MA 3021：Numerical Analysis I Mathematical Preliminaries

Suh－Yuh Yang（楊肅暟）

Department of Mathematics，National Central University Jhongli District，Taoyuan City 32001，Taiwan
syyang＠math．ncu．edu．tw
http：／／www．math．ncu．edu．tw／～syyang／

Review of calculus

－$\varepsilon-\delta$ definition of limit：Let $\varnothing \neq X \subseteq \mathbb{R}, x_{0}$ be an accumulation point of X ，and $f: X \rightarrow \mathbb{R}$ be a real－valued function．Then

$$
\begin{aligned}
& \lim _{x \rightarrow x_{0}} f(x)=L \Longleftrightarrow \quad \forall \varepsilon>0, \exists \delta>0, \text { such that if } x \in X \text { and } \\
& 0<\left|x-x_{0}\right|<\delta \text { then }|f(x)-L|<\varepsilon .
\end{aligned}
$$

－Definition（continuity）：$\varnothing \neq X \subseteq \mathbb{R}, x_{0} \in X$ ，and $f: X \rightarrow \mathbb{R}$ ．
－$f(x)$ is said to be continuous at $x=x_{0}$ if $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$ ．
－f is continuous on X if f is continuous at each member in X ．
－Notation：
$C(X)=$ the set of all functions that are continuous on X ．
e．g．，$C([a, b])=C[a, b], C((a, b])=C(a, b]$ ，etc．

Sequences

－Definition：Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be an infinite sequence of real（or complex）numbers and $x \in \mathbb{R}$（or \mathbb{C} ）．

$$
\lim _{n \rightarrow \infty} x_{n}=x \Longleftrightarrow \forall \varepsilon>0, \exists N \in \mathbb{N} \text {, s.t. if } n>N \text { then }\left|x_{n}-x\right|<\varepsilon .
$$

－Theorem：$\varnothing \neq X \subseteq \mathbb{R}, x_{0} \in X$ ，and $f: X \rightarrow \mathbb{R}$ ．
f is continuous at $x_{0} \Longleftrightarrow$ if $\lim _{n \rightarrow \infty} x_{n}=x_{0}$ ，then

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)=f\left(\lim _{n \rightarrow \infty} x_{n}\right) .
$$

Smoothness

－Definition：Let $\varnothing \neq I \subseteq \mathbb{R}$ be an open interval，$x_{0} \in I, f: I \rightarrow \mathbb{R}$ ．
－If $\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ exists，then we say f is differentiable at x_{0} and $f^{\prime}\left(x_{0}\right):=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ is the derivative of f at x_{0} ．
－If f is differentiable at each number in I ，then we say f is differentiable on I．
－Alternative definition：$f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$ ．
－Theorem：f is differentiable at $x_{0} \Longrightarrow f$ is continuous at x_{0} ．
－Notation：
－$C^{n}(X)=$ the set of all functions that have n continuous derivatives on X ．
－$C^{\infty}(X)=$ the set of all functions that have derivatives of all orders on X ．
e．g．，polynomials，exponential functions，etc．，on $X=\mathbb{R}$ ．

Algorithm（pseudocode）

An algorithm to compute $f^{\prime}(x)$ at the point $x=0.5$ with $f(x)=\sin (x)$ ：
program numerical differentiation integer parameter $n \leftarrow 10$ integer i
real error，h, x, y
$x \leftarrow 0.5$
$h \leftarrow 1$
for $i=1$ to n do
$h \leftarrow 0.25 h$
$y \leftarrow(\sin (x+h)-\sin (x)) / h$
error $\leftarrow|\cos (x)-y|$
output i, h, y, error
end for end program

