notation：$x^{(k)}=T_{J} x^{(k-1)}+c_{J}$ ，where $T_{J}:=D^{-1}(L+U), c_{J}:=D^{-1} b$

The Gauss－Seidel iterative method

$A x=b, a_{i i} \neq 0$ for all $i=1,2, \cdots, n$.
Given $x^{(k-1)}, k \geq 1$ ．
For $i=1,2, \cdots, n$ ，
$x_{i}^{(k)}=\frac{-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}+b_{i}}{a_{i i}}$.

Example

Letting $x^{(0)}=(0,0,0,0)^{\top}$ ，for $k=1,2, \cdots$

$$
\begin{aligned}
x_{1}^{(k)} & =0+\frac{1}{10} x_{2}^{(k-1)}-\frac{2}{10} x_{3}^{(k-1)}+0+\frac{6}{10} \\
x_{2}^{(k)} & =\frac{1}{11} x_{1}^{(k)}+0+\frac{1}{11} x_{3}^{(k-1)}-\frac{3}{11} x_{4}^{(k-1)}+\frac{25}{11} \\
x_{3}^{(k)} & =-\frac{2}{10} x_{1}^{(k)}+\frac{1}{10} x_{2}^{(k)}+0+\frac{1}{10} x_{4}^{(k-1)}-\frac{11}{10} \\
x_{4}^{(k)} & =0-\frac{3}{8} x_{2}^{(k)}+\frac{1}{8} x_{3}^{(k)}+0+\frac{15}{8} \\
\Longrightarrow \frac{\left\|x^{(5)}-x^{(4)}\right\|_{\infty}}{\left\|x^{(5)}\right\|_{\infty}} & =4.0 \times 10^{-4}<10^{-3} \quad \text { stop! } x \approx x^{(5)} .
\end{aligned}
$$

Theoretical setting

$A x=b, A=D-L-U \Longrightarrow(D-L) x^{(k)}=U x^{(k-1)}+b$ ．That is，

$$
\begin{aligned}
a_{11} x_{1}^{(k)} & =-a_{12} x_{2}^{(k-1)}-\cdots-a_{1 n} x_{n}^{(k-1)}+b_{1} \\
a_{21} x_{1}^{(k)}+a_{22} x_{2}^{(k)} & =-a_{23} x_{3}^{(k-1)}-\cdots-a_{2 n} x_{n}^{(k-1)}+b_{2}
\end{aligned}
$$

$a_{n 1} x_{1}^{(k)}+a_{n 2} x_{2}^{(k)}+\cdots+a_{n n} x_{n}^{(k)}=b_{n}$
$\Longrightarrow x^{(k)}=(D-L)^{-1} U x^{(k-1)}+(D-L)^{-1} b$ for $k=1,2, \cdots$
The Gauss－Seidel iterative method：$x^{(k)}=T_{S} x^{(k-1)}+c_{S}$ ， where $T_{S}:=(D-L)^{-1} U$ and $c_{S}:=(D-L)^{-1} b$ ．

Note：$a_{i i} \neq 0, i=1,2, \cdots, n \Longleftrightarrow D-L$ is nonsingular！

Theorem on convergence

（1）For any $x^{(0)} \in \mathbb{R}^{n}$ ，the sequence $\left\{x^{(k)}\right\}$ defined by

$$
x^{(k)}:=T x^{(k-1)}+c, \quad k \geq 1,
$$

converges to the unique solution of $x=T x+c \Longleftrightarrow \rho(T)<1$ ．
（2）A lemma：If $\rho(T)<1$ ，then $(I-T)^{-1}$ exists and

$$
(I-T)^{-1}=I+T+T^{2}+\cdots\left(:=\sum_{n=0}^{\infty} T^{n}\right) .
$$

Corollaries

（1）$x^{(0)} \in \mathbb{R}^{n}, x^{(k)}:=T x^{(k-1)}+c, k \geq 1$ ．If $\|T\|<1$ for any natural matrix norm then $\left\{x^{(k)}\right\}$ converges to the unique solution of $x=T x+c$ and
－$\left\|x-x^{(k)}\right\| \leq\|T\|^{k}\left\|x-x^{(0)}\right\|$ ．
－$\left\|x-x^{(k)}\right\| \leq \frac{\|T\|^{k}}{1-\|T\|}\left\|x^{(1)}-x^{(0)}\right\|$ ．
（2）If A is strictly diagonally dominant，then for any $x^{(0)} \in \mathbb{R}^{n}$ ，both the Jacobi and Gauss－Seidel methods give sequences $\left\{x^{(k)}\right\}$ that converge to the unique solution of $A x=b \quad(x=T x+c)$ ．