Mean Value Theorem

－Rolle＇s Theorem：
If f is continuous on $[a, b], f^{\prime}$ exists on (a, b) ，and $f(a)=f(b)$ ，then $\exists c \in(a, b)$ s．t．$f^{\prime}(c)=0$ ．
－Mean Value Theorem：
If $f \in C[a, b]$ and f^{\prime} exists on (a, b) ，then for $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ ．
－Generalized Rolle＇s Theorem：$f \in C[a, b], f$ is n time differentiable on (a, b) ．If f is zero at $n+1$ distinct numbers $x_{0}, x_{1}, \cdots, x_{n} \in[a, b]$ ，then $\exists c \in(a, b)$ such that $f^{(n)}(c)=0$ ．
－Extreme Value Theorem：If $f \in C[a, b]$ then $\exists c_{1}, c_{2} \in[a, b]$ such that $f\left(c_{1}\right) \leq f(x) \leq f\left(c_{2}\right), \forall x \in[a, b]$ ．
－Note：Extreme Value Theorem + Fermat＇s Lemma \Longrightarrow Rolle＇s Theorem \Longrightarrow Mean Value Theorem．

Intermediate Value Theorem

－Bolzano＇s Theorem：If f is a continuous function on $[a, b]$ and $f(a) f(b)<0$ ，then $\exists c \in(a, b)$ s．t．$f(c)=0$ ．
－Intermediate－Value Theorem：If f is a continuous function on ［ a, b ］and K is any number between $f(a)$ and $f(b)$ ，that is， $f(a)<K<f(b)$ or $f(b)<K<f(a)$ ，then $\exists c \in(a, b)$ s．t．$f(c)=K$ ．
－Note：The Least－Upper－Bound Axiom＋sign－preserving property \Longrightarrow Bolzano＇s Theorem \Longrightarrow Intermediate Value Theorem．

Riemann integral

－Definition：Let $\left\{x_{0}=a, x_{1}, x_{2}, \cdots, x_{n}=b\right\}$ be a partition of $[a, b]$ with $\Delta x_{i}=x_{i}-x_{i-1}, i=1,2, \cdots, n$ and $z_{i} \in\left[x_{i-1}, x_{i}\right]$ is arbitrary chosen．If $\lim _{\max \Delta x_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(z_{i}\right) \Delta x_{i}$ exists，then
$\int_{a}^{b} f(x) d x:=\lim _{\max \Delta x_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(z_{i}\right) \Delta x_{i}$ is called the（Riemann） integral of f on $[a, b]$ ．
－Lebesgue Theorem：Let $f: A \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a bounded function on a bounded set A ．
f is Riemann integrable \Longleftrightarrow the set $\{$ discontinuous points of $f\}$ is measure zero．
－Note：$f \in C[a, b] \Longrightarrow f$ is integrable on $[a, b]$ ．

$$
\text { equal spaced, } z_{i}=x_{i} \Longrightarrow \int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \text {. }
$$

Weighted Mean Value Theorem for integral

If $f \in C[a, b], g$ is Riemann integrable on $[a, b]$ and does not change sign on $[a, b]$ ．Then $\exists c \in(a, b)$ such that

$$
\int_{a}^{b} f(x) g(x) d x=f(c) \int_{a}^{b} g(x) d x .
$$

Proof：
$\because f \in C[a, b] \quad \therefore \exists m, M \in \mathbb{R}$ such that $m \leq f(x) \leq M \forall x \in[a, b]$ ．
$\$ g(x) \geq 0$ on $[a, b]$ ．Then $\int_{a}^{b} m g(x) d x \leq \int_{a}^{b} f(x) g(x) d x \leq \int_{a}^{b} M g(x) d x$ ．
$\$ \int_{a}^{b} g(x) d x>0$ ，otherwise OK．Then $m \leq \frac{\int_{a}^{b} f(x) g(x) d x}{\int_{a}^{b} g(x) d x} \leq M$ ．
Then the assertion holds by the Intermediate Value Theorem．
Note：$g(x) \equiv 1$ on $[a, b] \Longrightarrow \int_{a}^{b} f(x) d x=f(c)(b-a) \Longrightarrow$
$f(c):=\frac{1}{b-a} \int_{a}^{b} f(x) d x$ is called the average value of f on $[a, b]$ ．

Taylor＇s Theorem

Let $f \in C^{n+1}[a, b]$ and $x_{0} \in[a, b]$ ．Then for every $x \in[a, b], \exists \xi(x)$ between x and x_{0} such that

$$
f(x)=P_{n}(x)+R_{n}(x)
$$

where the n－th Taylor polynomial $P_{n}(x)$ is given by

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}\left(x_{0}\right)\left(x-x_{0}\right)^{k}
$$

and the remainder（error）term $R_{n}(x)$ is given by

$$
\begin{aligned}
R_{n}(x) & =\frac{1}{n!} \int_{x_{0}}^{x}(x-t)^{n} f^{(n+1)}(t) d t \quad \text { (integral form) } \\
& =\frac{1}{(n+1)!} f^{(n+1)}(\xi(x))\left(x-x_{0}\right)^{n+1} \quad \text { (Lagrange's form) }
\end{aligned}
$$

（by the weighted MVT for integral）

Some remarks

Assume that $f \in C^{\infty}[a, b]$ ．
－$\sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}\left(x_{0}\right)\left(x-x_{0}\right)^{k}$ is called the Taylor series of f at x_{0} ．
（when $x_{0}=0$ ，called the Maclaurin series）
－If $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ ，then $P_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$ ，i．e．，

$$
f(x)=\sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}\left(x_{0}\right)\left(x-x_{0}\right)^{k} .
$$

Example：find the Taylor polynomial of $f(x)=\cos (x)$ at $x_{0}=0$

$$
\begin{aligned}
& f^{\prime}(x)=-\sin (x), f^{\prime \prime}(x)=-\cos (x), f^{\prime \prime \prime}(x)=\sin (x), f^{(4)}(x)=\cos (x) \\
& f(0)=1, f^{\prime}(0)=0, f^{\prime \prime}(0)=-1, f^{\prime \prime \prime}(0)=0, f^{(4)}(0)=1
\end{aligned}
$$

Case $n=2$ ：
$\cos (x)=1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3} \sin (\xi(x))$ ，where $\xi(x)$ is between 0 and x ．
$\cos (0.01)=0.99995+0.1 \overline{6} \times 10^{-6} \sin (\xi(x))$ ，where $0<\xi(x)<0.01$ ．
$|\cos (0.01)-0.99995| \leq 0.1 \overline{6} \times 10^{-6}|\sin (\xi(x))| \leq$
$0.1 \overline{6} \times 10^{-6} \times 0.01=0.1 \overline{6} \times 10^{-8}$ ，
where we use the fact $|\sin (x)| \leq|x|, \forall x \in \mathbb{R}$ ．
Case $n=3$ ：
$\cos (x)=1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4} \cos (\widetilde{\xi}(x))$ ，where $\widetilde{\zeta}(x)$ is between 0 and x ．
$|\cos (0.01)-0.99995| \leq \frac{1}{24}(0.01)^{4} \times 1 \leq 4.2 \times 10^{-10}$ ．

Example（continued）

$$
\begin{aligned}
\int_{0}^{0.1} \cos (x) d x & =\int_{0}^{0.1}\left(1-\frac{1}{2} x^{2}\right) d x+\int_{0}^{0.1} \frac{1}{24} x^{4} \cos (\widetilde{\xi}(x)) d x \\
& =\left.\left(x-\frac{1}{6} x^{3}\right)\right|_{0} ^{0.1}+\int_{0}^{0.1} \frac{1}{24} x^{4} \cos (\widetilde{\xi}(x)) d x \\
& =0.0998 \overline{3}+\int_{0}^{0.1} \frac{1}{24} x^{4} \cos (\widetilde{\xi}(x)) d x \\
\left|\int_{0}^{0.1} \cos (x) d x-0.0998 \overline{3}\right| & \leq \frac{1}{24} \int_{0}^{0.1} x^{4}|\cos (\widetilde{\xi}(x))| d x \\
& \leq \frac{1}{24} \int_{0}^{0.1} x^{4} d x=8 . \overline{3} \times 10^{-8}
\end{aligned}
$$

True value is 0.099833416647 ，actual error for this approximation is 8.3314×10^{-8} ．

Partial sums of the Taylor series for $f(x)=\cos (x)$ at $x_{0}=0$

Note：A Taylor series converges rapidly near the point of expansion and slowly（or not at all）at more remote points．