Successive Over－Relaxation（SOR）

（1）The Gauss－Seidel method：

$$
x_{i}^{(k)}=\frac{1}{a_{i i}}\left\{-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}+b_{i}\right\}
$$

（2）Successive over－relaxation：

$$
x_{i}^{(k)}=(1-\omega) x_{i}^{(k-1)}+\frac{\omega}{a_{i i}}\left\{-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}+b_{i}\right\}, \omega>0
$$

In general，
－$\omega=1$ ：the Gauss－Seidel method
－ $0<\omega<1$ ：when G－S diverges
－$\omega>1$ ：when G－S converges

SOR（cont＇d）

$$
\begin{aligned}
& a_{i i} x_{i}^{(k)}+\omega \sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}=(1-\omega) a_{i i} x_{i}^{(k-1)}-\omega \sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}+\omega b_{i} \\
& \Longrightarrow(D-\omega L) x^{(k)}=((1-\omega) D+\omega U) x^{(k-1)}+\omega b \\
& \Longrightarrow x^{(k)}=(D-\omega L)^{-1}((1-\omega) D+\omega U) x^{(k-1)}+\omega(D-\omega L)^{-1} b \\
& \Longrightarrow x^{(k)}=T_{\omega} x^{(k-1)}+c_{\omega}
\end{aligned}
$$

Example

（1）Consider a linear system：

$$
\left\{\begin{array}{rlr}
4 x_{1}+3 x_{2}+0 & = & 24 \\
3 x_{1}+4 x_{2}-x_{3} & = & 30 \\
0-x_{2}+4 x_{3} & = & -24
\end{array}\right.
$$

Exact unique solution：$x=(3,4,-5)^{\top}$ ．
（2）Let $x^{(0)}=(1,1,1)^{\top}$ ．The G－S method：

$$
\left\{\begin{array}{l}
x_{1}^{(k)}=-0.75 x_{2}^{(k-1)}+6 \\
x_{2}^{(k)}=-0.75 x_{1}^{(k)}+0.25 x_{3}^{(k-1)}+7.5 \\
x_{3}^{(k)}=0.25 x_{2}^{(k)}-6
\end{array}\right.
$$

（3）Let $x^{(0)}=(1,1,1)^{\top}$ ．The SOR with $\omega=1.25$ ：

$$
\left\{\begin{aligned}
x_{1}^{(k)} & =-0.25 x_{1}^{(k-1)}-0.9375 x_{2}^{(k-1)}+7.5 \\
x_{2}^{(k)} & =-0.9375 x_{1}^{(k)}-0.25 x_{2}^{(k-1)}+0.3125 x_{3}^{(k-1)}+9.375 \\
x_{3}^{(k)} & =0.3125 x_{2}^{(k)}-0.25 x_{3}^{(k-1)}-7.5
\end{aligned}\right.
$$

Theorems on convergence

（1）If $a_{i i} \neq 0, i=1,2, \cdots, n$ ，then $\rho\left(T_{\omega}\right) \geq|\omega-1|$ ．This implies the SOR method can converge only if $0<\omega<2$ ．
（2）If A is SPD， $0<\omega<2$ ，then the SOR method converges for any $x^{(0)}$ ．

Some error analysis

（1）Suppose that we want to solve the linear system $A x=b$ ，but b is somehow perturbed to \widetilde{b}（this may happen when we convert a real b to a floating－point b ）．
（2）Then actual solution would satisfy a slightly different linear system

$$
A \widetilde{x}=\widetilde{b}
$$

（3）Question：Is \tilde{x} very different from the desired solution x of the original system？
（9）Of course，the answer should depend on how good the matrix A is．
（6）Let $\|\cdot\|$ be a vector norm，we consider two types of errors：
－absolute error：$\|x-\widetilde{x}\|$
－relative error：$\|x-\widetilde{x}\| /\|x\|$