Taylor＇s Theorem in two variables

If $f \in C^{n+1}([a, b] \times[c, d])$ ，then for $(x, y),(x+h, y+k) \in[a, b] \times[c, d]$ we have

$$
f(x+h, y+k)=\sum_{i=0}^{n} \frac{1}{i!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{i} f(x, y)+R_{n}(h, k),
$$

where

$$
R_{n}(h, k)=\frac{1}{(n+1)!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{n+1} f(x+\theta h, y+\theta k)
$$

for some $0<\theta<1$ ．

Example：First few terms in the Taylor formula for $f(x, y)=\cos (x y)$ ：
Taylor＇s formula with $n=1$ is

$$
\begin{gathered}
\cos ((x+h)(y+k))=\cos (x y)-h y \sin (x y)-k x \sin (x y)+R_{1}(h, k) \\
R_{1}(h, k)=\cdots
\end{gathered}
$$

How about $n=2$ ？

Big O notation for sequences

－Definition：Suppose that $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\lim _{n \rightarrow \infty} \alpha_{n}=\alpha$ ．If $\exists K>0$ and $n_{0} \in \mathbb{N}$ such that $\left|\alpha_{n}-\alpha\right| \leq K\left|\beta_{n}-0\right|$ for all $n \geq n_{0}$ ，then we say that $\left\{\alpha_{n}\right\}$ converges to α with rate of convergence $O\left(\beta_{n}\right)$ and write $\alpha_{n}=\alpha+O\left(\beta_{n}\right)$ ．
－Examples：

$$
\begin{aligned}
& \alpha_{n}=1+\frac{n+1}{n^{2}} \Longrightarrow \lim _{n \rightarrow \infty} \alpha_{n}=\alpha=1 . \\
& \widetilde{\alpha}_{n}=2+\frac{n+3}{n^{3}} \Longrightarrow \lim _{n \rightarrow \infty} \widetilde{\alpha}_{n}=\widetilde{\alpha}=2 . \\
& \text { Let } \beta_{n}=\frac{1}{n} \text { and } \widetilde{\beta}_{n}=\frac{1}{n^{2}} . \text { Then } \lim _{n \rightarrow \infty} \beta_{n}=0=\lim _{n \rightarrow \infty} \widetilde{\beta}_{n} . \\
& \Longrightarrow\left|\alpha_{n}-1\right|=\frac{n+1}{n^{2}} \leq \frac{n+n}{n^{2}}=2 \frac{1}{n}=2\left|\beta_{n}-0\right| \\
& \quad \text { and }\left|\widetilde{\alpha}_{n}-2\right|=\frac{n+3}{n^{3}} \leq \frac{n+3 n}{n^{3}}=4 \frac{1}{n^{2}}=4\left|\widetilde{\beta}_{n}-0\right| . \\
& \Longrightarrow \alpha_{n}=1+O\left(\frac{1}{n}\right) \text { and } \widetilde{\alpha}_{n}=2+O\left(\frac{1}{n^{2}}\right) .
\end{aligned}
$$

Big O notation for functions

－Definition：Suppose that $\lim _{h \rightarrow 0} G(h)=0$ and $\lim _{h \rightarrow 0} F(h)=L$ ．If $\exists K>0$ and small $h_{0}>0$ such that $|F(h)-L| \leq K|G(h)-0|$ for all $|h| \leq h_{0}$ ，then we say that $F(h)$ converges to L with rate of convergence $O(G(h))$ and write $F(h)=L+O(G(h))$ ．
－Example：
$\cos (h)=1-\frac{1}{2} h^{2}+\frac{1}{24} h^{4} \cos (\xi(h)), \xi(h)$ is between 0 and h.
$\because\left|\cos (h)+\frac{1}{2} h^{2}-1\right|=\left|\frac{1}{24} \cos (\xi(h))\right| h^{4} \leq \frac{1}{24} h^{4}$ for all h ．
$\therefore \cos (h)+\frac{1}{2} h^{2}=1+O\left(h^{4}\right)$ ．