The absolute error

For the absolute error，we have

$$
\|x-\widetilde{x}\|=\left\|A^{-1} b-A^{-1} \widetilde{b}\right\|=\left\|A^{-1}(b-\widetilde{b})\right\| \leq\left\|A^{-1}\right\|\|b-\widetilde{b}\| .
$$

Therefore，the absolute error of x depends on two factors：the absolute error of b and the matrix norm of A^{-1} ．

The relative error

For the relative error，we have

$$
\begin{aligned}
\|x-\widetilde{x}\| & =\left\|A^{-1} b-A^{-1} \widetilde{b}\right\|=\left\|A^{-1}(b-\widetilde{b})\right\| \\
& \leq\left\|A^{-1}\right\|\|b-\widetilde{b}\|=\left\|A^{-1}\right\|\|A x\| \frac{\|b-\widetilde{b}\|}{\|b\|} \\
& \leq\left\|A^{-1}\right\|\|A\|\|x\| \frac{\|b-\widetilde{b}\|}{\|b\|} .
\end{aligned}
$$

That is

$$
\frac{\|x-\widetilde{x}\|}{\|x\|} \leq\left\|A^{-1}\right\|\|A\| \frac{\|b-\widetilde{b}\|}{\|b\|}
$$

Therefore，the relative error of x depends on two factors：the relative error of b and $\|A\|\left\|A^{-1}\right\|$ ．

Condition number

（1）Therefore，we define a condition number of the matrix A as

$$
\kappa(A):=\|A\|\left\|A^{-1}\right\| .
$$

$\kappa(A)$ measures how good the matrix A is．
（2）Example：Let $\varepsilon>0$ and

$$
A=\left[\begin{array}{cc}
1 & 1+\varepsilon \\
1-\varepsilon & 1
\end{array}\right] \Longrightarrow A^{-1}=\varepsilon^{-2}\left[\begin{array}{cc}
1 & -1-\varepsilon \\
-1+\varepsilon & 1
\end{array}\right] .
$$

Then $\|A\|_{\infty}=2+\varepsilon,\left\|A^{-1}\right\|_{\infty}=\varepsilon^{-2}(2+\varepsilon)$ ，and

$$
\kappa(A)=\left(\frac{2+\varepsilon}{\varepsilon}\right)^{2} \geq \frac{4}{\varepsilon^{2}} .
$$

Condition number（cont＇d）

（1）For example，if $\varepsilon=0.01$ ，then $\kappa(A) \geq 40000$ ．
（2）What does this mean？
It means that the relative error in x can be 40000 times greater than the relative error in b ．
（3）If $\kappa(A)$ is large，we say that A is ill－conditioned，otherwise A is well－conditioned．
（9）In the ill－conditioned case，the solution is very sensitive to the small changes in the right－hand vector b（higher precision in b may be needed）．

Another way to measure the error

Consider the linear system $A x=b$ ．Let \tilde{x} be a computed solution（an approximation to x ）．
（1）Residual vector：

$$
r=b-A \widetilde{x}
$$

（2）Error vector：

$$
e=x-\tilde{x}
$$

（3）They satisfy

$$
A e=r
$$

（Proof：$A e=A x-A \widetilde{x}=b-A \widetilde{x}=r$ ）
（1）Moreover，we have

$$
\frac{1}{\kappa(A)} \frac{\|r\|}{\|b\|} \leq \frac{\|e\|}{\|x\|} \leq \kappa(A) \frac{\|r\|}{\|b\|} .
$$

（Theorem on bounds involving condition number）

Proof of the Theorem

$\because A e=r$
$\therefore e=A^{-1} r$
$\therefore\|e\|\|b\|=\left\|A^{-1} r\right\|\|A x\| \leq\left\|A^{-1}\right\|\|r\|\|A\|\|x\|$
$\therefore \frac{\|e\|}{\|x\|} \leq \kappa(A) \frac{\|r\|}{\|b\|}$
On the other hand，we have

$$
\|r\|\|x\|=\|A e\|\left\|A^{-1} b\right\| \leq\|A\|\|e\|\left\|A^{-1}\right\|\|b\| .
$$

$\therefore \frac{1}{\kappa(A)} \frac{\|r\|}{\|b\|} \leq \frac{\|e\|}{\|x\|}$

